
蚂蚁科技

扫⼀扫

使⽤指南

⽂档版本：20250731

蚂蚁科技

扫⼀扫

使⽤指南

⽂档版本：20250731

法律声明
蚂蚁集团版权所有©2022，并保留⼀切权利。
未经蚂蚁集团事先书⾯许可，任何单位、公司或个⼈不得擅⾃摘抄、翻译、复制本⽂档
内容的部分或全部，不得以任何⽅式或途径进⾏传播和宣传。

商标声明

及其他蚂蚁集团相关的商标均为蚂蚁集团所有。本⽂档涉及的第三⽅的注册商
标，依法由权利⼈所有。

免责声明
由于产品版本升级、调整或其他原因，本⽂档内容有可能变更。蚂蚁集团保留在没有任
何通知或者提示下对本⽂档的内容进⾏修改的权利，并在蚂蚁集团授权通道中不时发布
更新后的⽤户⽂档。您应当实时关注⽤户⽂档的版本变更并通过蚂蚁集团授权渠道下
载、获取最新版的⽤户⽂档。如因⽂档使⽤不当造成的直接或间接损失，本公司不承担
任何责任。

扫⼀扫 使⽤指南·法律声明

> ⽂档版本：20250731 I

通⽤约定

格式 说明 样例

 危险 该类警示信息将导致系统重⼤变更甚⾄故
障，或者导致⼈⾝伤害等结果。

 危险

重置操作将丢失⽤户配置数据。

 警告 该类警示信息可能会导致系统重⼤变更甚
⾄故障，或者导致⼈⾝伤害等结果。

 警告

重启操作将导致业务中断，恢复业务
时间约⼗分钟。

 注意 ⽤于警示信息、补充说明等，是⽤户必须
了解的内容。

 注意

权重设置为0，该服务器不会再接受
新请求。

 说明 ⽤于补充说明、最佳实践、窍⻔等，不是
⽤户必须了解的内容。

 说明

您也可以通过按Ctrl+A选中全部⽂
件。

> 多级菜单递进。 单击设置> 网络> 设置网络类型。

粗体 表示按键、菜单、⻚⾯名称等UI元素。 在结果确认⻚⾯，单击确定。

Courier字体 命令或代码。
执⾏ cd /d C:/window 命令，进入
Windows系统⽂件夹。

斜体 表示参数、变量。
bae log list --instanceid

Instance_ID

[] 或者 [a|b] 表示可选项，⾄多选择⼀个。 ipconfig [-all|-t]

{} 或者 {a|b} 表示必选项，⾄多选择⼀个。 switch {active|stand}

扫⼀扫 使⽤指南·通⽤约定

> ⽂档版本：20250731 I

⽬录
1.扫⼀扫

1.1. 扫⼀扫简介
1.2. 接入 Android

1.2.1. 快速开始
1.2.2. 进阶指南
1.2.3. 使⽤教程

1.2.3.1. 总览
1.2.3.2. 在 Android Studio 创建应⽤
1.2.3.3. 在 mPaaS 控制台创建应⽤
1.2.3.4. 原⽣ AAR ⽅式接入⼯程
1.2.3.5. 标准 UI 下使⽤扫码功能
1.2.3.6. ⾃定义 UI 下使⽤扫码功能

1.3. 接入 iOS
1.3.1. 快速开始
1.3.2. 进阶指南
1.3.3. 多码识别

1.4. 常⻅问题

05

05

08

08

11

23

23

24

25

26

26

37

65

65

67

71

75

扫⼀扫 使⽤指南·⽬录

> ⽂档版本：20250731 I

扫⼀扫（Scan）是 mPaaS 提供的扫码组件，源于⽀付宝的扫码能⼒。该组件秉承了⽀付宝精准、快速的
扫码能⼒，能够迅速识别出条形码并准确地获得条码中的信息。

组件功能
扫⼀扫组件⽀持扫描⼆维条形码（⼆维码）和⼀维条形码（条码）。

二维条形码（二维码）
Gen0（普通⼆维码）：

Gen1（visualead ⾃定义码）：

一维条形码（条码）
EAN8：

EAN13：

EAN14：

EAN18：

1.扫一扫
1.1. 扫一扫简介

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 5

EAN128：

ISBN：

ISSN：

Code39：

Code128：

UPC-A：

UPC-E：

ITF-14：

产品优势

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 6

mPaaS 的扫⼀扫功能，在同等条件下，和业界领先的同类产品相比，在扫码的识别速度、识别率等能⼒上
均占有优势。

识别速度快
在同等距离、同等光源的情况下，mPaaS 扫⼀扫对⼆维码/条形码的识别速度快于同类产品。

识别能力强
依赖于特有的模糊处理和数据评估矫正，同类产品的相册调⽤其扫码组件 API 无法识别出的图⽚，mPaaS
扫⼀扫也能够识别出来。

这张是同类产品的摄像头可以识别，但是其相册调⽤扫码组件 API 无法识别的图⽚。

以下是同类产品完全不能识别的⼆维码。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 7

本⽂介绍的是在 Android 中接入扫⼀扫 SDK 的操作步骤。

说明

⾃ 2020 年 6 ⽉ 28 ⽇起，mPaaS 停⽌维护 10.1.32 基线。请升级到 10.1.60、10.1.68 或 10.2.3 基线。扫
⼀扫⽀持 原生 AAR 和 组件化（Portal&Bundle）两种接入⽅式。⽂本将介绍在 10.2.3、10.1.68、10.1.60
基线下如何使⽤扫码功能。⾃ mPaaS 10.1.68.33 版本基线起，扫⼀扫⽀持全屏模式下的多码识别。⾃ mPaaS
10.2.3 版本基线起，扫⼀扫新增 AI 识别⼩码并⾃动放⼤的功能。

前置条件
若采⽤原⽣ AAR ⽅式接入，需先完成 将 mPaaS 添加到您的项⽬中 的前提条件和后续相关步骤。
若采⽤组件化⽅式接入，需先完成 组件化接入流程。

1.2. 接入 Android
1.2.1. 快速开始

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 8

添加 SDK
10.2.3
如需使⽤ AI 识别⼩码并⾃动放⼤功能，请安装 扫一扫 AI 组件。

原生 AAR 方式
参考 AAR 组件管理，通过 组件管理（AAR） 在⼯程中安装 扫一扫/扫一扫 AI 组件。

组件化方式
在 Portal 和 Bundle ⼯程中通过 组件管理 安装 扫一扫/扫一扫 AI 组件。更多信息，参考 管理组件依赖。

10.1.68/10.1.60
原生 AAR 方式
参考 AAR 组件管理，通过 组件管理（AAR） 在⼯程中安装 扫码 组件。

组件化方式
在 Portal 和 Bundle ⼯程中通过 组件管理 安装 扫码 组件。更多信息，参考 管理组件依赖。

使用扫一扫功能
10.2.3/10.1.68
使用全屏扫码功能
ScanRequest scanRequest = new ScanRequest();
MPScan.startMPaasScanFullScreenActivity(this, scanRequest, new MPScanCallbackAdapter()
{
 @Override
 public boolean onScanFinish(final Context context, MPScanResult mpScanResult, final
MPScanStarter mpScanStarter) {
 Toast.makeText(getApplicationContext(),
 mpScanResult != null ? mpScanResult.getText() : "没有识别到码", Toast.LENG
TH_SHORT).show();
 ((Activity) context).finish();
 // 返回 true 表示该回调已消费，不需要再次回调
 return true;
 }
});

使用窗口扫码功能
在 mPaaS 10.1.68 基线上使⽤窗⼝扫码功能（旧标准 UI），若扫码失败直接返回扫码界⾯，若扫码成功
将获取⼆维码的 URL 信息。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 9

ScanRequest scanRequest = new ScanRequest();
scanRequest.setScanType(ScanRequest.ScanType.QRCODE);
MPScan.startMPaasScanActivity(this, scanRequest, new ScanCallback() {
 @Override
 public void onScanResult(final boolean isProcessed, final Intent result) {
 if (!isProcessed) {
 // 扫码界⾯点击物理返回键或左上⾓返回键
 return;
 }
 // 注意：本回调是在⼦线程中执⾏
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (result == null || result.getData() == null) {
 // 扫码失败
 return;
 }
 // 扫码成功
 String url = result.getData().toString();
 }
 });
 }
});

10.1.60
在 10.1.60 基线上使⽤扫码功能，若扫码失败直接返回扫码界⾯，若扫码成功将获取⼆维码的 URL 信息。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 10

 ScanService service = LauncherApplicationAgent
 .getInstance().getMicroApplicationContext()
 .findServiceByInterface(ScanService.class.getName());

 ScanRequest scanRequest = new ScanRequest();
 scanRequest.setScanType(ScanRequest.ScanType.QRCODE);

 service.scan(this, scanRequest, new ScanCallback() {
 @Override
 public void onScanResult(boolean isProcessed, final Intent result) {
 if (!isProcessed) {
 // 扫码界⾯点击物理返回键或左上⾓返回键
 return;
 }
 // 注意：本回调是在⼦线程中执⾏
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (result == null || result.getData() == null) {
 // 扫码失败
 return;
 }
 // 扫码成功
 String url = result.getData().toString();
 }
 });
 }
 });

窗⼝扫码表示在旧的标准 UI 下使⽤扫码功能。若需使⽤⽀持多码识别的全屏扫码功能，请将 mPaaS 基线
版本升级⾄ 10.1.68.33 及以上。

1.2.2. 进阶指南

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 11

下图是扫⼀扫⽀持的三种 UI 扫码样式。

标准 UI 下使用扫一扫
全屏扫码
如需连续扫码，即扫码识别成功后不退出继续识别，可根据如下代码来实现。

ScanRequest scanRequest = new ScanRequest();
 MPScan.startMPaasScanFullScreenActivity(this, scanRequest, new
MPScanCallbackAdapter() {
 @Override
 public boolean onScanFinish(Context context, MPScanResult mpScanResult,
final MPScanStarter mpScanStarter) {
 new android.app.AlertDialog.Builder(context)
 .setMessage(mpScanResult != null ? mpScanResult.getText() : "没有
识别到码")
 .setPositiveButton(R.string.confirm, new
DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 mpScanStarter.restart();
 }
 })
 .create()
 .show();
 // 返回 false 表示该回调未消费，下次识别继续回调
 return false;
 }
 });

重写 MPScanCallbackAdapter 的其他⽅法来监听其他事件：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 12

MPScan.startMPaasScanFullScreenActivity(this, scanRequest, new MPScanCallbackAdapter()
{
 @Override
 public boolean onScanFinish(final Context context, MPScanResult mpScanResult, final
MPScanStarter mpScanStarter) {
 return true;
 }

 @Override
 public boolean onScanError(Context context, MPScanError error) {
 // 识别错误
 return super.onScanError(context, error);
 }

 @Override
 public boolean onScanCancel(Context context) {
 // 识别取消
 return super.onScanCancel(context);
 }
});

