
Ant Technology

Client UI Components
User Guide

Document Version: 20250731

Ant Technology

Client UI Components
User Guide

Document Version: 20250731

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Client UI Components User Guide·Legal disclaimer

> Document Version: 20250731 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Client UI Components User Guide·Document convent
ions

> Document Version: 20250731 I

Table of Contents
1.Client UI Components

1.1. Introduction to Native framework
1.2. Native based - Android component library

1.2.1. Quick start
1.2.2. Dialog component

1.2.2.1. Card menu
1.2.2.2. Cascade picker
1.2.2.3. Date picker
1.2.2.4. Float menu
1.2.2.5. Image dialog
1.2.2.6. Input dialog
1.2.2.7. List dialog
1.2.2.8. Notice dialog
1.2.2.9. Operation result dialog
1.2.2.10. Pop up menu
1.2.2.11. Recording float tip
1.2.2.12. Toast

1.2.3. Input components
1.2.3.1. Amount input box
1.2.3.2. Input box
1.2.3.3. Numerical keyboard
1.2.3.4. Search bar
1.2.3.5. Search input box

1.2.4. Item component
1.2.4.1. Auxiliary description component
1.2.4.2. Bank card item component

08

08

11

11

12

12

15

18

21

23

34

36

42

45

47

49

50

52

52

57

69

72

76

78

78

78

Client UI Components User Guide·Table of Contents

> Document Version: 20250731 I

1.2.4.3. Coupons item component
1.2.4.4. List item component

1.2.5. Result page components
1.2.5.1. Progress page
1.2.5.2. Net error page
1.2.5.3. QR code page
1.2.5.4. Result page

1.2.6. Loading component
1.2.7. Navigation component

1.2.7.1. Carousel component
1.2.7.2. List component
1.2.7.3. Title bar component

1.2.8. Other component
1.2.8.1. Index component
1.2.8.2. Button component
1.2.8.3. Operation bar component
1.2.8.4. Check icon component
1.2.8.5. Icon component
1.2.8.6. Refresh component
1.2.8.7. Switch tab component
1.2.8.8. TabBar item component

1.3. Native based - iOS component library
1.3.1. Quick start
1.3.2. Basic components

1.3.2.1. Activity Indicator base class
1.3.2.2. Switch base class
1.3.2.3. Check box control
1.3.2.4. Image base class

79
80

98

98

100

102

105

108

110

111

112

116

124

124

126

130

133

134

138

140

144

145

145

145

146

146

146

148

Client UI Components User Guide·Table of Contents

> Document Version: 20250731 II

1.3.2.5. Label base class
1.3.2.6. Footer base class
1.3.2.7. mPaaS customized loading control
1.3.2.8. Button base class

1.3.3. Input components
1.3.3.1. Image input box
1.3.3.2. Paragraph input box
1.3.3.3. Simplified amount input box
1.3.3.4. Amount input box
1.3.3.5. Normal input box
1.3.3.6. Search input box
1.3.3.7. Search bar component
1.3.3.8. Verification code input box

1.3.4. Item component
1.3.5. Pop-up window component

1.3.5.1. Action sheet
1.3.5.2. Date picker component
1.3.5.3. Menu component
1.3.5.4. Recording status layer
1.3.5.5. Image dialog
1.3.5.6. Input dialog
1.3.5.7. Toast component
1.3.5.8. Card menu
1.3.5.9. Operation result dialog
1.3.5.10. Cascade picker
1.3.5.11. Notification dialog
1.3.5.12. Custom date picker

1.3.6. Loading components

148

148

150

152

155

155

155

156

158

161

163

166

168

169

183

183

189

198

207

209

213

215

220

230

233

238

242

247

Client UI Components User Guide·Table of Contents

> Document Version: 20250731 III

1.3.6.1. Pull-up refresh control
1.3.6.2. Pull-down refresh component
1.3.6.3. Loading component

1.3.7. Result page component
1.3.7.1. Result page component
1.3.7.2. Exception page component

1.3.8. Numeric keypad component
1.3.9. Guidance component

1.3.9.1. Prompt component
1.3.9.2. Floating layer bar component

1.3.10. Pop menu component
1.3.11. Navigation components

1.3.11.1. Vertical tab
1.3.11.2. Double title
1.3.11.3. Navigation bar
1.3.11.4. Custom navigation bar

1.3.12. QR code component
1.3.13. Refresh component
1.3.14. Other components

1.3.14.1. Carousel component
1.3.14.2. Segment component
1.3.14.3. Icon component
1.3.14.4. Index component
1.3.14.5. Title bar segment component
1.3.14.6. Navigation button
1.3.14.7. Adaptation and dependency
1.3.14.8. Image picker encapsulation

247

253

261

264

264

266

269

272

272

273

273

275

275

277

279

282

285

287

289

289

295

300

304

309

310

312

315

Client UI Components User Guide·Table of Contents

> Document Version: 20250731 IV

The mPaaS unified component library (AntUI) converts abstract visual specifications concepts
into control entities based on standardized visual specifications. Developers can unify visual
specifications on clients upon control access by using the unified component library.

Unified component library architecture
The overall architecture of AntUI is similar to block building. The AntUI unified control system
is built from bottom to top:

The following table describes the layers of the architecture from bottom to top.

Architecture
layer Description

Foundation

The Foundation layer represents modular visual specifications. It is the
foundation for building the AntUI system and consists of atomic resources, atomic
widgets, and Iconfont.
The Foundation layer is built of the minimum units of visual specifications.

Common

The Common layer is the core unification module of AntUI and the most
frequently used unification widget module on the business side. This layer
consists of common resources, basic widgets, and the Theme Manager.
The Common layer is built based on the combination and visualization of the
Foundation layer. This layer can be used in all common scenarios on the client.

1.Client UI Components
1.1. Introduction to Native
framework

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 8

Scene

This layer builds a set of scene-oriented widgets, such as the fund widget,
business widget, and community widget.
Due to the fact that mPaaS is a super app, its volume determines that a large
amount of business needs personalized processing. Therefore, AntUI sets up the
Scene layer, which builds personalized and scene-oriented widgets for processing
business based on the Foundation layer.

Application

The Application layer provides capabilities such as differentiated processing and
HTML5 container support. This layer solves the conflict between unification and
platform personalization.
Atomic resources, combinations, and scenes are the basis of AntUI construction.
However, in actual application scenarios, the requirements of Android, iOS, and
HTML5 need to be taken into account at the same time. Therefore, the unified
component library builds some personalized and differentiated APIs of the
platform, that is, the application layers.

Foundation layer
It represents modular visual specifications. It is the foundation for building the AntUI system
and mainly contains the atomic resources, atomic controls, and Iconfont icon.

Atomic resources define the resources that are used by widgets such as color, size, and
spacing in an atomized manner to ensure uniqueness. For example, colors include red,
yellow, and blue and font sizes include 1, 2, and 3.
Atomic widgets package the built-in widgets of the platform framework to build a basic
atomic widget library.
Iconfont collects icons for common scenes and builds the Iconfont format to provide an
available widget icon library.

Common layer
The common layer is the core unification module of the AntUI, that is, the unification control
module most commonly used by the client. It contains the common resources, basic controls,
and style manager.

Common resources are used for secondary definition of atomic resources based on
application scenarios, such as title color, content color, and link color.
Basic widgets perform one-to-one visual presentation on the widgets that are defined in
the visual draft to ensure consistent naming and implementation on Android and iOS. This
facilitates the development and usage on clients.
The Theme Manager defines styles in an abstract manner and manages them in a
centralized manner. A specific widget can switch between multiple sets of skins. Style
abstraction is implemented in an incremental definition manner. Therefore, you only need
to focus on styles of some elements required by business.

Scene layer
This layer builds a set of scene-based controls, for example, fund control, business control,
and social control.

Application layer
The Application layer provides capabilities such as differentiated processing and HTML5
container support. This layer solves the conflict between unification and platform
personalization.
Android and iOS platforms differ in visual specifications. Taking actionsheet as an example,
AntUI performs different processing by platform:

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 9

For the iOS platform, keep the bottom flyout.
For the Android platform, keep the middle list pop-up window.

There are many different scenes for H5, such as pop-up windows and title bars. To keep
platform features in the visual experience with HTML5, AntUI defines a unified JSAPI for
HTML5 containers. This facilitates the evoking of platform widgets for differentiated
processing of HTML5 pages on Android and iOS.

Linkage
To reduce the communication cost between designers and developers and avoid repeated
control development and visual design, the unified component library (AntUI) aggregates the
development and visual work.

Designers formulate specifications and developers interpret specifications into controls.
Complete development guidelines facilitate development implementation and form a one-
stop control system.

Unified naming helps designers and developers achieve unified cognition. For more
information, see the Component specifications and principles section.
Designers can recognize existing controls through the design panel and build a basic
structure of a page through simple drag-and-drop operations.
Developers can intuitively view visual effects of a control by referring to the portal
aggregation development documents and visual specifications and downloading the demo.

Component specifications and principles
Naming conventions
The same type of widgets must be named the same on Android and iOS. A widget name
must be prefixed with AU. The custom properties of widgets must be named in camel case.

Note
Some widgets may need to be implemented in one platform but not in the other
platform due to platform differences.

Matching between basic widgets and visual/interaction specifications
Controls not specified in the specifications cannot be delivered in standard controls.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 10

Controls that are not specified in the specifications but are already used in multiple
places should be delivered in the candidate control set.
Single specifications, such as the title bar specifications, are not forcibly required to be
implemented as a single control.

Ease of use
Different from commonui, the unified control library does not simply encapsulate system
controls (such as APImageView and APTextView). When you need to use system controls,
it is recommended that you use native controls.
The control name must be accurate and clear.
Similar functions should be consistent in different controls.
User habits should be respected.

Extensibility
Do not use hard coding to implement widget features, such as the dynamic modification
of the number of labels.
Some widgets are required to support external modification of their layouts, such as
dialog boxes and navigation bars.

Novelty
You can try the latest platform features. For example, you can use RecyclerView for
Android.

AntUI supports three types of access: native AAR and component-based mode (Portal &
Bundle).

Prerequisite
If you want to connect the component to the mPaaS based on the native AAR mode, you
need to first complete the prerequisites and the subsequent steps. For more information,
see Add mPaaS to your project.
If you want to connect the component to the mPaaS based on components, you need to first
complete the Component-based access procedure.

Add the SDK
Native AAR mode
You can use the component management feature to install the AntUI component in your
project. For more information, see ARR component management.

Component-based mode
In your Portal and Bundle projects, use the component management feature to install the
AntUI component.
For more information, see Manage component dependencies.

1.2. Native based - Android
component library
1.2.1. Quick start

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 11

AUCardMenu is used to display a selection menu when the user taps the card on the
homepage of the mPaaS client. It’s essentially a dialog, and similar to a pop up window.

Sample image

Dependency
See Quick start.

API description

1.2.2. Dialog component

1.2.2.1. Card menu

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 12

/**
* show dialog with default width
* @param view
* @param popItems
*/
public void showDrop(View view, ArrayList<MessagePopItem> popItems)

/**
* show dialog with given width
* @param view
* @param popItems
* @param width
*/
public void showDrop(View view, ArrayList<MessagePopItem> popItems, int width) {
int defaultMarginRight =
mContext.getResources().getDimensionPixelSize(R.dimen.AU_SPACE5)/2;
showDrop(view, popItems, width, defaultMarginRight);
}

/**
* show dialog with given width & marginRight
* @param view
* @param popItems
* @param width
*/
public void showDrop(View view, ArrayList<MessagePopItem> popItems, int width, int marg
inRight)

/**
* show dialog with given ViewLoc
* @param location
* @param popItems
*/
public void showDropWithLocation(ViewLoc location, ArrayList<MessagePopItem> popItems)

If an image is in the hyperlink form, you need to download it.
public void setOnLoadImageListener(OnLoadImageListener onLoadImageListener)

public interface OnLoadImageListener {

/**
* show dialog with given width & marginRight
* @param url URL of the image.
* @param imageView Target view of the image.
* @param defaultDrawable The default image.
*/
public void loadImage(String url, AUImageView imageView ,Drawable defaultDrawable);
}

Custom properties
No customized property is available. The XML layout is not supported.

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 13

 ArrayList<MessagePopItem> menuList = new ArrayList<MessagePopItem>();

 MessagePopItem item1 = new MessagePopItem();
 IconInfo info = new IconInfo();
 info.type = IconInfo.TYPE_DRAWABLE;
 info.drawable = getResources().getDrawable(R.drawable.menu_del_reject);
 item1.icon = info;
 item1.title = "Test content";
 menuList.add(item1);

 MessagePopItem item2 = new MessagePopItem();
 IconInfo info2 = new IconInfo();
 info2.type = IconInfo.TYPE_DRAWABLE;
 info2.drawable = getResources().getDrawable(R.drawable.menu_delete);
 item2.icon = info2;
 item2.title = "Test content";
 menuList.add(item2);

 MessagePopItem item3 = new MessagePopItem();
 IconInfo info3 = new IconInfo();
 info3.type = IconInfo.TYPE_DRAWABLE;
 info3.drawable = getResources().getDrawable(R.drawable.menu_ignore);
 item3.icon = info3;
 item3.title = "Test content";
 menuList.add(item3);

 MessagePopItem item4 = new MessagePopItem();
 IconInfo info4 = new IconInfo();
 info4.type = IconInfo.TYPE_DRAWABLE;
 info4.drawable = getResources().getDrawable(R.drawable.menu_reject);
 item4.icon = info4;
 item4.title = "Test content";
 menuList.add(item4);

 MessagePopItem item5 = new MessagePopItem();
 IconInfo info5 = new IconInfo();
 info5.type = IconInfo.TYPE_DRAWABLE;
 info5.drawable = getResources().getDrawable(R.drawable.menu_report);
 item5.icon = info5;
 item5.title = "Test content";
 menuList.add(item5);

 final AUCardMenu popMenu = new AUCardMenu(CardMenuActivity.this);
 int id = v.getId();
 if(id == R.id.showCardMenu1) {
 popMenu.showDrop(textView1,menuList);
 }else if(id == R.id.showCardMenu2) {
 popMenu.showDrop(textView2,menuList);
 }

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 14

AUCascadePicker provides a multi-level cascade selector that supports selection at a
maximum of three levels.

Sample image

API description
 /**
 * Set the selected list.
 */
 public void setDateData(List<PickerDataModel> strList)

 /**
 * Start the selected items.
 * @param model
 */
 public void setSelectedItem(PickerDataModel model)

 /**
 *Set listeners for the selected items.
 * @param model
 */
 public void setOnLinkagePickerListener(OnLinkagePickerListener listener)

JSAPI description
API
antUIGetCascadePicker

API usage

1.2.2.2. Cascade picker

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 15

AlipayJSBridge.call('antUIGetCascadePicker',
{
 title: 'nihao',// The cascade option title.
 selectedList:[{"name":"Hangzhou",subList:[{"name":"Shangcheng District"}]}],
 list: [
 {
 name: "Hangzhou",// The entry name.
 subList: [
 {
 name: "Xihu District",
 subList: [
 {
 name: "Gucui Street"
 },
 {
 name: "Wenxin Street"
 }
]
 },
 {
 name: "Shangcheng District",
 subList: [
 {
 name: "Yan'an Street"
 },
 {
 name: "Longxiangqiao Street"
 }
]
 }
]// The cascade sub-data list.
 }
]// The cascade data list.
},
function(result){
 console.log(result);
});

Input parameters

Name Type Descriptio
n Required Default

value Version

title String The cascade
control title. No - 10.1.2

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 16

selectedList JSON

Selected
state,
specifying the
selected sub-
item and in a
format the
same as that
of the input
parameter
([{“name”:”H
angzhou
City”,subList:
[{“name”:”Sh
angcheng
District”}]}])

No - 10.1.2

List JSON The selector
data list. Yes - 10.1.2

name (a
name in a

list)
String The entry

name. Yes - 10.1.2

subList (a
sublist in a

list)
JSON The sub-entry

list. No - 10.1.2

fn function
The callback
function after
selection is
complete.

No - 10.1.2

Name Type Descriptio
n Required Default

value Version

Output parameters

Name Type Description Version

success bool
Whether selection is
complete. If selection
is canceled, false is
returned.

10.1.2

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 17

result JSON

The selection result,
for example,
 [{"name":"Hangzhou
City",subList:
[{"name":"Shangcheng
District"}]}] .

10.1.2

Name Type Description Version

Sample code
AUCascadePicker datePicker = new AUCascadePicker(PickerActivity.this);
 datePicker.setDateData(datas);
 datePicker.setOnLinkagePickerListener(new
AUCascadePicker.OnLinkagePickerListener() {
 @Override
 public void onLinkagePicked(PickerDataModel msg) {
 PickerDataModel model = msg;
 AuiLogger.info("onLinkagePicked", "onLinkagePicked:"+msg.name+ m
odel);
 StringBuilder sb = new StringBuilder();
 while (msg != null){
 sb.append(msg.name+" ");
 if(msg.subList != null && msg.subList.size() > 0) {
 msg = msg.subList.get(0);
 }else {
 msg = null;
 }
 }
 box3.getInputEdit().setText(sb);
 }
 });
 datePicker.show();

AUDatePicker is a date selection control and is essentially a pop-up window.

Dependency
See Quick start.

API description
 /**
 * Instantiates a new Date picker.
 *
 * @param activity the activity
 * @param mode the mode

1.2.2.3. Date picker

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 18

 * @see #YEAR_MONTH_DAY #YEAR_MONTH_DAY#YEAR_MONTH_DAY
 * @see #YEAR_MONTH #YEAR_MONTH#YEAR_MONTH
 * @see #MONTH_DAY #MONTH_DAY#MONTH_DAY
 */
 public AUDatePicker(Activity activity, @Mode int mode)

 /**
 * Set the date range.
 *
 * @param startYear the start year
 * @param endYear the end year
 */
 public void setRange(int startYear, int endYear)

··/**
 * Select the specified year, month, and date.
 *
 * @param year the year
 * @param month the month
 * @param day the day
 */
 public void setSelectedItem(int year, int month, int day)

 /**
 * Select the specified date.
 *
 * @param yearOrMonth the year or month
 * @param monthOrDay the month or day
 */
 public void setSelectedItem(int yearOrMonth, int monthOrDay)

 /**
 * Set the date selection listener.
 *
 * @param listener the listener
 */
 public void setOnDatePickListener(OnDatePickListener listener) {
 this.onDatePickListener = listener;
 }

 /**
 * The interface on year month day pick listener.
 */
 public interface OnYearMonthDayPickListener extends OnDatePickListener {

 /**
 * On date picked.
 *
 * @param year the year
 * @param month the month
 * @param day the day
 */
 void onDatePicked(String year, String month, String day);

 }

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 19

 }

 /**
 * The interface On year month pick listener.
 */
 public interface OnYearMonthPickListener extends OnDatePickListener {

 /**
 * On date picked.
 *
 * @param year the year
 * @param month the month
 */
 void onDatePicked(String year, String month);

 }

 /**
 * The interface On month day pick listener.
 */
 public interface OnMonthDayPickListener extends OnDatePickListener {

 /**
 * On date picked.
 *
 * @param month the month
 * @param day the day
 */
 void onDatePicked(String month, String day);

 }

Custom properties
No customized property is available. The XML layout file is not supported.

Sample code
AUDatePicker datePicker = new
AUDatePicker(DatePickActivity.this,AUDatePicker.YEAR_MONTH_DAY);
 datePicker.setRange(1949,2050);
 datePicker.setOnDatePickListener(new
AUDatePicker.OnYearMonthDayPickListener() {
 @Override
 public void onDatePicked(String year, String month, String day) {
 Toast.makeText(DatePickActivity.this,year + "-" + month + "-" +
day,Toast.LENGTH_LONG).show();
 }
 });
 datePicker.show();

Application of AUDatePicker on a build-in page:

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 20

AUDatePicker picker = new AUDatePicker(this);
 picker.show();
 picker.dismiss();
 View view = picker.getOutterView();
 LinearLayout layout = (LinearLayout) findViewById(R.id.layout);
 layout.removeAllViews();
 if(view != null) {
 ((ViewGroup) view.getParent()).removeAllViews();
 layout.addView(view);
 }

For more information, please search for group number 41708565 with DingTalk to join
DingTalk group to contact mPaaS after-sales support.

AUFloatMenu provides a menu that contains icons and option lists.

Dependency
See Quick start.

API description

1.2.2.4. Float menu

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 21

 /**
 * The constructor.
 *
 * @param context Activity context including the antui-build dependency.
 */
 public AUFloatMenu(Context context)
 /**
 * Align with the right by default.
 * @param view Display-based view.
 * @param popItems The list display model.
 */
 @Override
 public void showDrop(View view, ArrayList<MessagePopItem> popItems);

 /**
 * Align with the left.
 * @param view Display-based view.
 * @param popItems The list display model.
 */
 public void showAsDropDownLeft(View view, ArrayList<MessagePopItem> popItems);

 /**
 * Display in the center of the screen.
 * @param parent Display-based view.
 * @param title The title of the display list.
 * @param popItems The list display model.
 */
 public void showAsDropDownTitleCenter(View parent, String title,
ArrayList<MessagePopItem> popItems);

 /**
 * Add the entry tapping event of the display list.
 * @param listener
 */
 public void setOnClickListener(AdapterView.OnItemClickListener listener)

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 22

ArrayList<MessagePopItem> menuList = new ArrayList<MessagePopItem>();

 MessagePopItem item1 = new MessagePopItem();
 IconInfo info = new IconInfo();
 info.icon = getResources().getString(R.string.iconfont_add_user);
 item1.icon = info;
 item1.title = "Add contacts";
 menuList.add(item1);

 MessagePopItem item2 = new MessagePopItem();
 IconInfo info2 = new IconInfo();
 info2.icon = getResources().getString(R.string.iconfont_group_chat);
 item2.icon = info2;
 item2.title = "Group chat";
 menuList.add(item2);

 MessagePopItem item3 = new MessagePopItem();
 IconInfo info3 = new IconInfo();
 info3.icon = getResources().getString(R.string.iconfont_scan);
 item3.icon = info3;
 item3.title = "Scan";
 menuList.add(item3);

 MessagePopItem item4 = new MessagePopItem();
 IconInfo info4 = new IconInfo();
 info4.icon = getResources().getString(R.string.iconfont_collect_money);
 item4.icon = info4;
 item4.title = "Payment";
 menuList.add(item4);

 MessagePopItem item5 = new MessagePopItem();
 IconInfo info5 = new IconInfo();
 info5.icon = getResources().getString(R.string.iconfont_help);
 item5.icon = info5;
 item5.title = "Help";
 menuList.add(item5);

 final AUFloatMenu floatMenu = new AUFloatMenu(ScrollTitleBarActivity.this);
 floatMenu.showDrop(v, menuList);
 floatMenu.setOnClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position, long id
) {
 Toast.makeText(ScrollTitleBarActivity.this, String.valueOf(position),
Toast.LENGTH_SHORT).show();
 floatMenu.hideDrop();
 }
 });

1.2.2.5. Image dialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 23

AUImageDialog (formerly SalesPromotionLimitDialog) provides a dialog box containing a title,
three-level text, one confirm button or two buttons (left and right) at the bottom, and an
ImageView in the middle. This component can be used to display message in throttling
scenarios.

Sample image

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 24

Dependency
See Quick start.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 25

API description
public interface OnItemClickListener {
 void onItemClick(int index);
}

/**
 * Obtain an AUImageDialog instance.
 *
 * @param context The context object.
 * @return Return an AUImageDialog instance.
 */
public static AUImageDialog getInstance(Context context)

/**
 * Disable the listener.
 *
 * @param mCloseBtnClickListener
 */
public void setCloseBtnClickListener(View.OnClickListener mCloseBtnClickListener)

/**
 * Set the first-level title text.
 */
public void setTitle(CharSequence title)

/**
 * Set the font size (in sp) of the first-level title.
 *
 * @param size
 */
public void setTitleTextSize(float size)

/**
 * Set the visibility of the first-level title.
 *
 * @param visibility
 */
public void setTitleTextVisibility(int visibility)
}

/**
 * Set the visibility of the second-level title.
 *
 * @param visibility
 */
public void setSubTitleTextVisibility(int visibility)

/**
 * Set the color of the first-level title.
 *
 * @param color
 */
public void setTitleTextColor(int color)

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 26

public void setTitleTextColor(int color)

/**
 * Set the second-level title text.
 *
 * @param title
 */
public void setSubTitle(CharSequence title)

/**
 * Set the font size (in sp) of the second-level title.
 *
 * @param size
 */
public void setSubTitleTextSize(float size)

/**
 * Set the color of the second-level title.
 *
 * @param color
 */
public void setSubTitleTextColor(int color)

/**
 * Set the third-level title text.
 *
 * @param text
 */
public void setThirdTitleText(String text)

/**
 * Set the color of the third-level title.
 *
 * @param color
 */
public void setThirdTitleTextColor(int color)

/**
 * Set the background of ImageView.
 *
 * @param drawable
 */
public void setLogoBackground(Drawable drawable)

/**
 * Set the background of ImageView.
 *
 * @param resid
 */
public void setLogoBackgroundResource(int resid)

/**
 * Set the background color of ImageView.
 *
 * @param color

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 27

 * @param color
 */
public void setLogoBackgroundColor(int color)

/**
 * Set the background transparency of the dialog box.
 *
 * @param alpha
 */
public void setBackgroundTransparency(float alpha)

/**
 * Indicates whether to return animation.
 */
public boolean isUsdAnim()

/**
 * Indicates whether to display animation when a dialog box is displayed or disappears.
This parameter is set to true by default.
 *
 * @param usdAnim
 */
public void setUsdAnim(boolean usdAnim)

/**
 * Set the visibility of the Close button.
 *
 * @param visibility
 */
public void setCloseButtonVisibility(int visibility)

/**
 * Set the text of the Confirm button.
 *
 * @param text
 */
public void setConfirmBtnText(String text)

/**
 * Return the Confirm button.
 */
public Button getConfirmBtn()

/**
 * Set the Confirm button tapping listener.
 *
 * @param clickListener
 */
public void setOnConfirmBtnClickListener(View.OnClickListener clickListener)

/**
 * Display a dialog box without animation.
 */

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 28

 */
public void showWithoutAnim()

/**
 * Set the countdown.
 * @param seconds Countdown seconds.
 * @param tickColor
 * @param action
 * @param clickListener
 * @param timerListener
 */
public void showWithTimer(int seconds, String tickColor, String action,
View.OnClickListener clickListener, TimerListener timerListener)

public void showWithTimer(int seconds, View.OnClickListener clickListener,
TimerListener timerListener)

/**
 * Obtain the default countdown color.
 * @return
 */
public String getDefaultTimeColorStr()

/**
 * Dismiss a dialog box without animation.
 */
public void dismissWithoutAnim()

@Override
public void dismiss()

public boolean isCanceledOnTouch() {
 return canceledOnTouch;
}

/**
 * Indicates whether a dialog box is automatically canceled when a user taps the middle
image.
 *
 * @param canceledOnTouch
 */
public void setCanceledOnTouch(boolean canceledOnTouch)

/**
 * Set the list button.
 * @param buttonListInfo
 * @param listener
 */
public void setButtonListInfo(List<String> buttonListInfo, OnItemClickListener listener
)

public ImageView getLogoImageView() {
 return bgImageView;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 29

 return bgImageView;
}

public TextView getTitleTextView() {
 return titleTextView_1;
}

public TextView getSubTitleTextView() {
 return titleTextView_2;
}

public TextView getThirdTitleTextView() {
 return titleTextView_3;
}

public ImageView getBottomLine() {
 return bottomLine;
}

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 30

AUImageDialog dialog = AUImageDialog.getInstance(this);
dialog.showWithTimer(5, null, null);

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 31

AUImageDialog dialog = AUImageDialog.getInstance(this);
dialog.setCanceledOnTouch(true);
dialog.setTitle("Single-line Title");
dialog.setSubTitle("Describe the current state and prompt the solution in two rows.");
dialog.setConfirmBtnText("Action Button");
dialog.showWithoutAnim();

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 32

AUImageDialog dialog = AUImageDialog.getInstance(this);
dialog.setCanceledOnTouch(true);
dialog.setTitle("Level-1 textLevel-2 textLevel-2 textLevel-2 textLevel-2 text");
dialog.setSubTitle("Level-2 textLevel-2 textLevel-2 textLevel-2 textLevel-2 textLevel-2
text");
dialog.setThirdTitleText("Accept xxx agreementAccept xxx agreementAccept xxx agreementA
ccept xxx agreementAccept xxx agreementAccept xxx agreementAccept xxx agreement");
dialog.setConfirmBtnText("Action Button");
dialog.showWithoutAnim();

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 33

AUImageDialog dialog = AUImageDialog.getInstance(this);
dialog.setTitle("Single-line Title");
dialog.setSubTitle("The description should not exceed 3 rows, and no ending mark is nee
ded at the end of the last sentence.");
dialog.setButtonListInfo(getData(), new AUImageDialog.OnItemClickListener() {
 @Override
 public void onItemClick(int index) {

 }
});
dialog.showWithoutAnim();

1.2.2.6. Input dialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 34

AUInputDialog (formerly APInputDialog) provides a dialog box containing a title, body,
Confirm and Cancel buttons, and an input box.

Sample image

Dependency
See Quick start.

API description
 /**
 * Construct AUInputDialog based on Input parameters.
 *
 * @param context The context object.
 * @param title The title.
 * @param msg The message.
 * @param positiveString Confirm button text.
 * @param negativeString Cancel button text.
 * @param isAutoCancel Indicates whether to automatically cancel actions in the are
a outside the pop-up window.
 */
 public AUInputDialog(Context context, String title, String msg, String positiveStri
ng,
 String negativeString, boolean isAutoCancel)

 /**
 * Obtain the Cancel button.
 */
 public Button getCancelBtn();

 /**
 * Obtain the Confirm button.
 */
 public Button getEnsureBtn();

 /**
 * Obtain title TextView.
 */
 public TextView getTitle();

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 35

 /**
 * Obtain message TextView.
 */
 public TextView getMsg();

 /**
 * Obtain LinearLayout of the bottom button.
 */
 public LinearLayout getBottomLayout();

 /**
 * Obtain RelativeLayout at the outermost layer of the pop-up window.
 */
 public RelativeLayout getDialogBg();

 /**
 * Set the Confirm button listener.
 */
 public void setPositiveListener(OnClickPositiveListener listener);

 /**
 * Set the Cancel button listener.
 */
 public void setNegativeListener(OnClickNegativeListener listener);

 /**
 * Obtain EditText of the input box.
 */
 public AUEditText getInputContent() {
 return inputContent;
 }

 /**
 * Starts and display the dialog.
 */
 public void show();

Sample code
 AUInputDialog dialog = new AUInputDialog(this, "Title", "Auxiliary Description",
 "OK", "Cancel", true);
 dialog.show();

AUListDialog (formerly APListPopDialog) provides a list dialog box containing a title, an option
list, a Confirm button, and a Cancel button. Each option is a PopMenuItem with icon, option
name, and selected state.