在启动全屏扫码功能前，可根据如下代码设置启动参数。

ScanRequest scanRequest = new ScanRequest();

// 设置提示⽂字
scanRequest.setViewText("提示⽂字");

// 设置打开⼿电筒提示⽂字
scanRequest.setOpenTorchText("打开⼿电筒");

// 设置关闭⼿电筒提示⽂字
scanRequest.setCloseTorchText("关闭⼿电筒");

// 设置扫码识别类型
// 该设置仅对直接扫码⽣效，对识别相册图⽚无效
scanRequest.setRecognizeType(
 ScanRequest.RecognizeType.QR_CODE, // ⼆维码
 ScanRequest.RecognizeType.BAR_CODE, // 条形码
 ScanRequest.RecognizeType.DM_CODE, // DM 码
 ScanRequest.RecognizeType.PDF417_Code // PDF417 码
); // 不设置，则默认识别前三种

// 设置隐藏相册按钮
scanRequest.setNotSupportAlbum(true);

// 设置多码标记图⽚
scanRequest.setMultiMaMarker(R.drawable.green_arrow);

// 设置多码提示⽂字
scanRequest.setMultiMaTipText("点击绿⾊箭头选择码");

// 设置选中单个码后的圆点颜⾊
scanRequest.setMaTargetColor("#32CD32");

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 13

scanRequest.setMaTargetColor("#32CD32");

// 开启 AI 识别⼩码并⾃动放⼤，仅 10.2.3 及以上基线⽀持，需接入扫⼀扫 AI 组件
scanRequest.setEnableAI(true);

// 设置延时提示⽂案，仅 10.2.3 及以上基线⽀持
scanRequest.setDelayTipText("延时x秒弹出toast");

// 设置延时提示时间，单位毫秒，仅 10.2.3 及以上基线⽀持
scanRequest.setDelayTipTime(5000);

// 设置开启相册识别多个码 (最多4个)，仅 10.2.3 及以上基线⽀持
scanRequest.setEnableAlbumMultiCode(true);

// 设置⾃定义权限申请流程
scanRequest.setPermissionDelegate(new PermissionDelegate() {
 /**
 * 开始申请权限，您可在这⾥实现⾃⼰的权限申请交互或者权限说明
 * 注意：
 * 1. 您在处理完⾃⼰的事情后需要去申请权限，否则流程会卡住
 * 2. ⽤户在拒绝后权限后会调⽤ onPermissionDenied 以及
MPScanCallbackAdapter.onScanError,
 * ⽽ MPScanCallbackAdapter.onScanError ⾥默认实现了对权限申请失败的处理，您
可以覆写该⽅法去处理该错误

 * @param fragment 扫码⻚⾯
 * @param requestCode 1:相机权限
 * @param permissions 申请的权限
 *
 */
 @Override
 public void onRequestPermission(Fragment fragment, final int requestCode,
final String[] permissions) {
 //处理相机权限
 if(requestCode == 1){
 //处理您的业务逻辑
 showPermissionTipDialog();
 }
 //必须调⽤，开始申请权限
 fragment.requestPermissions(permissions, requestCode);
 }

 /**
 * 权限申请成功后的回调
 */
 @Override
 public void onPermissionGranted(Fragment fragment, int requestCode,
String[] permissions, int[] grantResults) {
 dismissPermissionTipDialog();
 }

 /**
 * 权限被拒绝后的回调
 */
 @Override
 public void onPermissionDenied(Fragment fragment, int requestCode, String[]

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 14

 public void onPermissionDenied(Fragment fragment, int requestCode, String[]
permissions, int[] grantResults) {
 dismissPermissionTipDialog();
 }

});

窗口扫码
使⽤在窗⼝扫码功能时，可根据如下代码设置启动参数。

ScanRequest scanRequest = new ScanRequest();

// 设置扫码⻚ UI ⻛格
scanRequest.setScanType(ScanRequest.ScanType.QRCODE); // ⼆维码⻛格
scanRequest.setScanType(ScanRequest.ScanType.BARCODE); // 条形码⻛格，默认

// 设置扫码界⾯ title
scanRequest.setTitleText("标准扫码");

// 设置扫码窗⼝下提示⽂字
scanRequest.setViewText("提示⽂字");

// 设置打开⼿电筒提示⽂字，仅 10.1.60 及以上基线⽀持
scanRequest.setOpenTorchText("打开⼿电筒");

// 设置关闭⼿电筒提示⽂字，仅 10.1.60 及以上基线⽀持
scanRequest.setCloseTorchText("关闭⼿电筒");

// 设置扫码识别类型，仅 10.1.60.6+ 和 10.1.68.2+ 基线⽀持
// 该设置仅对直接扫码⽣效，对识别相册图⽚无效
scanRequest.setRecognizeType(
 ScanRequest.RecognizeType.QR_CODE, // ⼆维码
 ScanRequest.RecognizeType.BAR_CODE, // 条形码
 ScanRequest.RecognizeType.DM_CODE, // DM 码
 ScanRequest.RecognizeType.PDF417_Code // PDF417 码
); // 不设置，则默认识别前三种

// 设置透明状态栏（在 Android 4.4+ 系统上⽣效），仅 10.1.68.15+ 基线⽀持
scanRequest.setTranslucentStatusBar(true);

// 设置隐藏相册按钮，仅 10.1.68.22+ 基线⽀持
scanRequest.setNotSupportAlbum(true);

自定义 UI 下使用扫一扫
请参考 代码示例。

自定义 UI 升级适配

⾃ 10.2.3.35 起，扫⼀扫 SDK 新增了 MPCustomScanView 类以及相关接⼝，以代替此前使⽤的

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 15

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/mpaas_android_app

⾃ 10.2.3.35 起，扫⼀扫 SDK 新增了 MPCustomScanView 类以及相关接⼝，以代替此前使⽤的
 MPScanner 来实现⾃定义 UI。相比 MPScanner ，使⽤ MPCustomScanView 的⽅案封装了相机
管理、码识别、多码识别、画⾯放⼤与缩⼩、码结果解析等扫⼀扫服务核⼼流程，您在开发时无需关注相
关操作，只需专注于在 MPCustomScanView 中实现您⾃定义的 UI。您仍然可以继续使⽤
 MPScanner ，但该⽅案将不再维护，无法在后续的升级中获得和全屏 UI ⼀致的特性更新（例如多码识
别）。推荐您在合适的时机改⽤ MPCustomScanView ⽅案来实现⾃定义 UI，该⽅案会在后续的特性升
级中和全屏 UI 保持⼀致。
⾃ 10.1.68.5 和 10.1.60.11 起，扫⼀扫 SDK 新增了类 MPScanner 以及相关接⼝，⽤来替代此前⾃
定义扫码需要使⽤的 BQCScanCallback 、 MaScanCallback 等原始接⼝。相比原始接
⼝， MPScanner 提供了完整的封装性、简洁易懂的 API，以及更多新特性的⽀持（例如环境亮度不⾜
的回调）。如果您仍然在使⽤ BQCScanCallback 、 MaScanCallback 等原始接⼝，当您从低版本升
级时可能需要适配以下变更：

10.1.68.22 版本： MaScanCallback 类、 BQCScanCallback 类、 IOnMaSDKDecodeInfo 类新
增部分接⼝，您只需空实现这些接⼝即可，其中 MaScanCallback.onMaCodeInterceptor ⽅法返回
false 。
10.1.60.6 版本： BQCScanCallback 类新增部分接⼝，您只需空实现这些接⼝即可。
10.1.60 版本： BQCScanCallback 类新增部分接⼝，您只需空实现这些接⼝即可。
10.1.20 版本： MaScanCallback 类接⼝变更如下： void onResultMa(MaScanResult
maScanResult) 变更为 void onResultMa(MultiMaScanResult multiMaScanResult) 您可以按
照以下⽅式获取 MaScanResult ：

MaScanResult maScanResult = multiMaScanResult.maScanResults[0];

自定义 UI API 说明
MPCustomScanView
使⽤ MPCustomScanView ，需要让您的 Activity 继承 MPaasToolsCaptureActivity ，并实现
 getCustomScanView ⽅法并返回⾃定义的 MPCustomScanView 。

public class MyScanActivity extends MPaasToolsCaptureActivity {

 private MyScanView myScanView;

 @Override
 protected MPCustomScanView getCustomScanView() {
 myScanView = new MyScanView(this);
 // 具体可参考 github 代码示例
 return myScanView;
 }

}

在 MPCustomScanView 中您可以实现或调⽤以下⽅法：

/**
 * 扫描开始的回调
 */
public void onStartScan();

/**
 * 相机⾸帧显示的回调

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 16

 * 相机⾸帧显示的回调
 *
 * 本⽅法和扫描开始的回调，无法保证哪个会先执⾏
 */
public void onPreviewShow();

/**
 * 扫描结束的回调
 */
public void onStopScan();

/**
 * 仅在 10.2.3.63 及以下版本⽀持，已在 10.2.3.64 版本移除
 * @see onGetAvgGray(int gray, int flashDuration)
 */
public void onGetAvgGray(int gray);

/**
 * 相机帧的灰度值回调
 * 扫描过程中每⼀帧都会回调⼀次
 * 仅在 10.2.3.64 及以上版本⽀持
 *
 * @param gray 平均灰度值，可⽤来衡量环境亮度
 * @param flashDuration ⽤户无需关注
 */
public void onGetAvgGray(int gray, int flashDuration);

/**
 * 扫描成功的回调（识别到码）
 *
 * @param context 当前上下⽂
 * @param list 识别的码结果
 */
public abstract void onScanFinished(Context context, List<MPScanResult> list);

/**
 * 扫描失败的回调
 *
 * @param context 当前上下⽂
 * @param list 失败原因
 */
public abstract void onScanFailed(Context context, MPScanError error);

/**
 * 打开相机失败的回调
 */
public void onCameraOpenFailed();

/**
 * 打开或关闭闪光灯
 *
 * @return 调⽤完该⽅法后闪光灯的状态
 */
public boolean switchTorch();

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 17

/**
 * 从⽂件中识别码
 *
 * @param path ⽂件路径
 * @return 识别的码结果
 */
public List<MPScanResult> scanFromPath(String path);

MPScanResult
/**
 * 识别结果字符串
 */
private String text;

/**
 * 识别的码类型
 */
private MPRecognizeType mpRecognizeType;

/**
 * 识别的码的中⼼点坐标
 */
private Point centerPoint;

自定义权限申请流程
如果您需要⾃定义权限申请流程，请实现 PermissionDelegate 接⼝：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 18

public class MyScanActivity extends MPaasToolsCaptureActivity implements
PermissionDelegate{

 /**
 * 开始申请权限，⽤户可在这⾥实现⾃⼰的权限申请交互或者权限说明
 * 注意：⽤户在做完⾃⼰的事情后需要去申请权限，否则流程会卡住
 * @param fragment 扫码⻚⾯
 * @param requestCode 1:相机权限
 * @param permissions 申请的权限
 */
 @Override
 public void onRequestPermission(Fragment fragment, final int requestCode, final Str
ing[] permissions) {
 //处理相机权限
 if(requestCode == 1){
 //处理您的业务逻辑
 showPermissionTipDialog();
 }
 //必须调⽤，开始申请权限
 fragment.requestPermissions(permissions, requestCode);
 }

 /**
 * 权限申请成功后的回调
 */
 @Override
 public void onPermissionGranted(Fragment fragment, int requestCode, String[] permis
sions, int[] grantResults) {
 dismissPermissionTipDialog();
 }

 /**
 * 权限被拒绝后的回调
 */
 @Override
 public void onPermissionDenied(Fragment fragment, int requestCode, String[] permiss
ions, int[] grantResults) {
 dismissPermissionTipDialog();
 }
}

MPScanner（废弃）
⾃定义 UI 相关的设置内容如下：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 19

/**
 * 设置显示相机内容的 View
 * 推荐在 {@link MPScanListener} 的 onConfiguration ⽅法中调⽤
 *
 * @param textureView ⾃定义扫码⻚中的 TextureView
 */
public void setDisplayView(TextureView textureView);

/**
 * 设置扫描识别的区域
 *
 * @param rect 识别的区域
 */
public void setScanRegion(Rect rect);

/**
 * 设置扫描监听器
 */
public void setMPScanListener(MPScanListener mpScanListener);

/**
 * 设置识别图像灰度值监听器
 */
public void setMPImageGrayListener(MPImageGrayListener mpImageGrayListener);

/**
 * 获取 Camera 对象
 *
 * @return Camera 对象
 */
public Camera getCamera();

/**
 * 设置识别的码类型
 * 仅对直接扫码⽣效，对从 bitmap 中识别码无效
 *
 *
 * @param recognizeTypes BAR_CODE 条形码；
 * QR_CODE ⼆维码；
 * DM_CODE DM 码；
 * PDF417_CODE PDF417 码；
 * 不设置则默认识别前三种
 */
public void setRecognizeType(MPRecognizeType... recognizeTypes);

⾃定义 UI 相关的扫描内容如下：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 20

/**
 * 打开相机并开始扫描
 *
 * ⾸次进入⻚⾯时或相机关闭状态下调⽤
 */
public void openCameraAndStartScan();

/**
 * 关闭相机并停⽌扫描
 */
public void closeCameraAndStopScan();

/**
 * 开始扫描
 *
 * 不会更改相机状态，需在相机打开的状态下调⽤才能⽣效
 */
public void startScan();

/**
 * 停⽌扫描
 *
 * 不会更改相机状态
 */
public void stopScan();

/**
 * 从 bitmap 中识别码
 *
 * @param bitmap 需要识别的 bitmap
 * @return 识别结果
 */
public MPScanResult scanFromBitmap(Bitmap bitmap);

其他：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 21

/**
 * 打开或关闭⼿电筒
 *
 * @return 调⽤⽅法后，⼿电筒是否打开
 */
public boolean switchTorch();

/**
 * 打开⼿电筒
 */
public void openTorch();

/**
 * 关闭⼿电筒
 */
public void closeTorch();

/**
 * 播放默认的“哔哔”声
 */
public void beep();

/**
 * 释放资源
 *
 * 请在 onDestroy 中调⽤
 */
public void release();

MPScanListener（废弃）

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 22

/**
 * 扫描参数配置完成
 */
void onConfiguration();

/**
 * 扫描识别开始
 */
void onStart();

/**
 * 识别成功
 *
 * @param result 识别结果
 */
void onSuccess(MPScanResult result);

/**
 * 识别错误
 *
 * @param error 错误
 */
void onError(MPScanError error);

MPImageGrayListener（废弃）
/**
 * 获取识别图像的平均灰度值
 *
 * 正常范围⼤约在 50-140 之间，
 * 当灰度值低于或⾼于正常范围时，通常意味着环境亮度过低或过⾼，可以提示⽤户打开或关闭⼿电筒
 * 注意：该⽅法在识别过程中会不断被调⽤
 *
 * @param gray 图像的平均灰度值
 */
void onGetImageGray(int gray);

扫⼀扫⽀持原⽣ AAR 接入、mPaaS Inside 接入和组件化接入三种接入⽅式。如果想要像使⽤其他 SDK
⼀样简单地接入并使⽤ mPaaS，推荐使⽤原⽣ AAR 接入⽅式。
原⽣ AAR 接入⽅式是指采⽤原⽣ Android AAR 打包⽅案，更贴近 Android 开发者的技术栈。开发者无需
了解 mPaaS 相关的打包知识，通过 mPaaS Android Studio 插件即可将 mPaaS 集成到开发者的项⽬
中。该⽅式降低了开发者的接入成本，能够让开发者更轻松地使⽤ mPaaS。
为了⽅便您快速熟悉并掌握原⽣ AAR 接入⽅式，本教程以原⽣ AAR 接入⽅式为例，指导您快速接入扫⼀
扫组件并使⽤扫码功能。

本教程⼀共包含以下五个部分：

1.2.3. 使用教程

1.2.3.1. 总览

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 23

1. 在 Android Studio 创建应⽤
2. 在 mPaaS 控制台创建应⽤
3. 原⽣ AAR ⽅式接入⼯程
4. 标准 UI 下使⽤扫码功能
5. ⾃定义 UI 下使⽤扫码功能

您将学会
如何创建⼀个通过单击按钮弹出 Toast 的安卓应⽤。
如何接入原⽣ AAR。
如何在标准 UI 下使⽤扫码功能。
如何在⾃定义 UI 下使⽤扫码功能。

您将需要
1. 配置开发环境（本教程以 Windows 下的开发环境为例进⾏说明）。
2. ⽹络浏览器（建议您使⽤ Chrome 浏览器）。
3. ⼀部安卓⼿机（系统版本为安卓 4.3 或更新的版本）及配套的数据线。您也可以选择使⽤模拟器进⾏调
试，本教程以模拟器为例。

在本节您将创建⼀个通过点击按钮弹出 Toast 的应⽤，并获得 APK 格式的安装包。
该过程主要分为四个步骤：

1. 创建⼯程
2. 编写代码
3. 创建签名⽂件并给⼯程添加签名
4. 在⼿机上安装应⽤
如果您已经有了⼀个原⽣的 Android 开发⼯程并完成了签名，那么您可以跳过本教程，直接 在 mPaaS 控
制台创建应⽤。

创建工程
1. 打开 Android Studio，点击 File > New > New Project。
2. 在弹出的新建⼯程窗⼝中，选择 Empty Activity，点击 Next。
3. 输入 Name、Package name（可以使⽤默认值）、Save location。在此处 Name 以 Scan

Application 为例。选择 Minimum SDK 为 API 18: Android 4.3 (Jelly Bean)。

说明
API 18: Android 4.3（Jelly Bean）是 mPaaS ⽀持的最低版本，您在实际⽣产中可以根据需要进
⾏选择。

4. 点击 Finish，即可完成 创建工程。

编写代码
1. 打开 activity_main.xml ⽂件，参照如下代码添加按钮。

1.2.3.2. 在 Android Studio 创建应用

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 24

 <Button
 android:id="@+id/button"
 android:layout_width="101dp"
 android:layout_height="50dp"
 android:layout_marginStart="142dp"
 android:layout_marginTop="153dp"
 android:layout_marginBottom="151dp"
 android:text="Button"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

2. 打开 MainActivity 类，添加按钮的点击事件。

 findViewById(R.id.button).setOnClickListener(new View.OnClickListener(){
 @Override
 public void onClick(View v) {
 Toast.makeText(MainActivity.this, "Hello mPaaS!",
Toast.LENGTH_SHORT).show();
 }
 });

3. 编译成功后，您已完成 编写代码。

创建签名文件并给工程添加签名
1. 在 Android Studio 中点击 Build > Generate Signed Bundle / APK。
2. 在弹出的窗⼝中选择 APK，点击 Next。
3. 选择 Create new。
4. 填入相应信息后，点击 OK，即可完成创建签名。您可在指定的 Key store path 中获得⽣成的签名⽂
件。

5. 内容⾃动填充后，点击 Next 开始对⼯程添加签名。
6. 根据需要选择 Build Variants，Build Variants 信息需要牢记，因为在使⽤加密⽂件的时候需要选择
和⽣成时⼀致的类型。随后勾选 V1（Jar Signature）加密版本。V1（Jar Signature）为必选
项，V2（Full APK Signature）可按需选择。

7. 点击 Finish。打包完成后在⼯程⽂件夹下的 debug ⽂件夹（ ~\MyHApplication\app\debug ）
中，即可获得该应⽤签名后的 APK 安装包。在本教程中，安装包名为 app-debug.apk 。

在手机上安装应用
1. 连接⼿机到电脑，并开启⼿机的 USB 调试模式。
2. 运⾏⼯程。
3. 点击 BUTTON，弹出Toast，即表示应⽤安装成功且实现了预期功能。⾄此，您已完成 在手机上安装应
用。

本⽂介绍的是在 mPaaS 控制台创建应⽤的操作步骤。
1. 打开⽹络浏览器，登录 mPaaS 控制台 。
2. 创建 mPaaS 应⽤，输入项⽬名并单击 创建。
3. 在 应用列表 ⻚，单击 Scan Application（应用名称）打开 应用详情 ⻚，单击 Android 代码配置
，打开 将 mPaaS 接入到我的应用 ⻚⾯。

1.2.3.3. 在 mPaaS 控制台创建应用

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 25

https://mpaas.console.aliyun.com

4. 在 将 mPaaS 接入到我的应用 ⻚，单击 下载配置文件，打开 代码配置 ⻚。输入 Package
Name（应用包名）（此处以 com.mpaas.demo 为例），上传编译并添加签名后的 APK 安装包。
关于快速⽣成签名后的 APK 相关信息，请参⻅ ⽣成控制台⽤签名 APK。

5. 在 代码配置 ⻚，填写完成后，单击 下载配置，即可获取 mPaaS 的配置⽂件。配置⽂件是⼀个压缩包⽂
件。该压缩包包含⼀个 .config ⽂件以及⼀个 yw_1222.jpg 的加密图⽚。

本⽂介绍如何将⼯程通过原⽣ AAR 的⽅式接入 mPaaS。

操作步骤
1. 在 Android Studio 中选择 mPaaS > 原生 AAR 接入。
2. 在界⾯右侧弹出的窗⼝中，选择 导入 App 配置 下⽅的 开始导入。
3. 在弹出的 导入 mPaaS 配置文件 窗⼝中，选择 我已经从控制台上下载配置文件，准备导入到工程 。
4. 选择在控制台创建 mPaaS 应⽤后下载的 配置⽂件，点击 Finish。
5. 随后会提示配置⽂件导入成功。
6. 点击界⾯右侧 接入/升级基线 下⽅的 开始配置。
7. 在弹出的 选择 mPaaS 基线版本 窗⼝中，选择 10.1.68 基线，点击 OK，即可接入 mPaaS SDK。