Sample image

1.2.2.7. List dialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 36

Dependency
See Quick start.

API description
public interface OnItemClickListener {
 void onItemClick(int index);
}

/**
 * Create AUListDialog based on the input list, in which the item contains only text bu
t no image.
 *
 * @param context The context object.
 * @param list The string list with only ItemName instead of any image.
 */
public AUListDialog(Context context, ArrayList<String> list)

/**
 * Create AUListDialog based on the input list.
 *
 * @param list The PopMenuItem list.
 * @param context The context object.
 */
public AUListDialog(ArrayList<PopMenuItem> list, Context context)

/**
 * Create AUListDialog based on the input list.
 *
 * @param title The title.
 * @param list PopMenuItem The object list. Icons are allowed.
 * @param context The context object.
 */
public AUListDialog(String title, ArrayList<PopMenuItem> list, Context context)

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 37

/**
 * Create AUListDialog based on the input list.
 *
 * @param title The title.
 * @param message The message main body.
 * @param list PopMenuItem The object list. Icons are allowed.
 * @param context The context object.
 */
public AUListDialog(String title, String message, ArrayList<PopMenuItem> list, Context
context)

/**
 * Create AUListDialog based on the input list.
 *
 * @param title The title.
 * @param list The PopMenuItem list.
 * @param showSelectionState Whether to display the icon in the selected state.
 * @param positiveString Confirm button text.
 * @param positiveListener The Confirm button listener.
 * @param negativeString Cancel button text.
 * @param negativeListener The Cancel button listener.
 * @param context The context object.
 */
public AUListDialog(String title, ArrayList<PopMenuItem> list, boolean
showSelectionState,
 String positiveString, View.OnClickListener positiveListener,
 String negativeString, View.OnClickListener negativeListener, Context context)

/**
 * Create AUListDialog based on the input list.
 *
 * @param title The title.
 * @param message The message main body.
 * @param list The PopMenuItem list.
 * @param showSelectionState Whether to display the icon in the selected state.
 * @param positiveString Confirm button text.
 * @param positiveListener The Confirm button listener.
 * @param negativeString Cancel button text.
 * @param negativeListener The Cancel button listener.
 * @param context The context object.
 */
public AUListDialog(String title, String message, ArrayList<PopMenuItem> list, boolean
showSelectionState,
 String positiveString, View.OnClickListener positiveListener,
 String negativeString, View.OnClickListener negativeListener, Context context)

/**
 * Set the list option tapping event listener.
 */
public void setOnItemClickListener(OnItemClickListener listener) {
 this.listener = listener;
}

/**

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 38

/**
 * Dynamic data refreshing API.
 *
 * @param list
 */
public void updateData(ArrayList<PopMenuItem> list)

Sample code
List dialog with options only

 new AUListDialog(this, getData(7)).show();

 private ArrayList<String> getData(int size){
 ArrayList<String> data = new ArrayList<String>();
 for (int i= 1 ; i<= size; i++){
 data.add("Option"+ String.valueOf(i));
 }
 return data;
 }

List dialog with a title

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 39

 ArrayList<PopMenuItem> items = new ArrayList<PopMenuItem>();
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 new AUListDialog("Title", items, this).show();

List dialog with description text

 ArrayList<PopMenuItem> items = new ArrayList<PopMenuItem>();
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 new AUListDialog("", "The description should not exceed 3 rows, and no ending mark
is needed at the end of the last sentence.", items, this).show();

List dialog with a title and description text

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 40

 ArrayList<PopMenuItem> items = new ArrayList<PopMenuItem>();
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 new AUListDialog("Single-line Title", "The description should not exceed 3 rows, an
d no ending mark is needed at the end of the last sentence.", items, this).show();

List dialog with checkboxes

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 41

 ArrayList<PopMenuItem> items = new ArrayList<PopMenuItem>();
 PopMenuItem item = new PopMenuItem("Option", null);
 item.setType(AUCheckIcon.STATE_UNCHECKED);
 items.add(item);
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 items.add(new PopMenuItem("Option", null));
 new AUListDialog("Title", items, true, "OK", null, "Cancel", null, this).show();

AUNoticeDialog (formerly APNoticePopDialog) provides a dialog box containing a title, body, a
Confirm button, and a Cancel button. It can be used to display common notices.

Sample image

AUNoticeDialog dialog = new AUNoticeDialog(this, "Single-line Title",
 "The description should not exceed 3 rows,and no ending mark is needed at the end o
f the last sentence.",
 "OK", "Cancel", true);
dialog.show();

Basic rules
A pop-up window has a minimum height.
When the window contains only a title or description, it is vertically centered and displayed
at the minimum height.

1.2.2.8. Notice dialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 42

The text of the Confirm and Cancel buttons should contain a maximum of four words.
Otherwise, the text may not be fully displayed on a phone with a small screen (such as
VIVO Y23L).

Dependency
See Quick start.

API
public AUNoticeDialog(Context context, CharSequence title, CharSequence msg,
 String positiveString, String negativeString);

public AUNoticeDialog(Context context, CharSequence title, CharSequence msg,
 String positiveString, String negativeString, boolean isAutoCancel) ;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 43

/**
 * Create AUNoticeDialog based on the Input parameters.
 *
 * @param context The context object.
 * @param title The title.
 * @param msg The message.
 * @param positiveString Confirm button text.
 * @param negativeString Cancel button text.
 * @param isAutoCancel Indicates whether to automatically cancel actions in the area ou
tside the pop-up window.
 */
public AUNoticeDialog(Context context, CharSequence title, CharSequence msg, String pos
itiveString, String negativeString, boolean isAutoCancel);

/**
 * Set the color of the Confirm button text.
 *
 * @ Param c The color value.
 */
public void setPositiveTextColor(ColorStateList c);

/**
 * Set the color of the Cancel button text.
 *
 * @ Param c The color value.
 */
public void setNegativeTextColor(ColorStateList c);

/**
 * Obtain the Cancel button.
 */
public Button getCancelBtn();

/**
 * Obtain the Confirm button.
 */
public Button getEnsureBtn();

/**
 * Obtain title TextView.
 */
public TextView getTitle();

/**
 * Obtain message TextView.
 */
public TextView getMsg();

/**
 * Set the Confirm button tapping listener.
 *
 * @param listener
 */
public void setPositiveListener(OnClickPositiveListener listener);

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 44

/**
 * Set the Cancel button tapping listener.
 *
 * @param listener
 */
public void setNegativeListener(OnClickNegativeListener listener);

/**
 * Obtain RelativeLayout at the outermost layer of the pop-up window.
 */
public RelativeLayout getDialogBg();

/**
 * Start the dialog and display it on screen.
 */
public void show();

Sample code
//Without a title.
AUNoticeDialog dialog = new AUNoticeDialog(this, "",
 "The description should be within three lines, and punctuation should not b
e at the rightmost side of a single line.",
 "Confirm", "Cancel", true);
dialog.show();

//Without description.
AUNoticeDialog dialog = new AUNoticeDialog(this, "Single-line title",
 "",
 "Confirm", null, true);
dialog.show();

AUOperationResultDialog provides a pop-up window containing a title and an option list. It is
mainly used for displaying social sharing and payment results.

Sample image

1.2.2.9. Operation result dialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 45

Dependency
See Quick start.

API description
/**
* Create AUListDialog based on the input list.
*
* @param title The title.
* @param list The PopMenuItem object list. Icons are allowed.
* @param context The context object.
*/
public AUOperationResultDialog(Context context, String title, List<String> list)

/**
* Set the list option tapping event listener.
*/
public void setOnItemClickListener(OnItemClickListener listener)

/**
* Dynamic data refreshing API.
*
* @param list
*/
public void updateData(ArrayList<PopMenuItem> list)

/**
* Obtain imageView.
* @return
*/
public ImageView getIconView()

/**
* Set the visibility of the separation line.
* @param visibility
*/
public void setDivierViewVisibility(int visibility)

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 46

public void clickAUOperationResultDialog(View view) {
 AUOperationResultDialog dialog = new
AUOperationResultDialog(this,"Title",getData());

dialog.getIconView().setImageDrawable(getResources().getDrawable(R.drawable.image));
 dialog.show();
}

AUPopMenu provides a pop-up menu displayed when the user taps an option card on the
navigation bar, which is essentially a pop-up window.
Different from AUFloatMenu, AUPopMenu has no bottom layer mask but has menu outlines,
and all menu texts are centered.

Basic features
Whether the menu pops upwards or downwards is controlled by the service system.
The string list passed by the service system shall use the default style, or pass adapter
directly.

Dependency
See Quick start.

API description

1.2.2.10. Pop up menu

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 47

/**
* The data structure. Use the default style.
* @param context
* @param itemArrayList
*/
public AUPopMenu(Context context, ArrayList<MessagePopItem> itemArrayList)

/**
* The adapter structure. Use the custom style.
* @param context
* @param listAdapter
*/
public AUPopMenu(Context context, BaseAdapter listAdapter)

/**
* tip toast down
* @param anchorView
*/
public void showTipView(View anchorView)

/**
* tip toast with direction
* @param anchorView
* @param isDown
*/
public void showTipView(View anchorView, boolean isDown)

/**
* Make the window disappear.
*/
public void dismiss()

/**
* Set the option tapping listener.
* @param listener
*/
public void setOnItemClickListener(AdapterView.OnItemClickListener listener)

Custom properties
No customized property is available. The XML layout is not supported.

Sample code
final AUPopMenu popMenu = new AUPopMenu(ScrollTitleBarActivity.this, getItemList());
popMenu.showTipView(view);
popMenu.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

 }
});

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 48

AURecordFloatTip is used to display a floating layer indicating that audio is being recorded. It
provides users with more intuitive experience during recording.

Sample image

Dependency
See Quick start.

Structure
public AURecordFloatTip(Activity activity) ;

 public AURecordFloatTip(Activity activity, String tip);

API description

1.2.2.11. Recording float tip

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 49

 /**
 * Display the floating layer.
 */
 public void show();

 /**
 * Make the floating layer disappear.
 */
 public void dismiss();

 /**
 * Obtain floating layer text view.
 *
 * @return
 */
 public AUTextView getTipTextView();

 /**
 * Obtain floating layer icon view.
 *
 * @return
 */
 public AUImageView getIconView();

Sample code
 if (!isSHowAURecordFloatTip) {
 ((AUButton) view).setText("Close AURecordFloatTip");
 if (mAURecordFloatTip == null) {
 mAURecordFloatTip = new AURecordFloatTip(this, "Recording");
 }
 mAURecordFloatTip.show();
 isSHowAURecordFloatTip = true;
 } else {
 ((AUButton) view).setText("Show AURecordFloatTip");
 if (mAURecordFloatTip != null) {
 mAURecordFloatTip.dismiss();
 }
 isSHowAURecordFloatTip = false;
 }

AUToast is the page pop-up indicator, and the AUProgressDialog is a progress indicator.
When the Toast methods of BaseFragmentActivity and BaseActivity are used, the mPaaS
framework modifies the pop-ups in a unified manner.
For activity developed based on BaseFragmentActivity and BaseActivity, the system uses
AUToast by default.

Dependency
See Quick start.

1.2.2.12. Toast

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 50

API description
 /**
 * Instantiate Toast.
 *
 * @param context The context. Use activities on the current page.
 * @param drawableId Image resources.
 * @param tipSrcId The text prompt ID.
 * @param duration Display duration Toast.Long/Toast.Short.
 * @return Toast
 */
 public static Toast makeToast(Context context, int drawableId, int tipSrcId, int du
ration) {
 CharSequence tipSrc = context.getResources().getText(tipSrcId);
 return makeToast(context, drawableId, tipSrc, duration);
 }

 /**
 * Create Toast.
 *
 * @param context The context. Use activities on the current page.
 * @param tipSrcId The prompt information.
 * @param duration The duration.
 * @return toast
 */
 public static Toast makeToast(Context context, int tipSrcId, int duration) {
 CharSequence tipSrc = context.getResources().getText(tipSrcId);
 return makeToast(context, 0, tipSrc, duration);
 }

 /**
 * Make a toast that just contains a image view and a text view.
 *
 * @param context The context. Use activities on the current page.
 * @param drawableId The image resourceid.
 * @param tipSrc The text to show. Can be formatted text.
 * @param duration How long to display the message. Either or
 * @return
 */
 public static Toast makeToast(Context context, int drawableId, CharSequence tipSrc,
int duration)

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 51

 // Success.
 AUToast.makeToast(ToastActivity.this,
com.alipay.mobile.antui.R.drawable.toast_ok, "Success prompt",
Toast.LENGTH_SHORT).show();

 // Failure.
 AUToast.makeToast(ToastActivity.this,
com.alipay.mobile.antui.R.drawable.toast_false, "Failure prompt",
Toast.LENGTH_SHORT).show();
 }

 // Warning.
 AUToast.makeToast(ToastActivity.this,
com.alipay.mobile.antui.R.drawable.toast_warn, "Warning prompt",
Toast.LENGTH_SHORT).show();
 }

 // Text.
 AUToast.showToastWithSuper(ToastActivity.this, 0, "The text contains up to 14 w
ords", Toast.LENGTH_SHORT);

 // Loading.
 AUProgressDialog dialog = new AUProgressDialog(this);
 dialog.setMessage("Loading");
 dialog.show();

}

The AUAmountInputBox component provides an input box for the capital chain, and the
number in the input box is in a special digit font. The input box includes two parts: edit box
(AUAmountEditText) and notes (AUAmountFootView). AUAmountFootView has two styles,
editable input box and text display, which can be used as needed.
In addition, the component provides AUAmountLabelText for special digit font display.

Dependency
See Quick start.