说明
再次点击 开始配置 可升级基线。

8. 点击界⾯右侧 配置/更新组件 下⽅的 开始配置。
9. 在弹出的组件列表中，勾选 扫码，并点击 OK，即可将扫码组件添加⾄⼯程。⾄此您已完成通过原⽣

AAR ⽅式接入⼯程到 mPaaS。

后续步骤
标准 UI 下使⽤扫码功能：将标准 UI 扫码的能⼒添加到⼯程中，并设置扫码界⾯的 Title。
⾃定义 UI 下使⽤扫码功能：将⾃定义 UI 扫码的能⼒添加到⼯程中。

说明
您可以在您的项⽬中分别使⽤标准 UI 下的扫码能⼒和⾃定义 UI 下的扫码能⼒，也可以选择其中⼀
个。点此下载 后续步骤中使⽤的代码示例。

本⽂将引导您将标准 UI 扫码的能⼒添加到⼯程中，并介绍如何设置扫码界⾯的 Title。

标准 UI 下使用扫一扫
1. 打开 Android Studio 在 activity_main.xml ⽂件中，重新设置 Button 样式并修改 Button 的 id
为 standard_ui_btn 。

1.2.3.4. 原生 AAR 方式接入工程

1.2.3.5. 标准 UI 下使用扫码功能

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 26

https://gw.alipayobjects.com/os/bmw-prod/aec8a9a2-1135-4c5b-8dab-1cc9b0a5fcd4.zip

 <?xml version="1.0" encoding="utf-8"?>
 <androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <Button
 android:id="@+id/standard_ui_btn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="48dp"
 android:background="#108EE9"
 android:gravity="center"
 android:text="标准 UI 下使⽤扫⼀扫"
 android:textColor="#ffffff"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.498"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 </androidx.constraintlayout.widget.ConstraintLayout>

2. 在 MainActivity 类重写单击按钮事件，通过单击按钮实现扫码功能。代码如下所示：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 27

 private ScanRequest scanRequest = new ScanRequest();
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 findViewById(R.id.standard_ui_btn).setOnClickListener(new
View.OnClickListener(){
 @Override
 public void onClick(View v) {
 MPScan.startMPaasScanActivity(MainActivity.this, scanRequest, new Sca
nCallback() {
 @Override
 public void onScanResult(final boolean isProcessed, final Intent
result) {
 if (!isProcessed) {
 // 扫码界⾯单击物理返回键或左上⾓返回键
 return;
 }
 // 注意：本回调是在⼦线程中执⾏
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (result == null || result.getData() == null) {
 // 扫码失败
 Toast.makeText(MainActivity.this, "扫码失败，请重试！
", Toast.LENGTH_SHORT).show();
 return;
 }
 // 扫码成功
 new AlertDialog.Builder(MainActivity.this)
 .setMessage(result.getData().toString())
 .setPositiveButton(R.string.confirm, null)
 .create()
 .show();
 }
 });
 }
 });

 }
 });
 }

3. 在⼯程的 AndroidManifest.xml 中添加读写权限和⽹络访问权限。

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.INTERNET" />

在⼯程主 Module 下的 build.gradle(:app) 中添加以下配置：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 28

4. 在⼯程主 Module 下的 build.gradle(:app) 中添加以下配置：

5. 编译并运⾏⼯程后在⼿机上安装应⽤。打开应⽤后界⾯如下：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 29

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 30

6. 点击 标准 UI 下使用扫一扫 即可使⽤标准 UI 下的扫码功能。

7. 扫描如下⼆维码，界⾯会弹出该⼆维码的信息。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 31

设置扫码界面 Title
1. 在 activity_main.xml ⽂件中，添加 Button，并设置 Button 的 id 为 btn_title 。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 32

 <Button
 android:id="@+id/btn_title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="128dp"
 android:background="#108EE9"
 android:gravity="center"
 android:text="标准 UI 下设置扫码界⾯ Title"
 android:textColor="#ffffff"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.0"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

2. 在 com.example.scanapplication 包中创建 DialogUtil 类。

3. 在 DialogUtil 类中设置扫码界⾯样式。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 33

 public interface PromptCallback {
 void onConfirm(String msg);
 }

 public static void prompt(Activity activity, final PromptCallback callback) {
 final EditText edit = new EditText(activity);
 new AlertDialog.Builder(activity)
 .setTitle("输入⽂字")
 .setView(edit)
 .setPositiveButton("确定"
 , new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 if (callback != null) {
 String text = edit.getText().toString().trim();
 callback.onConfirm(text);
 }
 dialog.dismiss();
 }
 })
 .setNegativeButton("取消", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 dialog.dismiss();
 }
 })
 .create()
 .show();
 }

4. 在 MainActivity 类中编写代码。通过点击 btn_title 按钮实现设置扫码界⾯ Title 的功能。代
码如下所示：

 findViewById(R.id.btn_title).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 DialogUtil.prompt(MainActivity.this, new DialogUtil.PromptCallback() {
 @Override
 public void onConfirm(String msg) {
 scanRequest.setTitleText(msg);
 }
 });
 }
 });

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 34

5. 编译⼯程后，在⼿机上安装应⽤。打开应⽤后界⾯如下：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 35

6. 点击 标准 UI 下设置扫码界面 Title，输入您要显示的 Title 信息，这⾥输入 mPaaS，单击 确定 完
成。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 36

7. 单击 标准 UI 下使用扫一扫，扫码⻚⾯左上⾓的 Title 显示第 6 步输入的 Title 信息，标准 UI 下设置扫
码 Title 成功。

本⽂将引导您绘制⾃定义 UI 界⾯并将⾃定义 UI 扫码的能⼒添加到⼯程中。
如需在⾃定义 UI 下使⽤扫码功能，请参考 代码示例。
该过程主要分为以下四个步骤：

1. 创建依赖⼯程
2. 在依赖⼯程中创建定义 UI 界⾯
3. 在依赖⼯程中使⽤扫码功能
4. 在主⼯程中调⽤⾃定义 UI 下的扫码功能

操作步骤

1.2.3.6. 自定义 UI 下使用扫码功能

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 37

https://gw.alipayobjects.com/os/bmw-prod/75029c12-3a71-44f1-b8ae-88225fa443ac.zip

创建依赖工程
1. 单击 File > New > New Module。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 38

2. 选择 Android Library，单击 Next。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 39

3. 输入 Module name，单击 Finish。

在依赖工程中创建定义 UI 界面
1. 在 custom 的 com.example.custom 包中创建 widget 包。在 widget 包中添加

 APSurfaceTexture 类，让其继承 SurfaceTexture 类，以获取图像流。

public class APSurfaceTexture extends SurfaceTexture {

 private static final String TAG = "APSurfaceTexture";

 public SurfaceTexture mSurface;

 public APSurfaceTexture() {
 super(0);
 }

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN)
 @Override
 public void attachToGLContext(int texName) {
 mSurface.attachToGLContext(texName);
 }

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN)
 @Override
 public void detachFromGLContext() {
 try {
 mSurface.detachFromGLContext();
 } catch (Exception ex) {

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 40

 } catch (Exception ex) {
 try {
 Method nativeMethod =
SurfaceTexture.class.getDeclaredMethod("nativeDetachFromGLContext");
 nativeMethod.setAccessible(true);
 int retCode = (Integer) nativeMethod.invoke(mSurface);
 LoggerFactory.getTraceLogger().debug(TAG, "nativeDetachFromGLContext
invoke retCode:" + retCode);
 } catch (Exception e) {
 LoggerFactory.getTraceLogger().error(TAG, "nativeDetachFromGLContext
invoke exception:" + e.getMessage());
 }
 LoggerFactory.getTraceLogger().error(TAG, "mSurface.detachFromGLContext() ex
ception:" + ex.getMessage());
 }
 }

 @Override
 public boolean equals(Object o) {
 return mSurface.equals(o);
 }

 @Override
 public long getTimestamp() {
 return mSurface.getTimestamp();
 }

 @Override
 public void getTransformMatrix(float[] mtx) {
 mSurface.getTransformMatrix(mtx);
 }

 @Override
 public void release() {
 super.release();
 mSurface.release();
 }

 @Override
 public int hashCode() {
 return mSurface.hashCode();
 }

 @TargetApi(Build.VERSION_CODES.KITKAT)
 @Override
 public void releaseTexImage() {
 mSurface.releaseTexImage();
 }

 @TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1)
 @Override
 public void setDefaultBufferSize(int width, int height) {
 mSurface.setDefaultBufferSize(width, height);
 }

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 41

 @Override
 public void setOnFrameAvailableListener(OnFrameAvailableListener listener) {
 mSurface.setOnFrameAvailableListener(listener);
 }

 @Override
 public String toString() {
 return mSurface.toString();
 }

 @Override
 public void updateTexImage() {
 mSurface.updateTexImage();
 }
}

2. 在 custom 的 widget 包中添加 APTextureView 类，让其继承 TextureView 类，实现图像
流的显示。

public class APTextureView extends TextureView {

 private static final String TAG = "APTextureView";

 private Field mSurfaceField;

 public APTextureView(Context context) {
 super(context);
 }

 public APTextureView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 public APTextureView(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 }

 @Override
 protected void onDetachedFromWindow() {
 try {
 super.onDetachedFromWindow();
 } catch (Exception ex) {
 LoggerFactory.getTraceLogger().error(TAG, "onDetachedFromWindow exception:"
+ ex.getMessage());
 }
 }

 @Override
 public void setSurfaceTexture(SurfaceTexture surfaceTexture) {
 super.setSurfaceTexture(surfaceTexture);
 afterSetSurfaceTexture();
 }

 private void afterSetSurfaceTexture() {

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 42

 LoggerFactory.getTraceLogger().debug(TAG, "afterSetSurfaceTexture
Build.VERSION.SDK_INT:" + Build.VERSION.SDK_INT);
 if (Build.VERSION.SDK_INT < 16 || Build.VERSION.SDK_INT > 20) {
 return;
 }

 try {
 if (mSurfaceField == null) {
 mSurfaceField = TextureView.class.getDeclaredField("mSurface");
 mSurfaceField.setAccessible(true);
 }

 SurfaceTexture innerSurface = (SurfaceTexture) mSurfaceField.get(this);
 if (innerSurface != null) {
 if (!(innerSurface instanceof APSurfaceTexture)) {
 APSurfaceTexture wrapSurface = new APSurfaceTexture();
 wrapSurface.mSurface = innerSurface;
 mSurfaceField.set(this, wrapSurface);
 LoggerFactory.getTraceLogger().debug(TAG, "afterSetSurfaceTexture wra
p mSurface");
 }
 }
 } catch (Exception ex) {
 LoggerFactory.getTraceLogger().error(TAG, "afterSetSurfaceTexture
exception:" + ex.getMessage());
 }
 }
}

3. 在 com.example.custom 包中创建 Utils 类，实现图⽚的转换。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 43

public class Utils {

 private static String TAG = "Utils";

 public static void toast(Context context, String msg) {
 Toast.makeText(context, msg, Toast.LENGTH_SHORT).show();
 }

 public static Bitmap changeBitmapColor(Bitmap bitmap, int color) {
 int bitmap_w = bitmap.getWidth();
 int bitmap_h = bitmap.getHeight();
 int[] arrayColor = new int[bitmap_w * bitmap_h];

 int count = 0;
 for (int i = 0; i < bitmap_h; i++) {
 for (int j = 0; j < bitmap_w; j++) {

 int originColor = bitmap.getPixel(j, i);
 // 非透明区域
 if (originColor != 0) {
 originColor = color;
 }

 arrayColor[count] = originColor;
 count++;
 }
 }
 return Bitmap.createBitmap(arrayColor, bitmap_w, bitmap_h,
Bitmap.Config.ARGB_8888);
 }

 public static Bitmap uri2Bitmap(Context context, Uri uri) {
 Bitmap bitmap = null;
 InputStream in;
 try {
 in = context.getContentResolver().openInputStream(uri);
 if (in != null) {
 bitmap = BitmapFactory.decodeStream(in);
 in.close();
 }
 } catch (Exception e) {
 LoggerFactory.getTraceLogger().error(TAG, "uri2Bitmap: Exception " +
e.getMessage());
 }
 return bitmap;
 }
}

4. 在 custom 中创建 res > values > attrs.xml ⽂件并添加如下代码。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 44

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <declare-styleable name="scan">
 <attr name="shadowColor" format="color" />
 </declare-styleable>
</resources>

5. 在 custom 的 res > drawable ⽂件夹中粘贴如下 资源⽂件。

6. 在 custom 的 widget 包中添加 FinderView 类，让其继承 View 类，并添加如下代码。实
现扫码窗⼝、边⾓及周边阴影的绘制功能。

public class FinderView extends View {

private static final int DEFAULT_SHADOW_COLOR = 0x96000000;

private int scanWindowLeft, scanWindowTop, scanWindowRight, scanWindowBottom;
private Bitmap leftTopCorner, rightTopCorner, leftBottomCorner, rightBottomCorner;
private Paint paint;
private int shadowColor;

public FinderView(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 init(context, attrs);
}

public FinderView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init(context, attrs);
}

private void init(Context context, AttributeSet attrs) {
 applyConfig(context, attrs);
 setVisibility(INVISIBLE);
 initCornerBitmap(context);

 paint = new Paint();

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 45

https://gw.alipayobjects.com/os/bmw-prod/fe882468-87f2-4b6d-a002-f579f0e013a5.zip

 paint = new Paint();
 paint.setAntiAlias(true);
}

private void applyConfig(Context context, AttributeSet attrs) {
 if (attrs != null) {
 TypedArray typedArray = context.obtainStyledAttributes(attrs,
R.styleable.scan);
 shadowColor = typedArray.getColor(R.styleable.scan_shadowColor,
DEFAULT_SHADOW_COLOR);
 typedArray.recycle();
 }
}
//初始化扫码窗⼝边⾓样式
private void initCornerBitmap(Context context) {
 Resources res = context.getResources();
 leftTopCorner = BitmapFactory.decodeResource(res,
R.drawable.scan_window_corner_left_top);
 rightTopCorner = BitmapFactory.decodeResource(res,
R.drawable.scan_window_corner_right_top);
 leftBottomCorner = BitmapFactory.decodeResource(res,
R.drawable.scan_window_corner_left_bottom);
 rightBottomCorner = BitmapFactory.decodeResource(res,
R.drawable.scan_window_corner_right_bottom);
}

@Override
public void draw(Canvas canvas) {
 super.draw(canvas);
 drawShadow(canvas);
 drawCorner(canvas);
}
//绘制扫码窗⼝边⾓样式
private void drawCorner(Canvas canvas) {
 paint.setAlpha(255);
 canvas.drawBitmap(leftTopCorner, scanWindowLeft, scanWindowTop, paint);
 canvas.drawBitmap(rightTopCorner, scanWindowRight - rightTopCorner.getWidth(), sc
anWindowTop, paint);
 canvas.drawBitmap(leftBottomCorner, scanWindowLeft, scanWindowBottom -
leftBottomCorner.getHeight(), paint);
 canvas.drawBitmap(rightBottomCorner, scanWindowRight -
rightBottomCorner.getWidth(), scanWindowBottom - rightBottomCorner.getHeight(), paint
);
}
//绘制扫码周边阴影
private void drawShadow(Canvas canvas) {
 paint.setColor(shadowColor);
 canvas.drawRect(0, 0, getWidth(), scanWindowTop, paint);
 canvas.drawRect(0, scanWindowTop, scanWindowLeft, scanWindowBottom, paint);
 canvas.drawRect(scanWindowRight, scanWindowTop, getWidth(), scanWindowBottom, pai
nt);
 canvas.drawRect(0, scanWindowBottom, getWidth(), getHeight(), paint);
}

/**

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 46

 * 根据 RayView 的位置决定扫码窗⼝的位置
 */
public void setScanWindowLocation(int left, int top, int right, int bottom) {
 scanWindowLeft = left;
 scanWindowTop = top;
 scanWindowRight = right;
 scanWindowBottom = bottom;
 invalidate();
 setVisibility(VISIBLE);
}

public void setShadowColor(int shadowColor) {
 this.shadowColor = shadowColor;
}
//设置扫码窗⼝边⾓颜⾊
public void setCornerColor(int angleColor) {
 leftTopCorner = Utils.changeBitmapColor(leftTopCorner, angleColor);
 rightTopCorner = Utils.changeBitmapColor(rightTopCorner, angleColor);
 leftBottomCorner = Utils.changeBitmapColor(leftBottomCorner, angleColor);
 rightBottomCorner = Utils.changeBitmapColor(rightBottomCorner, angleColor);
}
}

7. 在 custom 的 widget 包中添加 RayView 类，让其继承 ImageView 类，并添加如下代码。
实现扫描射线的绘制功能。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 47

public class RayView extends ImageView {

private FinderView mFinderView;
private ScaleAnimation scanAnimation;
private int[] location = new int[2];

public RayView(Context context, AttributeSet attrs) {
 super(context, attrs);
}

public RayView(Context context) {
 super(context);
}

@Override
protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
 super.onLayout(changed, left, top, right, bottom);

 // 设置 FinderView 中扫码窗⼝的位置
 getLocationOnScreen(location);
 if (mFinderView != null) {
 mFinderView.setScanWindowLocation(location[0], location[1], location[0] + get
Width(), location[1] + getHeight());
 }
}

public void startScanAnimation() {
 setVisibility(VISIBLE);
 if (scanAnimation == null) {
 scanAnimation = new ScaleAnimation(1.0f, 1.0f, 0.0f, 1.0f);
 scanAnimation.setDuration(3000L);
 scanAnimation.setFillAfter(true);
 scanAnimation.setRepeatCount(Animation.INFINITE);
 scanAnimation.setInterpolator(new AccelerateDecelerateInterpolator());
 }
 startAnimation(scanAnimation);
}

public void stopScanAnimation() {
 setVisibility(INVISIBLE);
 if (scanAnimation != null) {
 this.clearAnimation();
 scanAnimation = null;
 }
}

public void setFinderView(FinderView FinderView) {
 mFinderView = FinderView;
}
}

8. 在 custom 的 res 中创建 layout > File > view_scan.xml ⽂件，并添加如下代码，绘制扫
描⻚⾯的布局界⾯。

<?xml version="1.0" encoding="utf-8"?>

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 48

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">

 <com.example.custom.widget.FinderView
 android:id="@+id/finder_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="20dp"
 android:gravity="center_vertical"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/back"
 android:layout_width="48dp"
 android:layout_height="48dp"
 android:scaleType="center"
 android:src="@drawable/icon_back" />

 <TextView
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:gravity="center"
 android:text="@string/custom_title"
 android:textColor="#ffffff"
 android:textSize="16sp" />

 <ImageView
 android:id="@+id/gallery"
 android:layout_width="34dp"
 android:layout_height="34dp"
 android:layout_marginEnd="10dp"
 android:layout_marginRight="10dp"
 android:scaleType="fitXY"
 android:src="@drawable/selector_scan_from_gallery" />

 <ImageView
 android:id="@+id/torch"
 android:layout_width="34dp"
 android:layout_height="34dp"
 android:layout_marginEnd="10dp"
 android:layout_marginRight="10dp"
 android:scaleType="fitXY"
 android:src="@drawable/selector_torch" />
 </LinearLayout>

 <com.example.custom.widget.RayView
 android:id="@+id/ray_view"
 android:layout_width="270dp"
 android:layout_height="280dp"
 android:layout_centerInParent="true"

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 49

 android:layout_centerInParent="true"
 android:background="@drawable/custom_scan_ray" />

 <TextView
 android:id="@+id/tip_tv"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/ray_view"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="10dp"
 android:includeFontPadding="false"
 android:text="@string/scan_tip"
 android:textColor="#7fffffff"
 android:textSize="14sp" />

</merge>

9. 在 widget 包中添加 ScanView 类，让其继承 RelativeLayout 类，并添加如下代码。实现扫
码相关的 View 与扫码引擎的交互功能。

public class ScanView extends RelativeLayout {

private RayView mRayView;

public ScanView(Context context) {
 super(context);
 init(context);
}

public ScanView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init(context);
}

public ScanView(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 init(context);
}

private void init(Context ctx) {
 LayoutInflater.from(ctx).inflate(R.layout.view_scan, this, true);
 FinderView finderView = (FinderView) findViewById(R.id.finder_view);
 mRayView = (RayView) findViewById(R.id.ray_view);
 mRayView.setFinderView(finderView);
}

public void onStartScan() {
 mRayView.startScanAnimation();
}

public void onStopScan() {
 mRayView.stopScanAnimation();
}

public float getCropWidth() {

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 50

public float getCropWidth() {
 return mRayView.getWidth() * 1.1f;
}

public Rect getScanRect(Camera camera, int previewWidth, int previewHeight) {
 if (camera == null) {
 return null;
 }
 int[] location = new int[2];
 mRayView.getLocationOnScreen(location);
 Rect r = new Rect(location[0], location[1],
 location[0] + mRayView.getWidth(), location[1] + mRayView.getHeight());
 Camera.Size size;
 try {
 size = camera.getParameters().getPreviewSize();
 } catch (Exception e) {
 return null;
 }
 if (size == null) {
 return null;
 }
 double rateX = (double) size.height / (double) previewWidth;
 double rateY = (double) size.width / (double) previewHeight;
 // 裁剪框⼤⼩ = ⽹格动画框⼤⼩＊1.1
 int expandX = (int) (mRayView.getWidth() * 0.05);
 int expandY = (int) (mRayView.getHeight() * 0.05);
 Rect resRect = new Rect(
 (int) ((r.top - expandY) * rateY),
 (int) ((r.left - expandX) * rateX),
 (int) ((r.bottom + expandY) * rateY),
 (int) ((r.right + expandX) * rateX));