API description
AUAmountInputBox

1.2.3. Input components

1.2.3.1. Amount input box

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 52

/**
 * Get the edit box.
 * @return
 */
 public AUEditText getEditText()

 /**
 * Get the edit box.
 * @return
 */
 public AUAmountEditText getEditLayout()

 /**
 * Get footView of the capital chain.
 * @return
 */
 public AUAmountFootView getFootView()

 /**
 * Get the title bar of the output box.
 * @return
 */
 public AUTextView getTitleView()

 /**
 * Set properties of HeadView.
 * @param style EDIT_STYLE and TEXT_STYLE.
 */
 public void setFootStyle(int style)

 /**
 * Set the FootView edit box prompt.
 * @param hint
 */
 public void setFootHint(String hint)

 /**
 * Set the FootView text.
 * @param text
 */
 public void setFootText(String text)

AUAmountEditText

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 53

/**
 * Get EditText.
 * @return
 */
 public AUEditText getEditText()

 /**
 * Get input box information.
 * @return
 */
 public Editable getEditTextEditable()

 /**
 * Set to show or hide the separation line.
 * @param visible
 */
 public void setDividerVisible(boolean visible)

 /**
 * Set the prompt.
 * @param hint
 */
 public void setHint(String hint)

 /**
 * Specify whether to display the Delete button.
 * @param isShow
 */
 public void isShowClearIcon(boolean isShow)

 /**
 * Add focus listening.
 * @param listener
 */
 public void addOnFocusChangeListeners(OnFocusChangeListener listener)

 /**
 * Bind the external AUNumberKeyboardView ScrollView.
 * @param keyboardView
 * @param scrollView
 */
 public void setKeyBoardView(AUNumberKeyboardView keyboardView, ScrollView
scrollView)

 /**
 * Bind the external AUNumberKeyboardView.
 * @param keyboardView
 */
 public void setKeyBoardView(AUNumberKeyboardView keyboardView)

Custom properties

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 54

Property Description Type

footStyle Type of header view. editStyle, textStyle

amountTitleText Edit box title. String, Reference

amountHintText Prompt for edit box. String, Reference

Code sample
General code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 55

<com.alipay.mobile.antui.amount.AUAmountEditText
 android:id="@+id/edit_text"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:amountHintText="Available balance 500.00" />

<com.alipay.mobile.antui.amount.AUAmountLabelText
 android:id="@+id/label_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal" />

<com.alipay.mobile.antui.amount.AUAmountInputBox
 android:id="@+id/amount_input_1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 app:amountTitleText="Transfer amount" />

<com.alipay.mobile.antui.amount.AUAmountInputBox
 android:id="@+id/amount_input_2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 app:amountTitleText="Transfer amount"
 app:amountHintText="Available balance 500.00"
 app:footStyle="textStyle" />

AUAmountInputBox inputBox1 = (AUAmountInputBox)findViewById(R.id.amount_input_1);
inputBox1.setFootHint("Add remark");

AUAmountInputBox inputBox2 = (AUAmountInputBox)findViewById(R.id.amount_input_2);
inputBox2.setFootText("Input not allowed");

Code sample defining a numeric keypad

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 56

<?xml version="1.0" encoding="utf-8"?>
<com.alipay.mobile.antui.basic.AULinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res/com.alipay.mobile.antui"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <com.alipay.mobile.antui.basic.AUScrollView
 android:id="@+id/scroll"
 android:layout_weight="1"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <com.alipay.mobile.antui.basic.AULinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <com.alipay.mobile.antui.amount.AUAmountInputBox
 android:id="@+id/amount_input_1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 app:amountTitleText="Transfer amount" />
 </com.alipay.mobile.antui.basic.AULinearLayout>
 </com.alipay.mobile.antui.basic.AUScrollView>

 <com.alipay.mobile.antui.keyboard.AUNumberKeyboardView
 android:id="@+id/keyboard"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:visibility="gone"/>
</com.alipay.mobile.antui.basic.AULinearLayout>

// Initialize
keyboardView = (AUNumberKeyboardView) findViewById(R.id.keyboard);
inputBox1 = (AUAmountInputBox)findViewById(R.id.amount_input_1);
ScrollView scrollView = (ScrollView) findViewById(R.id.scroll);

// Bind the keyboard.
inputBox1.getEditLayout().setKeyBoardView(keyboardView, scrollView);

This topic describes the AUInputBox, AUImageInputBox, and AUTextCodeInputBox input box
components provided by mPaaS. The AUImageInputBox and AUTextCodeInputBox
components inherit the AUInputBox component.

AUInputBox
The AUInputBox component contains the following:

1.2.3.2. Input box

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 57

An AUEditText text input box
A tag name displayed on the left of the input box
A Delete button that is displayed when an input box gets focus and the content is not
empty

Sample image

Dependency
See Quick start.

API description
/**
 * Get the string after UBB encoding.
 */
public String getUbbStr()

/***
 * Set the emoji font size, in pixels(px).
 */
public void setEmojiSize(int emojiSize)
/***
 * Specify whether support to emoji.
 */
public void setSupportEmoji(boolean isSupport) {
 this.supportEmoji = isSupport;
}

/**
 * Set a Formatter to format the input.
 * After the setting is completed, the text that has been entered does not take effect
immediately. The effects will show upon subsequent text input.
 */
public void setTextFormatter(AUFormatter formatter)

/**
 * Specify whether the input text is bold.
 *
 * @param isBold The value true indicates that the text is bold and the value false
indicates that the text is normal.
 */
public void setApprerance(boolean isBold)

/**

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 58

/**
 * Set a special listener to be called when an action is performed on the
 * text view. This will be called when the enter key is pressed, or when an
 * action supplied to the IME is selected by the user. Setting this means
 * that the normal hard key event will not insert a newline into the text
 * view, even if it is multi-line; holding down the ALT modifier will,
 * however, allow the user to insert a newline character.
 */
public void setOnEditorActionListener(OnEditorActionListener l)

/**
 * Adds a TextWatcher to the list of those whose methods are called whenever
 * this TextView's text changes.
 */
public void addTextChangedListener(TextWatcher watcher)

/**
 * The Delete button will be displayed after entering text in the input box, and settin
g the object received by click event of the delete button here.
 */
public void setCleanButtonListener(View.OnClickListener listener)

/**
 * Set the text content of the input box.
 */
public void setText(CharSequence inputContent)

/**
 * Get the text content. If the text is formatted, the calling party needs to process t
he text to meet the required format.
 */
public String getInputedText()

/**
 * The EditText control for getting the input box.
 */
public AUEditText getInputEdit()

/**
 * Set the tag text.
 * @param title The input tag text.
 */
public void setInputName(String title)

/**
 * The control for getting the input content name (tag name).
 */
public AUTextView getInputName()

/**
 * The font size of the input content name, in pixels(px).
 */
public void setInputNameTextSize(float textSize)

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 59

public void setInputNameTextSize(float textSize)

/**
 * Set the font size of the input box, in pixels(px).
 */
public void setInputTextSize(float textSize)

/**
 * The text color for the input content.
 */
public void setInputTextColor(int textColor)

/**
 * Set the input content type.
 */
public void setInputType(int inputType)
/**
 * Set prompt message.
 */
public void setHint(String hintString)

/**
 * Set the left tag icon.
 */
public void setInputImage(Drawable drawable)

/**
 * Get the left tag icon.
 */
public AUImageView getInputImage()

/**
 * Set the color of the prompt message.
 */
public void setHintTextColor(int textColor)

/**
 * Set the maximum input length of the input box.
 *
 * @param maxlength If the value is 0 or smaller, the length is not restricted.
 */
public void setMaxLength(int maxlength)

/**
 * The control for getting the Clear button.
 */
public AUIconView getClearButton()

/**
 * Get the setting of whether to show the Clear button.
 */
public boolean isNeedShowClearButton() {
 return isNeedShowClearButton;
}

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 60

/**
 * Specify whether to show the Clear button. If the parameter is set to false, the Clea
r button will not be showed in any case.
 */
public void setNeedShowClearButton(boolean isNeedShowClearButton)

/**
 * Set the border style of the control, including upper, middle, lower, and independent
.
 * This method is in the AULineGroupItemInterface API.
 * This method is automatically called when the control is used with LineGroupView.
 *
 * @param positionStyle Use the variables defined in AULineGroupItemInterface: TOP, CEN
TER, BOTTOM, NORMAL, LINE, and NONE.
 */
@Override
public void setItemPositionStyle(int positionStyle)

/**
 * Get the input content type.
 */
public int getInputType()

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 61

<com.alipay.mobile.antui.input.AUInputBox
 android:id="@+id/safeInputBox"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="top"
 app:inputName="Tag 1"
 app:inputType="textPassword"
 app:inputHint="This input box pops up a security keyboard"/>

<com.alipay.mobile.antui.input.AUInputBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="center"
 app:inputName="Tag 2"
 app:inputHint="Input as prompted"/>

<com.alipay.mobile.antui.input.AUInputBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="bottom"
 app:inputName="Transfer amount"
 app:inputHint="Input as prompted"/>

<com.alipay.mobile.antui.input.AUInputBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="20dp"
 app:inputImage="@drawable/image"
 app:inputName="Transfer amount"
 app:inputHint="Input as prompted"/>

<com.alipay.mobile.antui.input.AUInputBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="20dp"
 app:inputHint="Input as prompted"/>

AUImageInputBox
AUImageInputBox inherits AUInputBox and contains the following:

A IconView on the right to show icons or Unicode
A TextView on the right

Sample image

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 62

Dependency
See Quick start.

API description

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 63

/**
 * Set the background of the rightmost functional button.
 * If the background of the Set button is empty, the functional button will not be show
ed, which is consistent with the AUInputBox function.
 */
public void setLastImgDrawable(Drawable drawable)

/**
 * Set the background of the rightmost functional button.
 * @param unicode
 */
public void setLastImgUnicode(String unicode)

/**
 * Specify whether the rightmost icon is visible.
 * @param visible
 */
public void setLastImgBtnVisible(boolean visible)

/**
 * Set listening on the rightmost functional button.
 */
public void setLastImgClickListener(View.OnClickListener l)

/**
 * Set the rightmost text.
 * @param lastText
 */
public void setLastTextView(String lastText)

/**
 * Get the rightmost TextView.
 *
 * @return Get the rightmost TextView.
 */
public AUTextView getLastTextView()

/**
 * Get the rightmost IconView.
 * @return
 */
public AUIconView getLastImgBtn()

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 64

<com.alipay.mobile.antui.input.AUImageInputBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="20dp"
 app:listItemType="top"
 app:inputName="Name"
 app:inputHint="Payee name"
 app:input_rightIconUnicode="@string/iconfont_phone_contact" />

<com.alipay.mobile.antui.input.AUImageInputBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="center"
 app:inputName="Card number"
 app:inputHint="Savings card number of the payee"/>

<com.alipay.mobile.antui.input.AUImageInputBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="bottom"
 app:inputName="Bank"
 app:inputHint="Select bank"
 app:input_rightIconDrawable="@drawable/table_arrow" />

<com.alipay.mobile.antui.input.AUImageInputBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="20dp"
 app:inputName="Amount"
 app:inputHint="Enter transfer amount"
 app:input_rightText="Amount limit" />

AUTextCodeInputBox
AUTextCodeInputBox inherits AUInputBox and contains a text button used for sending the
SMS verification code on the right.

Sample image

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 65

Dependency
See Quick start.

API description
/**
 * Set the callback for the Send button clicking event.
 * @param callback When a user clicks the Send button, the OnSendCallback.onSend() meth
od will be called back.
 */
public void setOnSendCallback(OnSendCallback callback)

/**
 * Reset the current time to zero.
 */
public void currentSecond2Zero()

/**
 * Set the current time.
 */
public void setCurrentSecond(int current)

/**
 * Get the current time.
 */
public int getCurrentSecond()

/**
 * Get the Send button.
 */
public AUButton getSendCodeButton()

/**
 * The release timer for business calling.
 */
public void releaseTimer()

/**
 * Start countdown for the button.
 */
public void scheduleTimer()

public interface SendButtonEnableChecker {
 public boolean checkIsEnabled();
}

/**
 * This method sets the method used to detect whether SendButton is available.
 * If this method detects that the button is unavailable, the button is dimmed when the
updateSendButtonEnableStatus method is called.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 66

updateSendButtonEnableStatus method is called.
 * Otherwise, the button is available when the updateSendButtonEnableStatus method is c
alled according to the countdown logic.
 * The button is available only when all checks are available, or it will be dimmed.
 */
public void setSendButtonEnableChecker(SendButtonEnableChecker checker)

/**
 * Update the SendButton availability state based on the internal state of
SendButtonEnableChecker and CheckCodeSendBox.
 * The button is available only when all checks are available, or it will be dimmed.
 */
public void updateSendButtonEnableStatus()

/**
 * Get SendResultCallback.
 */
public SendResultCallback getSendResultCallback()

Code sample

XML

<com.alipay.mobile.antui.input.AUTextCodeInputBox
 android:id="@+id/au_textcode_input"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="20dp"/>

Java

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 67

final AUTextCodeInputBox textCodeInputBox = (AUTextCodeInputBox)
findViewById(R.id.au_textcode_input);
textCodeInputBox.setOnSendCallback(new OnSendCallback() {
 @Override
 public void onSend(final SendResultCallback callback) {
 // The RPC request to the server for a verification code.
 boolean resendSmsRpcSuccess = true;
 if (resendSmsRpcSuccess) {
 // Start countdown when the verification code is successfully sent.
 callback.onSuccess();
 // The verification code is received.
 Toast.makeText(InputActivity.this, "Verification code received: 123456",
Toast.LENGTH_SHORT)
 .show();
 textCodeInputBox.setText("123456");
 Log.d(TAG, "Input verification code: " +
textCodeInputBox.getInputedText());
 } else {
 // Failed to send the verification code. Enable the Send button again.
 callback.onFail();
 }
 }
});

Custom properties
The following table describes custom attribute parameters of the three components.

Property Description Type

inputName The input content name. String, Reference

inputHint The prompt content of the input box. String, Reference

maxLength The maximum length of the input content. Integer

inputType The input content type.

Enum, including
textNormal,
textNumber,
textDecimal, and
textPassword

inputImage The image to the left of the input box. Reference

listItemType The background type of an item.
Enum, including
top, center,
bottom, normal,
line, and none

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 68

input_rightIconUn
icode The right-side icon. String, Reference

input_rightIconDr
awable The right-side image. Reference

input_rightText The right-side hyperlink text. String, Reference

Property Description Type

AUNumberKeyboardView provides numeric keypads in three states.

Use the component
Use the component independently to show a view, for example, a mini program.
Bind the component with AUAmountEditText and use them together. The binding tool is
AUNumberKeyBoardUtil, which is encapsulated in AUAmountEditText. For more
information, see AUAmountInputBox documentation.
Bind the component with common EditText and use them together. The binding tool is
AUNumberKeyBoardUtil, which needs to be called independently.

Dependency
See Quick start.

API description
AUAmountEditText

1.2.3.3. Numerical keyboard

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 69

/**
 * Set the keyboard style. The default value is STYLE_POINT.
 * @param style STYLE_POINT, STYLE_X, and STYLE_NONE.
 */
 public void setStyle(int style)

 /**
 * Set button listening.
 * @param listener
 */
 public void setActionClickListener(OnActionClickListener listener)

 /**
 * Show status listening.
 * @param windowStateChangeListener
 */
 public void setWindowStateChangeListener(WindowStateChangeListener
windowStateChangeListener)

 /**
 * Show.
 */
 public void show()

 /**
 * Hide.
 */
 public void hide()

 /**
 * Return the show state.
 * @return
 */
 public boolean isShow()

AUNumberKeyBoardUtil

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 70

/**
 * Pass in EditText and AUNumberKeyboardView.
 * @param context
 * @param editText
 * @param keyboardView
 */
 public AUNumberKeyBoardUtil(Context context, EditText editText,
AUNumberKeyboardView keyboardView)

 /**
 * Set the scroll view.
 * @param view
 */
 public void setScrollView(ScrollView view)

 /**
 * Show the numeric keypad.
 */
 public void showKeyboard()

 /**
 * Hide the numeric keypad.
 */
 public void hideKeyboard()

Code sample
AUAmountEditText
AUNumberKeyboardView auNumberKeyboardView = new AUNumberKeyboardView(this, AUNumberKey
boardView.STYLE_POINT, new AUNumberKeyboardView.OnActionClickListener() {
 @Override
 public void onNumClick(View view, CharSequence num) {

 }

 @Override
 public void onDeleteClick(View view) {

 }

 @Override
 public void onConfirmClick(View view) {

 }

 @Override
 public void onCloseClick(View view) {

 }
 });

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 71

AUNumberKeyBoardUtil
XML

<com.alipay.mobile.antui.basic.AULinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <com.alipay.mobile.antui.basic.AUScrollView
 android:id="@+id/scroll"
 android:layout_weight="1"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <com.alipay.mobile.antui.basic.AULinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <EditText
 android:id="@+id/editText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp" />
 </com.alipay.mobile.antui.basic.AULinearLayout>
 </com.alipay.mobile.antui.basic.AUScrollView>

 <com.alipay.mobile.antui.keyboard.AUNumberKeyboardView
 android:id="@+id/keyboard"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:visibility="gone"/>
</com.alipay.mobile.antui.basic.AULinearLayout>

Java

keyBoardUtil = new AUNumberKeyBoardUtil(context, editText, keyboardView);
keyBoardUtil.setScrollView(scrollView);

AUSearchBar (previously known as APSocailSearchBar) provides a search title bar containing
a Back button, a search box, and a Search button on the right.