 Rect finalRect = new Rect(
 resRect.left < 0 ? 0 : resRect.left,
 resRect.top < 0 ? 0 : resRect.top,
 resRect.width() > size.width ? size.width : resRect.width(),
 resRect.height() > size.height ? size.height : resRect.height());

 Rect rect1 = new Rect(
 finalRect.left / 4 * 4,
 finalRect.top / 4 * 4,
 finalRect.right / 4 * 4,
 finalRect.bottom / 4 * 4);

 int max = Math.max(rect1.right, rect1.bottom);
 int diff = Math.abs(rect1.right - rect1.bottom) / 8 * 4;

 Rect rect2;
 if (rect1.right > rect1.bottom) {
 rect2 = new Rect(rect1.left, rect1.top - diff, max, max);
 } else {
 rect2 = new Rect(rect1.left - diff, rect1.top, max, max);
 }
 return rect2;
}

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 51

}

10. 在 custom 的 layout ⽂件夹中创建 activity_custom_scan.xml ⽂件并添加如下代码。绘制
⾃定义扫码功能的主界⾯。

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <com.mpaas.aar.demo.custom.widget.APTextureView
 android:id="@+id/surface_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

 <com.mpaas.aar.demo.custom.widget.ScanView
 android:id="@+id/scan_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</FrameLayout>

在依赖工程中使用扫码功能
1. 在 custom 的 com.example.custom 包中添加 ScanHelper 类，并添加如下代码。调⽤扫码功
能以及获取扫码结果的回调结果。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 52

public class ScanHelper {

 private static class Holder {
 private static ScanHelper instance = new ScanHelper();
 }

 private ScanCallback scanCallback;

 private ScanHelper() {
 }

 public static ScanHelper getInstance() {
 return Holder.instance;
 }

 public void scan(Context context, ScanCallback scanCallback) {
 if (context == null) {
 return;
 }
 this.scanCallback = scanCallback;
 context.startActivity(new Intent(context, CustomScanActivity.class));
 }

 void notifyScanResult(boolean isProcessed, Intent resultData) {
 if (scanCallback != null) {
 scanCallback.onScanResult(isProcessed, resultData);
 scanCallback = null;
 }
 }

 public interface ScanCallback {
 void onScanResult(boolean isProcessed, Intent result);
 }
}

2. 在 custom 的 com.example.custom 包中添加 CustomScanActivity 类，让其继承
 Activity 类。设置界⾯沉浸模式并创建资源⽂件对应的 View 和 Button 。

public class CustomScanActivity extends Activity {
 private final String TAG = CustomScanActivity.class.getSimpleName();
 private static final int REQUEST_CODE_PERMISSION = 1;
 private static final int REQUEST_CODE_PHOTO = 2;
 private ImageView mTorchBtn;
 private APTextureView mTextureView;
 private ScanView mScanView;
 private boolean isFirstStart = true;
 private boolean isPermissionGranted;
 private boolean isScanning;
 private boolean isPaused;
 private Rect scanRect;
 private MPScanner mpScanner;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 53

 setContentView(R.layout.activity_custom_scan);

 // 设置沉浸模式
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 getWindow().setFlags(
 WindowManager.LayoutParams.FLAG_TRANSLUCENT_STATUS,
 WindowManager.LayoutParams.FLAG_TRANSLUCENT_STATUS);
 }

 mTextureView = findViewById(R.id.surface_view);
 mScanView = findViewById(R.id.scan_view);
 mTorchBtn = findViewById(R.id.torch);

 }

 @Override
 public void onPause() {
 super.onPause();

 }

 @Override
 public void onResume() {
 super.onResume();

 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 }

 @Override
 public void onRequestPermissionsResult(int requestCode, @NonNull String[] permission
s, @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 }
 @Override
 public void onBackPressed() {
 super.onBackPressed();

 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 }
}

3. 实现打开⼿机相册的功能。

在 CustomScanActivity 中创建 pickImageFromGallery ⽅法。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 54

i. 在 CustomScanActivity 中创建 pickImageFromGallery ⽅法。

private void pickImageFromGallery() {
 Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
 intent.setType("image/*");
 startActivityForResult(intent, REQUEST_CODE_PHOTO);
}

ii. onCreate ⽅法中添加 gallery 的单击事件，并调⽤ pickImageFromGallery ⽅法。

 findViewById(R.id.gallery).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 pickImageFromGallery();
 }
 });

4. 实现切换⼿电开关的功能。
i. 在 CustomScanActivity 中创建 switchTorch ⽅法。

 private void switchTorch() {
 boolean torchOn = mpScanner.switchTorch();
 mTorchBtn.setSelected(torchOn);
 }

ii. onCreate ⽅法中添加 mTorchBtn 的单击事件，并调⽤ switchTorch ⽅法。

mTorchBtn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 switchTorch();
 }
 });

5. 在 CustomScanActivity 中创建 notifyScanResult ⽅法， onBackPressed 中调⽤
 notifyScanResult ⽅法。

 private void notifyScanResult(boolean isProcessed, Intent resultData) {
 ScanHelper.getInstance().notifyScanResult(isProcessed, resultData);
 }

 @Override
 public void onBackPressed() {
 super.onBackPressed();
 notifyScanResult(false, null);
 }

6. 在 CustomScanActivity 的 onCreate ⽅法中添加 back 的单击事件，并调⽤
 onBackPressed ⽅法。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 55

 findViewById(R.id.back).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 onBackPressed();
 }
 });

7. 在 CustomScanActivity 中创建 initMPScanner ⽅法，并使⽤ mpScanner 对象的
 setRecognizeType ⽅法设置识别码的类型。

private void initMPScanner() {
 mpScanner = new MPScanner(this);
 mpScanner.setRecognizeType(
 MPRecognizeType.QR_CODE,
 MPRecognizeType.BAR_CODE,
 MPRecognizeType.DM_CODE,
 MPRecognizeType.PDF417_CODE
);
}

8. 在 CustomScanActivity 中创建 onScanSuccess ⽅法，并实现如下代码。

private void onScanSuccess(final MPScanResult result) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (result == null) {
 notifyScanResult(true, null);
 } else {
 Intent intent = new Intent();
 intent.setData(Uri.parse(result.getText()));
 notifyScanResult(true, intent);
 }
 CustomScanActivity.this.finish();
 }
 });
}

9. 在 CustomScanActivity 中创建 initScanRect ⽅法，初始化扫描功能。

i. 调⽤ mpScanner 对象的 getCamera ⽅法获取 Camera 对象并调⽤ mpScanner 对象的

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 56

i. 调⽤ mpScanner 对象的 getCamera ⽅法获取 Camera 对象并调⽤ mpScanner 对象的
 setScanRegion ⽅法设置扫描区域。

private void initScanRect() {
 if (scanRect == null) {
 scanRect = mScanView.getScanRect(
 mpScanner.getCamera(), mTextureView.getWidth(),
mTextureView.getHeight());

 float cropWidth = mScanView.getCropWidth();
 LoggerFactory.getTraceLogger().debug(TAG, "cropWidth: " + cropWidth);
 if (cropWidth > 0) {
 // 预览放⼤ ＝ 屏幕宽 ／ 裁剪框宽
 WindowManager wm = (WindowManager)
getSystemService(Context.WINDOW_SERVICE);
 float screenWith = wm.getDefaultDisplay().getWidth();
 float screenHeight = wm.getDefaultDisplay().getHeight();
 float previewScale = screenWith / cropWidth;
 if (previewScale < 1.0f) {
 previewScale = 1.0f;
 }
 if (previewScale > 1.5f) {
 previewScale = 1.5f;
 }
 LoggerFactory.getTraceLogger().debug(TAG, "previewScale: " +
previewScale);
 Matrix transform = new Matrix();
 transform.setScale(previewScale, previewScale, screenWith / 2,
screenHeight / 2);
 mTextureView.setTransform(transform);
 }
 }
 mpScanner.setScanRegion(scanRect);
}

ii. 使⽤ mpScanner 对象的 setMPScanListener ⽅法实现扫描监听器的功能。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 57

mpScanner.setMPScanListener(new MPScanListener() {
 @Override
 public void onConfiguration() {
 mpScanner.setDisplayView(mTextureView);
 }

 @Override
 public void onStart() {
 if (!isPaused) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (!isFinishing()) {
 initScanRect();
 mScanView.onStartScan();
 }
 }
 });
 }
 }

 @Override
 public void onSuccess(MPScanResult mpScanResult) {
 mpScanner.beep();
 onScanSuccess(mpScanResult);
 }

 @Override
 public void onError(MPScanError mpScanError) {
 if (!isPaused) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Utils.toast(CustomScanActivity.this,
getString(R.string.camera_open_error));
 }
 });
 }
 }
});

使⽤ mpScanner 对象的 setMPImageGrayListener ⽅法实现识别图像灰度值的监听功能。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 58

iii. 使⽤ mpScanner 对象的 setMPImageGrayListener ⽅法实现识别图像灰度值的监听功能。

mpScanner.setMPImageGrayListener(new MPImageGrayListener() {
 @Override
 public void onGetImageGray(int gray) {
 // 注意：该回调在昏暗环境下可能会连续多次执⾏
 if (gray < MPImageGrayListener.LOW_IMAGE_GRAY) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Utils.toast(CustomScanActivity.this, "光线太暗，请打开⼿电筒");
 }
 });
 }
 }
});
}

10. 在 CustomScanActivity 中分别创建 startScan 和 stopScan ⽅法，实现开启和关闭相机扫码
权限。

private void startScan() {
 try {
 mpScanner.openCameraAndStartScan();
 isScanning = true;
 } catch (Exception e) {
 isScanning = false;
 LoggerFactory.getTraceLogger().error(TAG, "startScan: Exception " +
e.getMessage());
 }
}

private void stopScan() {
 mpScanner.closeCameraAndStopScan();
 mScanView.onStopScan();
 isScanning = false;
 if (isFirstStart) {
 isFirstStart = false;
 }
}

11. 在 CustomScanActivity 中创建 onPermissionGranted ⽅法、 checkCameraPermission ⽅法
和 scanFromUri ⽅法。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 59

private void onPermissionGranted() {
 isPermissionGranted = true;
 startScan();
}

private void checkCameraPermission() {
 if (PermissionChecker.checkSelfPermission(
 this, Manifest.permission.CAMERA) !=
PermissionChecker.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this, new String[]
{Manifest.permission.CAMERA}, REQUEST_CODE_PERMISSION);
 } else {
 onPermissionGranted();
 }
}

private void scanFromUri(Uri uri) {
 final Bitmap bitmap = Utils.uri2Bitmap(this, uri);
 if (bitmap == null) {
 notifyScanResult(true, null);
 finish();
 } else {
 new Thread(new Runnable() {
 @Override
 public void run() {
 MPScanResult mpScanResult = mpScanner.scanFromBitmap(bitmap);
 mpScanner.beep();
 onScanSuccess(mpScanResult);
 }
 }, "scanFromUri").start();
 }
}

12. 在 CustomScanActivity 的 onCreate ⽅法中调⽤ checkCameraPermission ⽅法检查相机权
限。

checkCameraPermission();

13. 在 CustomScanActivity 的
 onPause 、 onResume 、 onDestroy 、 onRequestPermissionsResult 和
 onActivityResult ⽅法中分别添加如下内容。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 60

@Override
public void onPause() {
 super.onPause();
 isPaused = true;
 if (isScanning) {
 stopScan();
 }
}

@Override
public void onResume() {
 super.onResume();
 isPaused = false;
 if (!isFirstStart && isPermissionGranted) {
 startScan();
 }
}

@Override
public void onDestroy() {
 super.onDestroy();
 mpScanner.release();
}
@Override
public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions
, @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);
 if (requestCode == REQUEST_CODE_PERMISSION) {
 int length = Math.min(permissions.length, grantResults.length);
 for (int i = 0; i < length; i++) {
 if (TextUtils.equals(permissions[i], Manifest.permission.CAMERA)) {
 if (grantResults[i] != PackageManager.PERMISSION_GRANTED) {
 Utils.toast(this, getString(R.string.camera_no_permission));
 } else {
 onPermissionGranted();
 }
 break;
 }
 }
 }
 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if (data == null) {
 return;
 }
 if (requestCode == REQUEST_CODE_PHOTO) {
 scanFromUri(data.getData());
 }
}
}

14. 在 custom 的 AndroidManifest.xml ⽂件中设置 CustomScanActivity 为 custom 的主入

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 61

⼝。

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.mpaas.aar.demo.custom">

 <application>
 <activity
 android:name=".CustomScanActivity"
 android:configChanges="orientation|keyboardHidden|navigation"
 android:exported="false"
 android:launchMode="singleTask"
 android:screenOrientation="portrait"
 android:theme="@android:style/Theme.NoTitleBar"
 android:windowSoftInputMode="adjustResize|stateHidden" />
 </application>

</manifest>

在主工程中调用自定义 UI 下的扫码功能
1. 在 activity_main.xml ⽂件中，添加 Button ，并设置 Button 的 ID 为 custom_ui_btn 。

 <Button
 android:id="@+id/custom_ui_btn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="208dp"
 android:background="#108EE9"
 android:gravity="center"
 android:text="⾃定义 UI 下使⽤扫⼀扫"
 android:textColor="#ffffff"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.0"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

2. 在 MainActivity 类中编写代码。添加 custom_ui_btn 按钮的单击事件。获取⾃定义 UI 界⾯，
并使⽤⾃定义 UI 的扫码功能。代码如下所示：

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 62

findViewById(R.id.custom_ui_btn).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 ScanHelper.getInstance().scan(MainActivity.this, new
ScanHelper.ScanCallback() {
 @Override
 public void onScanResult(boolean isProcessed, Intent result) {
 if (!isProcessed) {
 // 扫码界⾯单击物理返回键或左上⾓返回键
 return;
 }

 if (result == null || result.getData() == null) {
 Toast.makeText(MainActivity.this, "扫码失败，请重试！", Toast.LE
NGTH_SHORT).show();
 return;
 }
 new AlertDialog.Builder(MainActivity.this)
 .setMessage(result.getData().toString())
 .setPositiveButton(R.string.confirm, null)
 .create()
 .show();
 }
 });
 }
 });

3. 编译运⾏⼯程后，单击 自定义 UI 下使用扫一扫 后即可使⽤⾃定义 UI 下的扫码功能。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 63

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 64

4. 扫描⼆维码，会弹出该⼆维码的信息。

1.3. 接入 iOS
1.3.1. 快速开始

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 65

扫⼀扫 SDK 是⽀付宝⽬前正在使⽤的识别⼆维码、条形码等功能的 SDK 。本⽂介绍如何将扫⼀扫组件接
入到 iOS 客户端。您可以 基于已有工程使用 CocoaPods 接入 扫⼀扫 SDK 到 iOS 客户端。

前置条件
您已接入⼯程到 mPaaS。更多信息，请参⻅ 基于已有⼯程且使⽤ CocoaPods 接入。

添加 SDK
使⽤ cocoapods-mPaaS 插件添加扫⼀扫 SDK。操作步骤如下：

1. 在 Podfile ⽂件中，使⽤ mPaaS_pod "mPaaS_ScanCode" 添加扫码组件依赖。

2. 在命令⾏中执⾏ pod install 即可完成接入。

使用 SDK（ ≥ 10.1.68.17 ）
本⽂将结合 扫⼀扫 官⽅ Demo 介绍如何在 10.1.68.17 及以上版本的基线中使⽤扫⼀扫 SDK。

说明
多码识别功能只⽀持在标准 UI 下使⽤。

操作步骤如下：
1. 唤起标准扫码⻚⾯并处理扫描结果。

 @interface MPScanDemoVC()<TBScanViewControllerDelegate>
 @property(nonatomic, strong) TBScanViewController *scanVC;
 @end
 - (void)defaultScan {
 TBScanViewController *vc = [[MPScanCodeAdapterInterface sharedInstance]
createDefaultScanPageWithallback:^(id _Nonnull result, BOOL keepAlive) {
0000000000000000 // 处理扫描结果
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@""
message:result[@"resp_result"] delegate:self cancelButtonTitle:@"OK"
otherButtonTitles:nil, nil];
 alert.tag = 1999;
 [alert show];
 }];
 [self.navigationController pushViewController:vc animated:YES];
 self.scanVC = vc;
 }

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 66

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas

2. 持续扫码。

 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex {
 // 持续扫码
 [self.scanVC resumeScan];
 }

使用 SDK（ ＜ 10.1.68.17 ）
本⽂将结合 扫⼀扫 官⽅ Demo 介绍如何在 10.1.68.17 以下版本的基线中使⽤扫⼀扫 SDK。
操作步骤如下：

1. 唤起扫码界⾯。

 @interface MPScanDemoVC()<TBScanViewControllerDelegate>
 @property(nonatomic, strong) TBScanViewController *scanVC;
 @end
 - (void)startDefauleScanViewController
 {
 TBScanViewController *vc = [[TBScanViewController alloc] init];
 vc.scanType = ScanType_All_Code;
 vc.delegate = self;
 [self.navigationController pushViewController:vc animated:YES];
 self.scanVC = vc;
 }

2. 处理扫描结果。

 #pragma mark 处理扫描结果
 -(void)didFind:(NSArray<TBScanResult*>*)resultArray
 {
 if([resultArray count] > 0) {
 TBScanResult *result = resultArray.firstObject;
 NSString* content = result.data;

 dispatch_async(dispatch_get_main_queue(), ^{
 // 注意：扫码的结果是在⼦线程，如有 UI 相关操作，请切换到主线程
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@""
message:content delegate:self cancelButtonTitle:@"OK" otherButtonTitles:nil, nil];
 [alert show];
 });
 }
 }

3. 持续扫码。

 #pragma mark alert
 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex {
 [self.scanVC resumeScan];
 }

1.3.2. 进阶指南

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 67

https://github.com/mpaas-demo/ios-scan

本⽂将结合 扫⼀扫 官⽅ Demo 介绍如何使⽤扫码功能。
在 10.1.60 及以上且 10.2.3.5 之前的版本基线中使⽤扫码功能，请参考 标准 UI 下使⽤扫⼀扫 和 ⾃定
义 UI 下使⽤扫⼀扫。
在 10.2.3.5 及以上版本基线中使⽤扫码功能，请参考 多码识别。

标准 UI 下使用扫一扫
在标准 UI 下修改扫码所在⻚⾯的参数。

```objectivec
- (void)custoDefaultScan {
   TBScanViewController *vc = [[MPScanCodeAdapterInterface sharedInstance] 
createDefaultScanPageWithallback:^(id  _Nonnull result, BOOL keepAlive) {
        UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"" 
message:result[@"resp_result"] delegate:self cancelButtonTitle:@"OK" 
otherButtonTitles:nil, nil];
        alert.tag = 1001;
        [alert show];
    }];
    [self.navigationController pushViewController:vc animated:YES];
    self.scanVC =  vc;

    // 设置扫码界⾯ title
    vc.title = @"标准扫码";

    // 设置打开⼿电筒提示⽂字
    vc.torchStateNormalTitle = @"打开⼿电筒";

    // 设置关闭⼿电筒提示⽂字
    vc.torchStateSelectedTitle = @"关闭⼿电筒";

    // 设置扫码识别类型
    vc.scanType =  ScanType_QRCode;

    // 设置选择相册按钮
    vc.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc] 
initWithImage:APCommonUILoadImage(@"camera") style:UIBarButtonItemStylePlain target:sel
f action:@selector(selectPhotos)];

}

- (void)selectPhotos
{
    [self.scanVC scanPhotoLibrary];
}
```

自定义 UI 下使用扫一扫
若您需要完全⾃定义扫码 UI 界⾯，可⾃定义扫码⻚并让其继承 TBScanViewController。
创建扫码⻚，并⾃定义扫码区。

 @interface MPScanCodeViewController : TBScanViewController
<TBScanViewControllerDelegate>

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 68

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas

 @end

 @implementation MPScanCodeViewController

 - (instancetype)init
 {
 if (self = [super init])
 {
 self.delegate = self;
 self.scanType = ScanType_All_Code;
 }
 return self;
 }

 - (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading the view.
 self.title = @"扫码";

 // ⾃定义扫码界⾯⼤⼩
 CGRect rect = [MPScanCodeViewController constructScanAnimationRect];
 self.rectOfInterest = rect;

 // ⾃定义相册按钮
 self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
initWithTitle:@"选择相册" style:UIBarButtonItemStylePlain target:self
action:@selector(selectPhoto)];
 }

 + (CGRect)constructScanAnimationRect
 {
 CGSize screenXY = [UIScreen mainScreen].bounds.size;
 NSInteger focusFrameWH = screenXY.width / 320 * 220;//as wx
 int offet = 10;
 if (screenXY.height == 568)
 offet = 19;

 return CGRectMake((screenXY.width - focusFrameWH) / 2,
 (screenXY.height - 64 - focusFrameWH - 83 - 50 - offet) / 2 +
64,
 focusFrameWH,
 focusFrameWH);
 }

 -(void)buildContainerView:(UIView*)containerView
 {
 // ⾃定义扫码框 view
 UIView* bg = [[UIView alloc] initWithFrame:containerView.bounds];
 [containerView addSubview:bg];
 CGRect rect = [MPScanCodeViewController constructScanAnimationRect];
 UIView* view = [[UIView alloc] initWithFrame:rect];
 view.backgroundColor = [UIColor orangeColor];
 view.alpha = 0.5;
 [bg addSubview:view];