Sample image

1.2.3.4. Search bar

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 72

API description

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 73

/**
 * Set the maximum input length.
 */
 public void setInputMaxLength(int length);

 /**
 * Get the Back button.
 * @return
 */
 public AUIconView getBackButton() ;

 /**
 * Get the Delete button.
 * @return
 */
 public AUIconView getClearButton();

 /**
 * Get the search input box.
 * @return
 */
 public AUEditText getSearchEditView();

 /**
 * Get the Search button.
 * @return
 */
 public AUIconView getSearchButton() ;

 /**
 * Get the search layout.
 * @return
 */
 public AURelativeLayout getSearchRelativeLayout() ;

 /**
 * Get the voice search button.
 * @return
 */
 public AUIconView getVoiceButton();

 /**
 * Add editing event listening.
 */
 public void setEditChangedListener(TextWatcher watcher)

Custom properties

Property Description Type

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 74

isShowSearchBtn Whether to show the Search
button. Boolean

isShowVoiceSearch Whether to show the voice
search button. Boolean

searchEditText The default text in the search
box. String, Reference

searchEditHint The default prompt content in
the search box. String, Reference

searchButtonText The text of the Search button. String, Reference

inputMaxLength The maximum length of the
search box. Integer, Reference

hintIconUnicode The Unicode of the icon on the
left side of the edit box. String, Reference

hintIconDrawable The resource of the icon on the
left side of the edit box. Reference

backIconUnicode The Unicode of the Back button. String, Reference

backIconDrawable The resource of the Back
button. Reference

editHintColor The color of the prompt content
in the edit box. Color, Reference

editTextColor The color of the text in the edit
box. Color, Reference

editIconColor The color of the icon in the edit
box. Color, Reference

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 75

<com.alipay.mobile.antui.basic.AUSearchBar
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 app:searchEditText="Input text"
 app:isShowSearchBtn="true"
 app:isShowVoiceSearch="true"/>

 <com.alipay.mobile.antui.basic.AUSearchBar
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 app:searchEditHint="Dark text prompt"
 app:isShowSearchBtn="true"
 app:isShowVoiceSearch="true"/>

AUSearchInputBox (previously known as APSocialTagSearchBar) provides a search title bar
containing a search box and a Search button on the right. To use this component, you need to
set the height of View.

Dependency
See Quick start.

API description
/**
 * Set the maximum input length.
 */
 public void setInputMaxLength();

 /**
 * Get the Delete button.
 * @return
 */
 public AUIconView getClearButton();

 /**
 * Get the search input box.
 * @return
 */
 public AUEditText getSearchEditView();

 /**
 * Get the voice search button.
 * @return
 */
 public AUIconView getVoiceButton();

Custom properties

1.2.3.5. Search input box

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 76

Property Description Type

isShowSearchBtn Whether to show the Search
button. Boolean

isShowVoiceSearch Whether to show the voice
search button. Boolean

searchEditText The default text in the search
box. String, Reference

searchEditHint The default prompt content in
the search box. String, Reference

inputMaxLength The maximum length of the
search box. Integer, Reference

hintIconUnicode The Unicode of the icon on the
left side of the edit box. String, Reference

hintIconDrawable The resource of the icon on the
left side of the edit box. Reference

editHintColor The color of the prompt content
in the edit box. Color, Reference

editTextColor The color of the text in the edit
box. Color, Reference

editIconColor The color of the icon in the edit
box. Color, Reference

Code sample
XML

<com.alipay.mobile.antui.basic.AUSearchInputBox
 android:layout_width="match_parent"
 android:layout_height="52dp"
 android:layout_marginTop="10dp"
 app:searchEditHint="Dimmed text prompt" />

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 77

AUSearchInputBox inputBox = new AUSearchInputBox(this);
ViewGroup.LayoutParams layoutParams = new
ViewGroup.LayoutParams(ViewGroup.LayoutParams.MATCH_PARENT,300);
inputBox.setLayoutParams(layoutParams);

layout.addView(inputBox);

AUAssistLabelView is a TextView component that displays the auxiliary text.

Dependency
See Quick start.

Code sample
<com.alipay.mobile.antui.basic.AUAssistLabelView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="If the function is disabled, the notification will not show the sender an
d summary when you receive a message." />

<com.alipay.mobile.antui.basic.AUAssistLabelView
android:layout_width="match_parent"
android:layout_height="wrap_content"
app:isHead="true"
android:text="Header" />

The AUBankCardItem component is used to provide bank card entries such as the bank
name, bank logo, and bank account number.

Dependency
See Quick start.

API description

1.2.4. Item component

1.2.4.1. Auxiliary description component

1.2.4.2. Bank card item component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 78

/**
 * Get the bank name view.
 * @return
 */
public AUEmptyGoneTextView getBankName();

/**
 * Get the bank account view.
 * @return
 */
public AUEmptyGoneTextView getBankNumber();

/**
 * Get the bank logo view.
 * @return
 */
public AUCircleImageView getBankImage();

/**
 * Set the bank name and account number simultaneously.
 * @param bankName
 * @param bankNum
 */
public void setBankInfo(String bankName, String bankNum) ;

Code sample
AUBankCardItem cardItem = new AUBankCardItem(this);
cardItem.setBankInfo("Bank name","Last 4 digits");
cardItem.getBankImage().setImageResource(R.drawable.image);

The coupon entry component is used to display the coupon entry including the coupon icon,
title, and auxiliary description.

Sample images

Dependency
See Quick start.

Code sample

1.2.4.3. Coupons item component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 79

AUCouponsItem couponsItem1 = new AUCouponsItem(this);
couponsItem1.setCouponsInfo("Subtitle","CNY100 off voucher","");
couponsItem1.getCouponsImage().setImageResource(R.drawable.image);

AUCouponsItem couponsItem2 = new AUCouponsItem(this);
couponsItem2.setCouponsInfo("","CNY100 off voucher","Subtitle is optional");

AUCouponsItem couponsItem3 = new AUCouponsItem(this);
couponsItem3.setCouponsInfo("Subtitle","CNY100 off voucher","");
couponsItem3.setCouponsAssitDes("There are stores in 483m");
couponsItem3.getCouponsImage().setImageResource(R.drawable.image);

AUListItem is a list item component, including the following controls:
AUSingleTitleListItem
AUDoubleTitleListItem
AUCheckBoxListItem
AUSwitchListItem
AUMultiListItem
AUParallelTitleListItem
AULineBreakListItem

Sample images
AUSingleTitleListItem

AUDoubleTitleListItem

1.2.4.4. List item component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 80

AUCheckBoxListItem

AUSwitchListItem

Dependency
See Quick start.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 81

API description

Basic APIs
/**
* Set the item type, including upper, medium, and lower.
*
* @param positionStyle AULineGroupItemInterface.NORMAL TOP BOTTOM CENTER LINE NONE
*/
public void setItemPositionStyle(int positionStyle)

/**
* Specify whether the arrow on the right is visible.
* @param isVisible
*/
public void setArrowVisibility(boolean isVisible)

AUParallelListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 82

/**
 * Set the text in four positions simultaneously.
 * @param leftText
 * @param leftSubText
 * @param rightText
 * @param rightSubText
 */
public void setParallelText(String leftText, String leftSubText, String rightText, Stri
ng rightSubText)

/**
 * Set the main text on the left.
 * @param leftText
 */
public void setLeftText(String leftText)

/**
 * Set the main text on the right.
 * @param rightText
 */
public void setRightText(String rightText)

/**
 * Set the auxiliary text on the left.
 * @param leftSubText
 */
public void setLeftSubText(String leftSubText)

/**
 * Set the auxiliary text on the right.
 * @param rightSubText
 */
public void setRightSubText(String rightSubText)

AULineBreakListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 83

/**
 * Set the text on the left and right.
 * @param left
 * @param right
 */
public void setText(String left, String right)

/**
 * Get the left TextView.
 * @return
 */
public AUTextView getLeftText()

/**
 * Get the right TextView.
 * @return
 */
public AUTextView getRightText()

Public APIs
/**
 * Set the size of the icon image.
 */
public void setIconSize(float width, float height)

/**
 * Get the main text on the left.
 * @return
 */
public CharSequence getLeftText()

/**
 * Set the main text on the left.
 * @param text
 */
public void setLeftText(CharSequence text)

/**
 * Set the color of the main text on the left.
 * @param color
 */
public void setLeftTextColor(int color)

/**
 * Get the view of the left-side image.
 * @return
 */
public AURoundImageView getLeftRoundImageView()
public AUImageView getLeftImageView()

/**
 * Set the left-side image.
 * @param resId

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 84

 * @param resId
 */
public void setLeftImage(int resId)

/**
 * Set the left-side image.
 * @param drawable
 */
public void setLeftImage(Drawable drawable)

/**
 * Set visibility when setLeftImage is set in the API.
 * If setLeftImage is called after this API is called, the system will reset the visibi
lity.
 *
 * @param vis View.GONE
 */
public void setLeftImageVisibility(int vis)

/**
 * Get text information on the left.
 * @return
 */
public AUTextView getLeftTextView()
}

AUSingleTitleListItem
/**
 * Set the Select button on the right.
 * @param checked
 */
public void setItemChecked (boolean checked)

/**
 * Set text information on the right.
 * @param text
 */
public void setRightText(CharSequence text)

/**
 * Set the color of the text on the right.
 * @param color
 */
public void setRightTextColor(int color)

/**
 * Set the right-side image.
 */
public void setRightImage(int resId)
public void setRightImage(Bitmap bitmap)
public void setRightImage(Drawable drawable)

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 85

/**
 * Get the view of the text on the right.
 * @return
 */
public AUTextView getRightTextView()

/**
 * Get the view of the right-side image.
 * @return
 */
public AUImageView getRightImageView()

/**
 * Set text information on the right.
 * @param text
 */
public void setRightButtonText(CharSequence text)

/**
 * Get the button.
 * @return
 */
public AUProcessButton getProcessButton()

/**
 * Set the button clicking listener.
 * @param listener
 */
public void setButtonClickListener(OnClickListener listener)

/**
 * Set the style on the right.
 * @param type AUAbsListItem.TEXT_IMAGE AUAbsListItem.BUTTON
 */
public void setRightType(int type)

AUCheckBoxListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 86

/**
 * Get the check icon on the left.
 * @return
 */
public AUCheckIcon getLeftCheckIcon()

/**
 * Set the icon state.
 * @param status AUCheckIcon.STATE_CHECKED|STATE_UNCHECKED|STATE_DISABLED
 */
public void setCheckstatus(int status)

/**
 * Get the check state.
 * @return
 */
public int getIconState()

AUSwitchListItem
/**
 * Set switch status listening.
 * @param onCheckedChangeListener
 */
public void setOnSwitchListener (CompoundButton.OnCheckedChangeListener
onCheckedChangeListener)

/**
 * Get the switch.
 * @return
 */
public AUSwitch getSwitch()

/**
 * Return the switch status.
 * @return Indicates whether the switch is enabled.
 */
public boolean isSwitchOn()

/**
 * Set the switch status.
 * @param status
 */
public void setSwitchStatus(boolean status)

/**
 * Set the state to enable or disable.
 * @param enabled
 */
public void setSwitchEnabled(boolean enabled)

AUDoubleTitleListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 87

/**
 * Set the auxiliary text on the left.
 * @param text
 */
public void setLeftSubText(CharSequence text)

/**
 * Set the text on the right.
 * @param text
 */
public void setRightText(CharSequence text)

/**
 * Set the font and color of the text on the right.
 * @param color
 */
public void setRightTextColor(int color)

/**
 * Get the view of the text on the right.
 * @return
 */
public AUTextView getRightTextView()

/**
 * Get the view of the auxiliary text on the left.
 * @return
 */
public AUTextView getLeftSubTextView()

/**
 * Set text information on the right.
 * @param text
 */
public void setRightButtonText(CharSequence text)

/**
 * Get the button.
 * @return
 */
public AUProcessButton getProcessButton()

/**
 * Set the button clicking listener.
 * @param listener
 */
public void setButtonClickListener(OnClickListener listener)

/**
 * Set the style on the right.
 * @param type AUAbsListItem.TEXT_IMAGE AUAbsListItem.BUTTON
 */
public void setRightType(int type)

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 88

AUMultiListItem
/**
 * Add an extended view to the left.
 * @param view
 */
public void addLeftAssistantView(View view)

/**
 * Set the auxiliary text on the left.
 * @param text
 */
public void setLeftSubText(CharSequence text)

/**
 * Get the subtitle text.
 * @return
 */
public AUEmptyGoneTextView getLeftSubTextView()

Custom attributes

Property Description Type

listItemType Sets the position style. normal/top/bottom/center/line/n
one

listLeftText The text on the left. string, reference

listLeftSubText The auxiliary text on the left. string, reference

listLeftTextSize The font size of the text on the
left. dimension

listLeftSubTextSize The font size of the auxiliary
text on the left. dimension

listLeftTextColor The color of the text on the left. color, reference

listLeftSubTextColor The color of the auxiliary text
on the left. color, reference

listLeftImage The left-side icon. reference

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 89

listLeftImageWidth The width of the left-side
image. dimension, reference

listLeftImageHeight The height of the left-side
image. dimension, reference

listShowArrow Whether to show the arrow on
the right. boolean

listArrowType Direction of arrow. arrow_right/arrow_down/arrow_
up

listRightText The text on the right. string, reference

listRightSubText The auxiliary text on the right. string, reference

listRightType The style on the right. text_image/button

listRightImage The right-side image. string, reference

listShowCheck The checking image on the
right. boolean

Note
The following code sample (XML) shows the attributes supported in each control.
If you want to change the color of the background by clicking it, please add the
attribute: android:clickable="true" .
The height of the control, the width and height of the left image are custom based
on business requirements.

Sample code
Introduce XML namespace. When the SDK is accessed in Native AAR mode, define
 xmlns:app="http://schemas.android.com/apk/res-auto" to make all the elements with the
same app prefix are associated with the same namespace. The following takes app
as an example.
Introduce XML namespace. When the SDK is accessed in component mode, define
 xmlns:aui="http://schemas.android.com/apk/res/com.alipay.mobile.antui" to make all the
elements with the same aui prefix are associated with the same namespace.

AUParallelListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 90

<com.alipay.mobile.antui.tablelist.AUParallelTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="top"
 app:listLeftText="Title 1"
 app:listLeftSubText="Content 1"
 app:listRightText="Title 2"
 app:listRightSubText="Content 2"
 app:listShowArrow="false" />

<com.alipay.mobile.antui.tablelist.AUParallelTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="center"
 app:listLeftText="Title 1"
 app:listLeftSubText="Content 1"
 app:listRightSubText="Content 2"
 app:listShowArrow="false" />

<com.alipay.mobile.antui.tablelist.AUParallelTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="center"
 app:listLeftText="Title 1"
 app:listLeftSubText="Content 1"
 app:listRightText="Title 2"
 app:listShowArrow="false" />

AULineBreakListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 91

<com.alipay.mobile.antui.tablelist.AULineBreakListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="top"
 app:listLeftText="Main info"
 app:listRightText="The distance between the left part and the right part should be
30 px."/>

<com.alipay.mobile.antui.tablelist.AULineBreakListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="center"
 app:listLeftText="The distance between the left part and the right part should be 3
0 px."
 app:listRightText="Details"/>

<com.alipay.mobile.antui.tablelist.AULineBreakListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="center"
 app:listLeftText="Single-line text"
 app:listRightText="Details"/>

<com.alipay.mobile.antui.tablelist.AULineBreakListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="bottom"
 app:listLeftText="The distance between the left part and the right part should be 3
0 px."
 app:listRightText="The distance between the left part and the right part should be
30 px."/>

AUSingleTitleListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 92

<com.alipay.mobile.antui.tablelist.AUSingleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="top"
 app:listLeftText="Single-line list"
 app:listRightText="Details" />

<com.alipay.mobile.antui.tablelist.AUSingleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="center"
 app:listLeftText="The distance between the left part and the right part should be 3
0 px."
 app:listRightText="Details" />

<com.alipay.mobile.antui.tablelist.AUSingleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="center"
 app:listLeftText="Single-choice list"
 app:listShowCheck="true" />

<com.alipay.mobile.antui.tablelist.AUSingleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="center"

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 93

 app:listItemType="center"
 app:listLeftImage="@drawable/image"
 app:listLeftText="Normal Image"
 app:listShowArrow="false" />

<com.alipay.mobile.antui.tablelist.AUSingleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="center"
 app:listLeftImage="@drawable/image"
 app:listLeftImageSizeType="size_large"
 app:listLeftText="Large Image"
 app:listShowArrow="false" />

<com.alipay.mobile.antui.tablelist.AUSingleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:hasRound="true"
 app:listItemType="center"
 app:listLeftImage="@drawable/image"
 app:listLeftImageHeight="36dp"
 app:listLeftImageWidth="36dp"
 app:listLeftText="Set image size"
 app:listShowArrow="false" />

<com.alipay.mobile.antui.tablelist.AUSingleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="center"
 app:listLeftText="Title"
 app:listRightImage="@drawable/image"
 app:listRightText="Content display extra long" />

<com.alipay.mobile.antui.tablelist.AUSingleTitleListItem
 android:id="@+id/button_item"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:listItemType="bottom"
 app:listLeftImage="@drawable/image"
 app:listLeftText="Title"
 app:listRightText="Try"
 app:listRightType="button"/>

AUDoubleTitleListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 94

<com.alipay.mobile.antui.tablelist.AUDoubleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="center"
 app:listLeftSubText="Services such as Alipay Flight Reminder."
 app:listLeftText="Title"
 app:listRightText="10:30"
 app:listShowArrow="false" />

<com.alipay.mobile.antui.tablelist.AUDoubleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="center"
 app:listLeftImage="@drawable/testapp_icon"
 app:listLeftSubText="Description text"
 app:listLeftText="Normal Image" />

<com.alipay.mobile.antui.tablelist.AUDoubleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="center"
 app:listLeftImage="@drawable/testapp_icon"
 app:listLeftImageSizeType="size_large"
 app:listLeftSubText="Description text"

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 95

 app:listLeftText="Large Image"
 app:listRightText="10:30"
 app:listShowArrow="false" />

<com.alipay.mobile.antui.tablelist.AUDoubleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="bottom"
 app:listLeftImage="@drawable/testapp_icon"
 app:listLeftImageSizeType="size_multi"
 app:listLeftSubText="Global Airport Plan" means Alipay will give tourists in overse
as airports access to services such as Flight Reminder.
 app:listLeftText="Pics & Text list"
 app:listShowArrow="false" />

<com.alipay.mobile.antui.tablelist.AUDoubleTitleListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="center"
 app:listLeftImage="@drawable/image"
 app:listLeftImageSizeType="size_large"
 app:listLeftSubText="Description"
 app:listLeftText="Large Image"
 app:listRightText="Try"
 app:listRightType="button" />

<com.alipay.mobile.antui.tablelist.AUDoubleTitleListItem
 android:id="@+id/testLitItem"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="20dp"
 android:layout_marginTop="10dp"
 android:clickable="true"
 app:listItemType="normal"
 app:listLeftImage="@drawable/testapp_icon"
 app:listLeftImageHeight="70dp"
 app:listLeftImageWidth="70dp"
 app:listLeftSubText="Click the button to set the type"
 app:listLeftText="Set image size" />

AUCheckBoxListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 96

<com.alipay.mobile.antui.tablelist.AUCheckBoxListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:listItemType="top"
 app:listLeftText="Multiple-choice List" />

<com.alipay.mobile.antui.tablelist.AUCheckBoxListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:checkIconState="checked"
 app:listItemType="center"
 app:listLeftText="Multiple-choice List" />

<com.alipay.mobile.antui.tablelist.AUCheckBoxListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:checkIconState="cannot_uncheck"
 app:listItemType="bottom"
 app:listLeftText="Multiple-choice List" />

<com.alipay.mobile.antui.tablelist.AUCheckBoxListItem
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 app:checkIconState="cannot_check"
 app:listItemType="bottom"
 app:listLeftText="Multiple-choice List" />

AUSwitchListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 97

<com.alipay.mobile.antui.tablelist.AUSwitchListItem
 android:layout_width="match_parent"
 android:layout_height="48dp"
 app:listItemType="top"
 app:listLeftText="Title" />

<com.alipay.mobile.antui.tablelist.AUSwitchListItem
 android:id="@+id/disable_switch_list_item"
 android:layout_width="match_parent"
 android:layout_height="48dp"
 app:listItemType="bottom"
 app:listLeftText="Title" />

AUFlowResultView displays a result page with progress. FlowResult is used to represent a
node. Each node can be set with different types and auxiliary texts.

Dependency
See Quick start.

API description

1.2.5. Result page components

1.2.5.1. Progress page

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 98

/**
 * Clear all FlowStepView.
 */
 public void clearFlows() {
 removeAllViews();
 }

 /**
 * Set the FlowResult list and generate corresponding FlowStepView
 *
 * @param flowResultList
 */
 public void setFlows(List<FlowResult> flowResultList) {

FlowResult API

/**
 * Construct FlowResult.
 *
 * @param resultStatus The node status. The value is
ResultConstant.RESULT_STATUS_ENUM_XX.
 * @param statusIcon The status icon, which indicates ResultStatusIcon
enumeration.
 * @param mainInfoText Main text.
 * @param subTitles The sub text list.
 */
 public FlowResult(int resultStatus, ResultStatusIcon statusIcon, String
mainInfoText,
 List<String> subTi tles);

 /**
 * Construct FlowResult.
 *
 * @param resultStatus The node status. The value is
ResultConstant.RESULT_STATUS_ENUM_XX.
 * @param statusIconId The status icon res id.
 * @param mainInfoText The Main text.
 * @param subTitles The sub text list.
 */
 public FlowResult(int resultStatus, int statusIconId, String mainInfoText,
 List<String> subTitles);

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 99

AUFlowResultView flowResultView = (AUFlowResultView)
findViewById(R.id.flow_result_view);
List<FlowResult> flows = new ArrayList<FlowResult>();
flows.add(new FlowResult(ResultConstant.RESULT_STATUS_ENUM_OK, ResultStatusIcon.OK,
 "Payment succeeded", Arrays.asList("Auxiliary text", "Auxiliary text")));
flows.add(new FlowResult(ResultConstant.RESULT_STATUS_ENUM_OK,
ResultStatusIcon.PENDING,
 "Label text", Arrays.asList("Auxiliary text", "Auxiliary text")));
flows.add(new FlowResult(ResultConstant.RESULT_STATUS_ENUM_NORMAL,
ResultStatusIcon.PENDING,
 "Label text", Arrays.asList("Auxiliary text", "Auxiliary text")));
flowResultView.setFlows(flows);

AUNetErrorView (formerly APFlowTipView) provides a blank page indicating that there is a
network exception.

Dependency
See Quick start.

API description

1.2.5.2. Net error page

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 100

/**
 * Set the simple mode.
 * @param isSimple
 */
 public void setIsSimpleType(boolean isSimple);

 /**
 * Set the network exception mode.
 * @param type
 */
 public void resetFlowTipType(int type);

 /**
 * Set the button properties.
 *
 * @param text
 * @param clickListener
 */
 public void setAction(String text, OnClickListener clickListener) ;

 /**
 * Set the Cancel button.
 */
 public void setNoAction();

 /**
 * Set prompt message.
 *
 * @param text
 */
 public void setTips(String text) ;

 /**
 * Set the auxiliary prompt message.
 * @param text
 */
 public void setSubTips(String text) ;

 /**
 * Obtain the Operation button.
 * @return
 */
 public AUButton getActionButton();

 /**
 * Obtain image view.
 * @return
 */
 public AUImageView getImageView() ;

Custom properties

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 101

Property Description

netErrorType
Network exception state. Available values:
 signalError , empty , warning ,
 overflow .

isSimpleMode Whether the simple mode is used. Boolean type.

Sample code
<com.alipay.mobile.antui.basic.AUNetErrorView
 android:id="@+id/net_error"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:netErrorType="signalError"/>

AUQRCodeView generates a QR code of current page.

Sample image

1.2.5.3. QR code page

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 102

Dependency
See Quick start.

API description
/**
* Set the avatar name.
* @param name
*/
public void setAvatarName(CharSequence name)

/**
* Set QR code information.
* @param title
* @param description
*/
public void setCodeInfo(CharSequence title, CharSequence description)

/**
* Set the QR code title.
* @param title
*/
public void setCodeTitle(CharSequence title)

/**

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 103

/**
* Set QR code description.
* @param description
*/
public void setCodeDescription(CharSequence description)

/**
* Set the button information with a Zhi Token icon.
* @param title
* @param content
*/
public void setButtonInfo(CharSequence title, CharSequence content)

/**
* Set button information.
* @param title
* @param content
* @param isToken Whether a Zhi Token icon is provided.
*/
public void setButtonInfo(CharSequence title, CharSequence content, boolean isToken)

/**
* Set the button title.
* @param title
*/
public void setButtonTitle(CharSequence title)

/**
* Whether the title includes an icon.
* @param isToken
*/
public void setButtonToken(boolean isToken)

/**
* Whether the button is visible.
* @param isVisible
*/
public void setButtonVisibility(boolean isVisible)

/**
* Set button content.
* @param content
*/
public void setButtonContent(CharSequence content)

/**
* Obtain vatar imageView.
* @return
*/
public AUImageView getAvatarImage()

/**
* Obtain avatar name View.
* @return
*/

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 104

*/
public AUTextView getAvatarName()

/**
* Obtain QR code imageView.
* @return
*/
public AUImageView getCodeImage()

/**
* Obtain the QR code title.
* @return
*/
public AUTextView getCodeTitle()

/**
* Obtain the QR code description.
* @return
*/
public AUEmptyGoneTextView getCodeDescription()

/**
* Obtain the button.
* @return
*/
public AULinearLayout getButton()

/**
* Obtain the button title.
* @return
*/
public AUTextView getButtonTitle()

/**
* Obtain button content.
* @return
*/
public AUEmptyGoneTextView getButtonContent()

Code sample
AUQRCodeView codeView = new AUQRCodeView(this);
codeView.setAvartarName("Lifestyle name");
codeView.setCodeInfo("Scan the QR code with Alipay to join the Social Circle","The QR c
ode will become invalid on November 05, 2017");
codeView.setButtonInfo("Click to generate a Zhi Token","Recommend Lifestyle to WeChat a
nd QQ friends");
codeView.getCodeImage().setImageResource(R.drawable.qr_default);

AUResultView provides a result page containing icons and three-level text.

1.2.5.4. Result page

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 105

Sample images

Dependency
See Quick start.

API description

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 106

 /**
 * Set the icon.
 *
 * @param iconRes The icon resource ID.
 */
 public void setIcon(@DrawableRes int iconRes);

 /**
 * Set main title text.
 *
 * @param text The text content.
 */
 public void setMainTitleText(CharSequence text);

 /**
 * Set sub title text.
 *
 * @param text The text content.
 */
 public void setSubTitleText(CharSequence text);

 /**
 * Set auxiliary title text.
 *
 * @param text The text content.
 */
 public void setThirdTitleText(CharSequence text);

 /**
 * Set auxiliary title text with a strikethrough.
 *
 * @param text The text content.
 * @param strikeThrough Whether to display the strikethrough.
 */
 public void setThirdTitleText(CharSequence text, boolean strikeThrough);

Custom properties

Property Description Type

icon The icon. Reference

mainTitleText First-level text. String, Reference

subTitleText Second-level text. String, Reference

thirdTitleText Third-level text. String, Reference

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 107

Code sample
XML

<com.alipay.mobile.antui.status.AUResultView
 android:id="@+id/result_view2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="20dp"
 app:icon="@drawable/icon_result_alipay"
 app:mainTitleText="Payment succeeded"
 app:subTitleText="998.00"
 app:thirdTitleText="CNY 1098.00"/>

AULoadingView provides loading pages containing the progress pattern, loading progress,
and loading text.

Dependency
See Quick start.

API description
AULoadingView
 /**
 * The constructor.
 * @param context The page context including the antu dependency.
 */
 public AULoadingView(Context context)
 /**
 * Set the progress.
 * @param curentProgress The progress.
 */
 public void setCurrentProgress(int curentProgress)

AUPullLoadingView

1.2.6. Loading component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 108

 /**
 * The constructor.
 * @param context The page context including the antu dependency.
 */
 public AUPullLoadingView(Context context)

 /**
 * Set the progress pattern.
 * @param drawable
 */
 public void setProgressDrawable(Drawable drawable)

 /**
 * Set the bounce pattern.
 * @param mIndicatorUpDrawable
 */
 public void setIndicatorUpDrawable

 /**
 * Set the loading text.
 * @param loadingText
 */
 public void setLoadingText(String loadingText)

 /**
 * Set the dragging text.
 * @param indicatorText
 */
 public void setIndicatorText(String indicatorText)

AUDragLoadingView
/**
 * The constructor.
 * @param context The page context including the antu dependency.
 */
 public AUDragLoadingView(Context context)
 /**
 * Set the loading text.
 * @param text
 */
 public void setLoadingText(CharSequence text)

Code sample
AULoadingView

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 109

private AULoadingView mAULoadingView mAULoadingView = (AULoadingView)
findViewById(R.id.loadingView);
 private Handler mHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 super.handleMessage(msg);
 mAULoadingView.setCurrentProgress(mCurrentProgress);
 }
 };
 protected void onResume() {
 super.onResume();
 new Thread(new Runnable() {
 @Override
 public void run() {
 while (mCurrentProgress < 100) {
 try {
 Thread.currentThread().sleep(500);
 mCurrentProgress++;
 mHandler.sendEmptyMessage(0);
 } catch (Exception e) {
Log.e("EmptyPageLoadingActivity",e.getMessage());
 }
 }
 }
 }).start();
 }

AUPullLoadingView
@Override
 public AUPullLoadingView getOverView() {

 mAUPullLoadingView2 = (AUPullLoadingView) LayoutInflater.from(getBaseContext())
 .inflate(R.layout.au_framework_pullrefresh_overview, null);
 return mAUPullLoadingView2;
 }

AUDragLoadingView
mAUDragLoadingView = (AUDragLoadingView) findViewById(R.id.dragLoadingView);
 findViewById(R.id.modifyLoadingText).setOnClickListener(new View.OnClickListener()
{
 @Override
 public void onClick(View v) {
 mAUDragLoadingView.setLoadingText("Text after modification...") ;
 }
 });

1.2.7. Navigation component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 110

AUBannerView is used for achieving image carousel.

Sample image
The AUTitleBar control in white is provided by default.

Dependency
See Quick start.

Sample code

1.2.7.1. Carousel component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 111

 BannerView bannerView = new BannerView(this, 1000);
 layout.addView(bannerView);

 List<BannerView.BannerItem> items = new ArrayList<BannerView.BannerItem>();
 items.add(new BannerView.BannerItem());
 items.add(new BannerView.BannerItem());
 items.add(new BannerView.BannerItem());
 final List<String> list = new ArrayList<String>();
 String color1 = "#111111";
 String color2 = "#666666";
 String color3 = "#eeeeee";
 list.add(color1);
 list.add(color2);
 list.add(color3);

 BannerView.BaseBannerPagerAdapter adapter = new
BannerView.BaseBannerPagerAdapter(bannerView,items) {
 @Override
 public View getView(ViewGroup container, int position) {
 TextView tv = new TextView(CarouselActivity.this);
 tv.setBackgroundColor(Color.parseColor(list.get(position)));
 container.addView(tv);
 return tv;
 }
 };

 bannerView.setAdapter(adapter);

AUPinnedSectionListView provides ListView by group. Titles of groups are fixed during sliding.

Note
If you use this control, you need to distinguish data model types. Otherwise, it is an
ordinary ListView.

Sample image

1.2.7.2. List component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 112

Dependency
See Quick start.

Sample code
 public class PinnedSectionActivity extends Activity{

 private AUPullRefreshView pullRefreshView;
 AUPullLoadingView mAUPullLoadingView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.pinned_layout);
 pullRefreshView = (AUPullRefreshView) findViewById(R.id.pull_refresh);
 final AUPinnedSectionListView pinnedSectionListView = (AUPinnedSectionListView)
findViewById(R.id.list_view);

 TextView tv = new TextView(this);
 tv.setText("nihao");

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 113

 tv.setText("nihao");
 pinnedSectionListView.addHeaderView(tv);
 pullRefreshView.setRefreshListener(new AUPullRefreshView.RefreshListener() {

 @Override
 public void onRefresh() {

 pullRefreshView.autoRefresh();

 pullRefreshView.postDelayed(new Runnable() {

 @Override
 public void run() {
 pullRefreshView.refreshFinished();

 }
 }, 1000);

 }

 @Override
 public AUPullLoadingView getOverView() {

 mAUPullLoadingView = (AUPullLoadingView)
LayoutInflater.from(getBaseContext())

.inflate(com.alipay.mobile.antui.R.layout.au_framework_pullrefresh_overview, null);
 Date date = new Date(1466577757265L);
 SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
;
 String dateString = formatter.format(date);
 mAUPullLoadingView.setIndicatorText(dateString);
 mAUPullLoadingView.setLoadingText(dateString);
 return mAUPullLoadingView;
 }

 @Override
 public boolean canRefresh() {
 return true;
 }
 });

 final SimpleAdapter adapter = new SimpleAdapter(this,
android.R.layout.simple_list_item_1, android.R.id.text1);

 pinnedSectionListView.setAdapter(adapter);

 pinnedSectionListView.onFinishLoading(true);
 pinnedSectionListView.setOnLoadMoreListener(new
AUPinnedSectionListView.OnLoadMoreListener() {
 @Override
 public void onLoadMoreItems() {

 pinnedSectionListView.postDelayed(new Runnable() {

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 114

 @Override
 public void run() {
 pinnedSectionListView.onFinishLoading(false);
 }
 }, 3000);

 }
 });
 }

 static class SimpleAdapter extends ArrayAdapter<Item> implements
AUPinnedSectionListView.PinnedSectionListAdapter {

 public SimpleAdapter(Context context, int resource, int textViewResourceId) {
 super(context, resource, textViewResourceId);
 generateDataset('A', 'Z', false);
 }

 public void generateDataset(char from, char to, boolean clear) {

 if (clear) clear();

 final int sectionsNumber = to - from + 1;
 prepareSections(sectionsNumber);

 int sectionPosition = 0, listPosition = 0;
 for (char i=0; i<sectionsNumber; i++) {
 Item section = new Item(Item.SECTION, String.valueOf((char)('A' + i)));
 section.sectionPosition = sectionPosition;
 section.listPosition = listPosition++;
 onSectionAdded(section, sectionPosition);
 add(section);

 final int itemsNumber = (int) Math.abs((Math.cos(2f*Math.PI/3f * section
sNumber / (i+1f)) * 25f));
 for (int j=0;j<itemsNumber;j++) {
 Item item = new Item(Item.ITEM,
section.text.toUpperCase(Locale.ENGLISH) + " - " + j);
 item.sectionPosition = sectionPosition;
 item.listPosition = listPosition++;
 add(item);
 }

 sectionPosition++;
 }
 }

 protected void prepareSections(int sectionsNumber) { }
 protected void onSectionAdded(Item section, int sectionPosition) { }

 @Override public View getView(int position, View convertView, ViewGroup parent)
{
 TextView view = (TextView) super.getView(position, convertView, parent);

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 115

 TextView view = (TextView) super.getView(position, convertView, parent);
 view.setTextColor(Color.DKGRAY);
 view.setTag("" + position);
 Item item = getItem(position);
 if (item.type == Item.SECTION) {
 //view.setOnClickListener(PinnedSectionListActivity.this);
 view.setBackgroundColor(Color.parseColor("#ff0000"));
 }
 return view;
 }

 @Override public int getViewTypeCount() {
 return 2;
 }

 @Override public int getItemViewType(int position) {
 return getItem(position).type;
 }

 @Override
 public boolean isItemViewTypePinned(int viewType) {
 return viewType == Item.SECTION;
 }

 }

 static class Item {

 public static final int ITEM = 0;
 public static final int SECTION = 1;

 public final int type;
 public final String text;

 public int sectionPosition;
 public int listPosition;

 public Item(int type, String text) {
 this.type = type;
 this.text = text;
 }

 @Override public String toString() {
 return text;
 }

 }
}

AUTitleBar provides a title bar with a Back button, title text, a progress bar, a left button (text
and icon), and a right button (text and icon).

1.2.7.3. Title bar component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 116

Sample image
The AUTitleBar control with white background is provided by default.

Dependency
See Quick start.

API description
/**
 * Set the button drawable.
 * @param iconView
 * @param resId
 */
 public void setBtnImage(AUIconView iconView, int resId);

 /**
 * Set the button size and color.
 * @param iconView
 * @param size
 * @param color
 */
 public void setIconFont(AUIconView iconView, int size, int color);

 /**
 * Get the Back button.
 * @return
 */
 public AUIconView getBackButton() ;

 /**
 * Get the left button.
 * @return
 */
 public AURelativeLayout getLeftButton() ;

 /**
 * Get the right button.
 * @return
 */
 public AURelativeLayout getRightButton() ;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 117

 public AURelativeLayout getRightButton() ;

 /**
 * Get the loading icon.
 * @return
 */
 public AUProgressBar getProgressBar() ;

 /**
 * Get the title text view.
 * @return
 */
 public AUTextView getTitleText() ;

 /**
 * Get the title container.
 * @return
 */
 public AURelativeLayout getTitleContainer() ;

 /**
 * Get the title bar area.
 * @return
 */
 public AURelativeLayout getTitleBarRelative() ;

 @Override
 public void setBackgroundDrawable(Drawable backgroundDrawable) ;

 /**
 * Set the progress circular.
 * @param progressDrawable
 */
 public void setProgressBarDrawable(Drawable progressDrawable) ;

 /**
 * Set the text and style of the title. If you need to use the default text and sty
le, set text, textsize, and textcolor to null or 0.
 * @param text
 * @param textSize
 * @param textColor
 */
 public void setTitleText(String text, int textSize, int textColor) ;

 /**
 * Set the title text.
 * @param text
 */
 public void setTitleText(String text) ;

 /**
 * Set the value of resource, size, and color of the Back button. Keep the default
value if the value is null or 0.
 * @param drawable

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 118

 * @param drawable
 * @param size
 * @param color
 */
 public void setBackBtnInfo(Object drawable, int size, int color);

 /**
 * Set the resource of the Back button.
 * @param drawable
 */
 public void setBackBtnInfo(Object drawable);

 /**
 * Set the resource, size, and color of the left button. Keep the default value if
the value is null or 0.
 * @param drawable
 * @param size
 * @param color
 * @param isText
 */
 public void setLeftBtnInfo(Object drawable, int size, int color, boolean isText);

 /**
 * Set the resource of the left button.
 * @param drawable
 */
 public void setLeftButtonIcon(Drawable drawable);

 public void setLeftButtonIcon(String unicode);

 public void setLeftButtonText(String text);

 /**
 * Set the color and size of the left button.
 * @param size
 * @param color
 * @param isText
 */
 public void setLeftButtonFont(int size, int color, boolean isText);

 /**
 * Set the resource, size, and color of the right button. Keep the default value if
the value is null or 0.
 * @param drawable
 * @param size
 * @param color
 * @param isText
 */
 public void setRightBtnInfo(Object drawable, int size, int color, boolean isText) ;

 /**
 * Set the resource of the right button.
 * @param drawable
 */
 public void setRightButtonIcon(Drawable drawable);

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 119

 public void setRightButtonIcon(Drawable drawable);

 public void setRightButtonIcon(String unicode);

 public void setRightButtonText(String text);

 /**
 * Set the color and size of the right button.
 * @param size
 * @param color
 * @param isText
 */
 public void setRightButtonFont(int size, int color, boolean isText);

 /**
 * Make the progress bar start rotation.
 */
 public void startProgressBar();

 /**
 * Make the progress bar stop and disappear.
 */
 public void stopProgressBar() ;

 /***
 * Default processing of the gradual change during sliding. Use the default value f
or totalHeight.
 * @param currentHeight The current height.
 */
 public void handleScrollChange(int currentHeight);

 /***
 * Default processing of the gradual change during sliding.
 *
 * @param totalHeight The total height.
 * @param currentHeight The current height.
 */
 public void handleScrollChange(int totalHeight, int currentHeight) ;

 /**
 * Set the pattern color (white) with transparent background.
 */
 public void setColorWhiteStyle();

 /**
 * Set the pattern color with white background.
 */
 public void setColorOriginalStyle();

 /**
 * Make the Back button not displayed.
 */
 public void setBackButtonGone();

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 120

 /**
 * Add a search box (input is not allowed) used only for visual adjustment.
 * @param search
 */
 public void setTitle2Search(String search);

 /**
 * Convert the search box into a title.
 */
 public void setSearch2Title();

 /**
 * The font color in the search box is set to black and the background is set to wh
ite.
 */
 public void setSearchColorOriginalStyle();

 /**
 * The font color in the search box is set to white and the background is set to tr
ansparent.
 */
 public void setSearchColorTransStyle();

 /**
 * Add a red dot to the left icon.
 * @param flagView
 */
 public void attachFlagToLeftBtn(AUWidgetMsgFlag flagView);

 /**
 * Add a red dot to the right icon
 * @param flagView
 */
 public void attachFlagToRightBtn(AUWidgetMsgFlag flagView) ;

 /**
 * Add a red dot to the targetView.
 * @param targetView
 * @param flagView
 */
 public void attachFlagView(AURelativeLayout container, View targetView,
AUWidgetMsgFlag flagView;

Custom properties

Property Description Type

backgroundDrawable The whole background of the
title bar. Reference

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 121

backIconColor The color of the back arrow. Color, Reference

titleText Title text. String, Reference

titleTextSize The font size of the title. Dimension, Reference

titleTextColor The font color of the title. Color, Reference

leftIconResid ID of the .png or .jpg image
corresponding to the left icon. Reference

leftIconUnicode The Unicode character of the
left icon. String, Reference

leftIconColor The color of the left icon. Color, Reference

leftIconSize The size of the left icon. Dimension, Reference

leftText Content of the left text. String, Reference

leftTextColor The color of the left text. Color, Reference

leftTextSize The size of the left text. Dimension, Reference

rightIconResid ID of the .png or .jpg image
corresponding to the right icon. Reference

rightIconUnicode The Unicode character of the
right icon. String, Reference

rightIconColor The color of the right icon. Color, Reference

rightIconSize The size of the right icon. Dimension, Reference

rightText Content of the right text. String, Reference

rightTextColor The color of the right text. Color, Reference

Property Description Type

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 122

rightTextSize The size of the right text. Dimension, Reference

Property Description Type

Sample code
In the following sample code, the reference path of aui is:
 xmlns:aui="http://schemas.android.com/apk/res/com.alipay.mobile.antui" .

Basic usage
<com.alipay.mobile.antui.basic.AUTitleBar
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 aui:aui_titleText="Title"
 aui:aui_titleTextSize="@dimen/AU_TEXTSIZE2"
 aui:aui_titleTextColor="#f64219"
 aui:leftIconUnicode="@string/iconfont_user_setting"
 aui:rightText="Test2"/>

Transparent scrolling
<com.alipay.mobile.antui.basic.AUTitleBar
 android:id="@+id/title_bar"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 aui:rightIconUnicode="@string/iconfont_user_setting"
 aui:aui_titleText="Transparent Title Test" />

titleBar.handleScrollChange(testImg.getMeasuredHeight(), 0);
testScroll.setScrollViewListener(new AUScrollViewListener() {
 @Override
 public void onScrollChanged(ScrollView scrollView, int x, int y, int oldx,
int oldy) {
 titleBar.handleScrollChange(y);
 }
 });

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 123

Title with a red dot
<com.alipay.mobile.antui.basic.AUTitleBar
 android:id="@+id/progress_title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 aui:aui_titleText="Refreshable Title"
 aui:leftIconUnicode="@string/iconfont_scan"
 aui:rightIconUnicode="@string/iconfont_more"/>

AUTitleBar processBar = (AUTitleBar) findViewById(R.id.progress_title);

 processBar.startProgressBar();

 WidgetMsgFlag j = new WidgetMsgFlag(this);
 j.showMsgFlag();
 processBar.attachFlagToLeftBtn(j);

 WidgetMsgFlag i = new WidgetMsgFlag(this);
 i.showMsgFlag(12);
 processBar.attachFlagToRightBtn(i);

AUBladeView works with ListView which is sorted alphabetically. On the letter index on the
left or right side of the page, when you click or slide to the corresponding letter, the event in
the corresponding letter position is triggered. The default index ranges from letter A to letter
Z. One or two customized single characters can be added to the top of the index.

Sample image

1.2.8. Other component

1.2.8.1. Index component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 124

The two characters above A are customized, as shown in the following figure. The default
character ranges from A to Z.

Dependency
See Quick start.