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 69

 [bg addSubview:view];
 }

 - (void)selectPhoto
 {
 [self scanPhotoLibrary];
 }

处理扫码结果。

 -(void)didFind:(NSArray<TBScanResult*>*)resultArray
 {
 TBScanResult *result = resultArray.firstObject;
 NSString* content = result.data;
 if (result.resultType == TBScanResultTypeQRCode) {
 content = [NSString stringWithFormat:@"qrcode:%@, hiddenData:%@,
TBScanQRCodeResultType:%@", result.data, result.hiddenData, [result.extData objectFor
Key:TBScanResultTypeQRCode]];
 NSLog(@"subType is %@, ScanType_QRCode is %@", @(result.subType),
@(ScanType_QRCode));
 } else if (result.resultType == TBScanResultTypeVLGen3Code) {
 content = [NSString stringWithFormat:@"gen3:%@", result.data];
 NSLog(@"subType is %@, ScanType_GEN3 is %@", @(result.subType),
@(ScanType_GEN3));
 } else if (result.resultType == TBScanResultTypeGoodsBarcode) {
 content = [NSString stringWithFormat:@"barcode:%@", result.data];
 NSLog(@"subType is %@, EAN13 is %@", @(result.subType), @(EAN13));
 } else if (result.resultType == TBScanResultTypeDataMatrixCode) {
 content = [NSString stringWithFormat:@"dm:%@", result.data];
 NSLog(@"subType is %@, ScanType_DATAMATRIX is %@", @(result.subType),
@(ScanType_DATAMATRIX));
 } else if (result.resultType == TBScanResultTypeExpressCode) {
 content = [NSString stringWithFormat:@"express:%@", result.data];
 NSLog(@"subType is %@, ScanType_FASTMAIL is %@", @(result.subType),
@(ScanType_FASTMAIL));
 }
 dispatch_async(dispatch_get_main_queue(), ^{
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"" message:content
delegate:self cancelButtonTitle:@"OK" otherButtonTitles:nil, nil];
 alert.tag = 9999;
 [alert show];
 });
 }

持续扫码。

 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex{
 // 持续扫码
 [self resumeScan];
 }

本地相册识别失败的回调。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 70

 - (void)scanPhotoFailed
 {
 // 相册识别失败的回调
 NSLog(@"scanPhotoFailed");
 }

其他回调处理。

 - (void)cameraPermissionDenied
 {
 [self.navigationController popViewControllerAnimated:YES];
 }

 - (void)cameraDidStart
 {
 NSLog(@"started!!");
 }

 -(void)setTorchState:(TorchState)bState
 {
 NSLog(@"TorchState:%lu", (unsigned long)bState);
 }

 -(void)userTrack:(NSString*)name
 {
 NSLog(@"userTrack:%@", name);
 }

 -(void)userTrack:(NSString*)name args:(NSDictionary*)data
 {
 NSLog(@"userTrack:%@, args:%@", name, data);
 }

 - (void)scanPhotoFailed
 {
 // 相册识别失败的回调
 NSLog(@"scanPhotoFailed");
 }

本⽂将介绍如何在定制基线 cp_change_28238 或基线 10.2.3.5 以上版本中使⽤扫⼀扫多码识别 SDK。
您可以基于已有⼯程使⽤ CocoaPods 接入多码识别 SDK 到 iOS 客户端。

前置条件
您已接入⼯程到 mPaaS。更多信息，请参⻅ 基于已有⼯程且使⽤ CocoaPods 接入。

添加 SDK
使⽤ cocoapods-mPaaS 插件添加多码识别 SDK。操作步骤如下：

1. 在 Podfile ⽂件中，修改 mPaaS_baseline 为 cp_change_28238 或基线 10.2.3.5 以上版本。
2. 使⽤ mPaaS_pod "mPaaS_ScanCode" 添加扫码组件依赖。

1.3.3. 多码识别

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 71

3. 单击此处 查看如何使⽤ CocoaPods，根据需要在命令⾏中执⾏ pod install 或 pod update 即可
完成接入。

使用 SDK
打开默认扫码页面
本⽂将结合 扫⼀扫 官⽅ Demo 介绍如何在定制基线 cp_change_28238 或 10.2.3.5 以上版本的基线中
使⽤扫⼀扫多码识别默认 UI SDK。
唤起默认扫码⻚⾯并处理扫描结果。

 #import <TBScanSDK/TBScanSDK.h>

 @interface MPScanDemoVC()

 @property(nonatomic, strong) TBScanViewController *scanVC;

 @end

- (void)defaultScan {

 // 是否显示相册入⼝
 [MPScanCodeAdapterInterface sharedInstance].shoulShowAlbum = NO;

 TBScanViewController *vc = [[MPScanCodeAdapterInterface sharedInstance]
createDefaultScanPageWithallback:^(id _Nonnull result, BOOL keepAlive) {
 // 处理扫描结果
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@""
message:result[@"resp_result"] delegate:self cancelButtonTitle:@"OK"
otherButtonTitles:nil, nil];
 alert.tag = 1999;
 [alert show];
 }];

 // 设置扫码类型
 vc.scanType = ScanType_Default_Code;

 [self.navigationController pushViewController:vc animated:YES];
 self.scanVC = vc;
}

多码识别，持续扫码。

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 72

https://guides.cocoapods.org/using/using-cocoapods.html
https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas

- (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex {
 // 持续扫码
 [self.scanVC resumeCaptureSession];
}

自定义 UI 的使用方式
本⽂将结合 扫⼀扫 官⽅ Demo 介绍如何在⾃定义 UI 下使⽤扫⼀扫多码识别 SDK。

自定义继承 TBScanViewController 的 ViewController
#import <UIKit/UIKit.h>

NS_ASSUME_NONNULL_BEGIN

@interface MPScanCodeViewController :
TBScanViewController<TBScanViewControllerDelegate>

@end

NS_ASSUME_NONNULL_END

初始化自定义扫码 ViewController
//⾃定义扫码入⼝
- (void)customScanAction
{
 MPScanCodeViewController *vc = [[MPScanCodeViewController alloc]
initWithConfig:@{}];
 [self.navigationController pushViewController:vc animated:YES];
}

@implementation MPScanCodeViewController

- (instancetype)initWithConfig:(NSDictionary *)config
{
 if (self = [super initWithConfig:config])
 {
 self.delegate = self;
 self.scanType = ScanType_All_Code;
 }
 return self;
}

重要
初始化⾃定义扫码的 ViewController 只能使⽤ -(instancetype)initWithConfig:(NSDictionary
*)config; ⽅式。

自定义扫码框

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 73

https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20230223/rdlr/MPScanCodeDemo.zip

- (void)buildContainerView:(UIView*)containerView
{
 // ⾃定义扫码框 view
 UIView* bg = [[UIView alloc] initWithFrame:containerView.bounds];
 [containerView addSubview:bg];
 CGRect rect = [MPScanCodeViewController constructScanAnimationRect];
 UIView* view = [[UIView alloc] initWithFrame:rect];
 view.backgroundColor = [UIColor orangeColor];
 view.alpha = 0.5;
 [bg addSubview:view];
}

处理扫码结果
⽤户根据⾃⼰业务场景进⾏处理。

#pragma mark TBScanViewControllerDelegate

-(void)didFind:(NSArray<TBScanResult*>*)resultArray
{
 TBScanResult *result = resultArray.firstObject;
 NSString* content = result.data;
 if (result.resultType == TBScanResultTypeQRCode) {
 content = [NSString stringWithFormat:@"qrcode:%@, hiddenData:%@,
TBScanQRCodeResultType:%@", result.data, result.hiddenData, [result.extData
objectForKey:TBScanResultTypeQRCode]];
 NSLog(@"subType is %@, ScanType_QRCode is %@", @(result.subType),
@(ScanType_QRCode));
 } else if (result.resultType == TBScanResultTypeVLGen3Code) {
 content = [NSString stringWithFormat:@"gen3:%@", result.data];
 NSLog(@"subType is %@, ScanType_GEN3 is %@", @(result.subType),
@(ScanType_GEN3));
 } else if (result.resultType == TBScanResultTypeGoodsBarcode) {
 content = [NSString stringWithFormat:@"barcode:%@", result.data];
 NSLog(@"subType is %@, EAN13 is %@", @(result.subType), @(EAN13));
 } else if (result.resultType == TBScanResultTypeDataMatrixCode) {
 content = [NSString stringWithFormat:@"dm:%@", result.data];
 NSLog(@"subType is %@, ScanType_DATAMATRIX is %@", @(result.subType),
@(ScanType_DATAMATRIX));
 } else if (result.resultType == TBScanResultTypeExpressCode) {
 content = [NSString stringWithFormat:@"express:%@", result.data];
 NSLog(@"subType is %@, ScanType_FASTMAIL is %@", @(result.subType),
@(ScanType_FASTMAIL));
 }
 dispatch_async(dispatch_get_main_queue(), ^{
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"" message:content del
egate:self cancelButtonTitle:@"OK" otherButtonTitles:nil, nil];
 alert.tag = 9999;
 [alert show];
 });
}

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 74

本⽂介绍的是接入扫⼀扫过程中的常⻅问题。

扫一扫组件是否收费？
接入扫⼀扫组件不计费。但扫⼀扫组件中的⽇志埋点及⽇志上报功能依赖计费组件移动分析。例如在扫⼀扫
组件中配置了⽇志埋点并开启⽇志上报功能，在使⽤过程中收集⽇志获取扫码次数、扫码成功次数、扫码失
败次数等，⽤于对扫码性能进⾏监控和分析。根据移动分析组件的计费规则，会产⽣⼀定的费⽤，计费规则
请参⻅ mPaaS 组件旧计费项价格说明；关闭该功能，则不产⽣费⽤，如需关闭，请参考⽂档 ⽇志上报。

Android 工程使用原生 AAR 方式接入时，如何初始化 mPaaS？
需要在 Application 中添加以下代码。

public class MyApplication extends Application {

 @Override
 public void onCreate() {
 super.onCreate();
 // mPaaS 初始化
 MP.init(this);
 }
}

详情请参考：初始化 mPaaS。

在 Android 10.1.68 基线中，启动扫码时卡死如何处理？
在 AAR 和 mPaaS Inside 模式下，如果您除了扫码组件还引⽤了其他组件，请进⾏ mPaaS 初始化，否则
可能会导致主线程卡死。

1.4. 常见问题

扫⼀扫 使⽤指南·扫⼀扫

> ⽂档版本：20250731 75

	1.扫一扫
	1.1. 扫一扫简介
	1.2. 接入 Android
	1.2.1. 快速开始
	1.2.2. 进阶指南
	1.2.3. 使用教程
	1.2.3.1. 总览
	1.2.3.2. 在 Android Studio 创建应用
	1.2.3.3. 在 mPaaS 控制台创建应用
	1.2.3.4. 原生 AAR 方式接入工程
	1.2.3.5. 标准 UI 下使用扫码功能
	1.2.3.6. 自定义 UI 下使用扫码功能

	1.3. 接入 iOS
	1.3.1. 快速开始
	1.3.2. 进阶指南
	1.3.3. 多码识别

	1.4. 常见问题