API description

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 125

/**
 * Set the letter selection listener.
 */
 public void setOnItemClickListener(OnItemClickListener listener)

 public interface OnItemClickListener {

 /**
 * Set the letter selection listener.
 * @param clickChar The letter clicked or selected.
 */
 void onItemClick(String clickChar);

 /**
 * The finger raising event. You do not need to pay attention to this method if
there is no special requirement.
 */
 void onClickUp();
 }

Custom properties

Property Description Type

top1Text The first customized text
character. Reference

top2Text The second customized text
character. Reference

showSelectPop
whether to show the floating
layer popped-up in the middle
during sliding or clicking.

Boolean

Code sample
<com.alipay.mobile.antui.basic.AUBladeView
 android:layout_width="24dp"
 android:layout_height="wrap_content"
 app:top1Text="⊙"
 app:top2Text="Row"/>

As shown in Sample image, top1Text and top2Text can be omitted by default.

AUButton provides buttons of different patterns.

Sample image

1.2.8.2. Button component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 126

Dependency
See Quick start.

Style API

Property Description

mainButtonStyle The main button on a page.

subButtonStyle The secondary button on a page.

warnButtonStyle The warning button.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 127

assMainButtonStyle The auxiliary main button.

assButtonStyle The auxiliary secondary button.

listButtonStyle The list button.

Property Description

Code sample
Main button on a page

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/mainButtonStyle"
 android:layout_margin="12dp"
 android:clickable="true"
 android:text="The main button on a page is normal." />

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/mainButtonStyle"
 android:layout_margin="12dp"
 android:enabled="false"
 android:text="The main button on a page is disabled."
 app:dynamicThemeDisable="true" />

Secondary button on a page

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/subButtonStyle"
 android:layout_margin="12dp"
 android:clickable="true"
 android:text="The secondary operation on a page is normal." />

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/subButtonStyle"
 android:layout_margin="12dp"
 android:enabled="false"/>

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 128

The warning button.

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/warnButtonStyle"
 android:layout_margin="12dp"
 android:clickable="true"
 android:text="The warning button is normal." />

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/warnButtonStyle"
 android:layout_margin="12dp"
 android:enabled="false"
 android:text="The warning button is disabled." />

Auxiliary main button

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/assMainButtonStyle"
 android:layout_margin="12dp"
 android:clickable="true"
 android:text="Download" />

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/assMainButtonStyle"
 android:layout_margin="12dp"
 android:enabled="false"
 android:text="Download" />

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/assMainButtonStyle"
 android:layout_margin="12dp"
 android:text="Auxiliary Primary button" />

Auxiliary secondary button

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 129

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/assButtonStyle"
 android:layout_margin="12dp"
 android:clickable="true"
 android:text="Download" />

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/assButtonStyle"
 android:layout_margin="12dp"
 android:enabled="false"
 android:text="Download" />

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/assButtonStyle"
 android:layout_margin="12dp"
 android:text="Auxiliary button" />

List button

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/listButtonStyle"
 android:layout_marginTop="12dp"
 android:layout_marginBottom="12dp"
 android:clickable="true"
 android:text="Unfollow" />

<com.alipay.mobile.antui.basic.AUButton
 style="@com.alipay.mobile.antui:style/listButtonStyle"
 android:layout_marginTop="12dp"
 android:layout_marginBottom="12dp"
 android:clickable="true"
 android:textColor="@com.alipay.mobile.antui:color/AU_COLOR_LINK"
 android:text="More services" />

AUCardOptionView is a combined view providing functions such as giving likes, commenting,
and rewarding. It is inherited from AULinearLayout and supporting the access of the XML
layout.

Dependency
See Quick start.

API description
/**

1.2.8.3. Operation bar component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 130

/**
 * Set the information for the entire view.
 * @param itemArrayList
 * @param textVisible
 */
 public void setViewInfo(ArrayList<CardOptionItem> itemArrayList, boolean
textVisible)

 /**
 * Set the information for the entire view.
 * @param itemArrayList
 * @param textType = CardOptionView.TEXT_NOT_CHANGE Text is constantly displayed wi
thout switching to digits.
 */
 public void setViewInfo(ArrayList<CardOptionItem> itemArrayList, String textType)

/**
 * Set the information for the entire view.
 * @param itemArrayList
 */
 public void setViewInfo(ArrayList<CardOptionItem> itemArrayList)

/**
 * Set the information for the entire view.
 * @param itemArrayList
 * @param height
 * @param textVisible
 */
 public void setViewInfo(ArrayList<CardOptionItem> itemArrayList, int height, boolea
n textVisible)

 /**
 * Set the information for the entire view.
 * @param itemArrayList
 * @param height
 */
 public void setViewInfo(ArrayList<CardOptionItem> itemArrayList, int height)

/**
 * Increase the sub view count.
 * @param childView
 */
 public void unitIncrease(View childView)

/**
 * Decrease the sub view count.
 * @param childView
 */
 public void unitDecrease(View childView)

/**
 * Obtain the count.
 * @param position
 * @return
 */

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 131

 public int getCount(int position)

/**
 * Return type view.
 * @param type
 * @return
 */
 public View getChildView(String type)

/**
 * Set listening.
 * @param cardOptionListner
 */
 public void setCardOptionListner(CardOptionClickListner cardOptionListner) {
 this.mListner = cardOptionListner;
 }

Custom properties
It is a common ViewGroup without new custom properties.

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 132

 AUCardOptionView.CardOptionItem optionItem1 = new
AUCardOptionView.CardOptionItem();
 optionItem1.type = AUCardOptionView.TYPE_PRAISE;
 optionItem1.hasClicked = false;

 AUCardOptionView.CardOptionItem optionItem2 = new
AUCardOptionView.CardOptionItem();
 optionItem2.type = AUCardOptionView.TYPE_REWARD;
 optionItem2.hasClicked = false;

 AUCardOptionView.CardOptionItem optionItem3 = new
AUCardOptionView.CardOptionItem();
 optionItem3.type = AUCardOptionView.TYPE_COMMENT;
 optionItem3.hasClicked = false;

 ArrayList<AUCardOptionView.CardOptionItem> optionItems = new
ArrayList<AUCardOptionView.CardOptionItem>();
 optionItems.add(optionItem1);
 optionItems.add(optionItem2);
 optionItems.add(optionItem3);
 mAUCardOptionView.setViewInfo(optionItems,AUCardOptionView.TEXT_NOT_CHANGE);
 mAUCardOptionView.setCardOptionListner(new
AUCardOptionView.CardOptionClickListner() {
 @Override
 public void onCardOptionClick(View v, AUCardOptionView.CardOptionItem optionItem, i
nt position) {
 mAUCardOptionView.unitIncrease(v);
 }
 });

AUCheckIcon is used to implement the IconView of a select box.

Dependency
See Quick start.

API description

1.2.8.4. Check icon component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 133

/** Selected.*/
public static final int STATE_CHECKED = 0x01;
/** Deselected.*/
public static final int STATE_UNCHECKED = 0x02;
/** Deselection unavailable.*/
public static final int STATE_CANNOT_UNCHECKED = 0x03;
/** Selection unavailable.*/
public static final int STATE_CANNOT_CHECKED = 0x04;

/**
 * Set the checkIcon state.
 * @param state
 */
public void setIconState(int state);

/**
 * Get the checkIcon state.
 * @return
 */
public int getIconState() ;

AUIconView is an iconfont vector graphic control which implements the functions of TextView
and ImageView simultaneously.
The iconfont control (can be used as TextView) actually defines special Unicode characters to
map a type of images and font through the TTF font file of TextView. That is, the function of
iconfont is equivalent to the effect of loading a font that maps multiple images, in which each
image has a Unicode character.
Each iconfont set is actually a TTF font file. Therefore, multiple TTF font files can be loaded.
Each TTF font file has a name. The default TTF font file name of the AntUI is auiconfont.

Sample image

Dependency
For how to add dependency, follow the relevant instructions in Quick Start.

Icon resources

Resource ID Corresponding name

com.alipay.mobile.antui.R.string.iconfont_more More

com.alipay.mobile.antui.R.string.iconfont_cancel Cancel

com.alipay.mobile.antui.R.string.iconfont_voice Voice

1.2.8.5. Icon component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 134

com.alipay.mobile.antui.R.string.iconfont_collect_
money Collect money

com.alipay.mobile.antui.R.string.iconfont_back Back

com.alipay.mobile.antui.R.string.iconfont_user_se
tting User settings

com.alipay.mobile.antui.R.string.iconfont_user User

com.alipay.mobile.antui.R.string.iconfont_add Add

com.alipay.mobile.antui.R.string.iconfont_praise Like

com.alipay.mobile.antui.R.string.iconfont_map Map

com.alipay.mobile.antui.R.string.iconfont_checke
d Select

com.alipay.mobile.antui.R.string.iconfont_notice Announcement

com.alipay.mobile.antui.R.string.iconfont_add_us
er Add User

com.alipay.mobile.antui.R.string.iconfont_comme
nt Comment

com.alipay.mobile.antui.R.string.iconfont_selecte
d Select

com.alipay.mobile.antui.R.string.iconfont_bill Bill

com.alipay.mobile.antui.R.string.iconfont_pulldow
n Pull down

com.alipay.mobile.antui.R.string.iconfont_scan Scan

com.alipay.mobile.antui.R.string.iconfont_list List

Resource ID Corresponding name

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 135

com.alipay.mobile.antui.R.string.iconfont_delete Delete

com.alipay.mobile.antui.R.string.iconfont_share Share

com.alipay.mobile.antui.R.string.iconfont_search Search

com.alipay.mobile.antui.R.string.iconfont_complai
n Complain

com.alipay.mobile.antui.R.string.iconfont_qrcode QR code

com.alipay.mobile.antui.R.string.iconfont_unchec
ked Deselect

com.alipay.mobile.antui.R.string.iconfont_right_ar
row Right arrow

com.alipay.mobile.antui.R.string.iconfont_help Help

com.alipay.mobile.antui.R.string.iconfont_group_c
hat Group chat

com.alipay.mobile.antui.R.string.iconfont_contact
s Contact

com.alipay.mobile.antui.R.string.iconfont_setting Settings

com.alipay.mobile.antui.R.string.iconfont_phone_
book Address book

com.alipay.mobile.antui.R.string.iconfont_phone_
contact Contacts

Resource ID Corresponding name

API description
 /**
 * Set the image resource ID.
 * @param resId
 * @return
 */
 @Override
 public AUIconView setImageResource(int resId) {

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 136

 public AUIconView setImageResource(int resId) {
 if (resId == 0) {
 return this;
 }
 clearView();
 initImageView();
 imageView.setImageResource(resId);
 this.addView(imageView);
 return this;
 }

 /**
 * Set the image resource drawable.
 * @param drawable
 * @return
 */
 @Override
 public IconfontInterface setImageDrawable(Drawable drawable)

 /**
 * Set the iconfont color.
 * @param color
 * @return
 */
 public AUIconView setIconfontColor(int color)

 /**
 * Set the ColorStateList for the iconfont color.
 * @param color
 * @return
 */
 public AUIconView setIconfontColorStates(ColorStateList color)

 /**
 * Set the view size, in the unit of px.
 *
 * @param size
 */
 public AUIconView setIconfontSize(float size)

 /**
 * Set the iconfont resource or text of the view.
 * @param text
 * @return
 */
 @Override
 public AUIconView setIconfontUnicode(String text)

Sample code
Set the icon information:

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 137

AUIconView iconView = (AUIconView) convertView.findViewById(R.id.icon_view);
iconView.setIconfontUnicode(iconUnicode);

//For example
//iconView.setIconfontUnicode(getResources().getString(com.alipay.mobile.antui.R.string.ico
nfont_phone_contact));

Set the icon color:

<com.alipay.mobile.antui.iconfont.AUIconView
 android:id="@+id/icon_view"
 android:layout_width="@dimen/size"
 android:layout_height="@dimen/size"
 app:iconfontColor="@com.alipay.mobile.antui:color/AU_COLOR_APP_GREEN"
 app:iconfontUnicode="@com.alipay.mobile.antui:string/iconfont_back"/>

//or:
iconView.setIconfontColor(color)
iconView.setIconfontColorStates(colorStateList)

AURefreshListView is a ListView that supports pull-down refresh and pull-up-to-load.

Dependency
See Quick start.

API description

1.2.8.6. Refresh component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 138

/**
* Listen to the pull-down refresh state.
*
* @param onPullRefreshListener
*/
public void setOnPullRefreshListener(OnPullRefreshListener onPullRefreshListener)

/**
* Listen to the state of loading more.
*
* @param onLoadMoreListener
*/
public void setOnLoadMoreListener(OnLoadMoreListener onLoadMoreListener)

/**
* Enable pull-down refresh by using the code.
*/
public void startRefresh()

/**
* End the pull-down refresh.
*/
public void finishRefresh()

/**
* Update the state of loading more on the bottom.
*
* @param isShowLoad
* @param hasMore
*/
public void updateLoadMore(boolean isShowLoad, boolean hasMore)

Code sample
<com.alipay.mobile.antui.load.AURefreshListView
 android:id="@+id/refresh_list_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 139

listView.setOnPullRefreshListener(new OnPullRefreshListener() {
 @Override
 public void onRefresh() {
 listView.finishRefresh();
 listView.updateLoadMore(true, true);
 }

 @Override
 public void onRefreshFinished() {

 }
});
listView.setOnLoadMoreListener(new OnLoadMoreListener() {
 @Override
 public void onLoadMore() {
 for (int i = 0; i < 3; i++) {
 Map<String, Object> map = new HashMap<String, Object>();
 map.put("PIC", "Pull down to load more lists");
 map.put("TITLE", "Pull up to load more");
 contents.add(map);
 }
 adapter.notifyDataSetChanged();
 if(contents.size() > 13) {
 listView.updateLoadMore(true, false);
 } else {
 listView.updateLoadMore(true, true);
 }
 }

 @Override
 public void onLoadingFinished() {

 }
});

AUSegment is used to replace APSwitchTab, with related codes reconstructed and the original
APIs reserved for smooth scrolling.
If the SDK version is later than 10.0.20, this component supports switching by scrolling a tab.
The left and right spacing of each Tab is 14dp:

Scrolling switching is supported when the width of all tabs exceeds the initial width.
When the width of all tabs is less than the initial width, the option indicating whether to
equally divide the APIs is provided. By default, equal division is selected.

Sample image

1.2.8.7. Switch tab component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 140

Dependency
See Quick start.

API description
 /**
 * Reset the tab view.
 */
 public void resetTabView(String[] tabNameArray)

 /**
 * Adjust the position of the selected line at the bottom. Generally, this method is
called in the onPageScrolled callback of ViewPager.
 *
 * @param position The start position.
 * @param positionOffset The offset of the start position (in percentage).
 */
 public void adjustLinePosition(int position, float positionOffset)

 /**
 * Select a tab but do not adjust the position of the bottom line, which is suitable
for tab switching using ViewPager.
 * Implement the selected line at the bottom by calling adjustLinePosition in the onP
ageScrolled callback of ViewPager.
 *
 * @param position The position.
 */
 public void selectTab(int position)

 /**
 * Select a tab and adjust the position of the bottom line.

 * Used in non-ViewPager tab switching scenarios. The duration of the cutscene before
each tab switching interval is 250 ms
 *
 * @param position The target selected tab.
 */
 public void selectTabAndAdjustLine(int position)

 /**
 * Select a tab and adjust the position of the bottom line.

 * Used in non-ViewPager tab switching scenarios. The duration of the cutscene before

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 141

each tab switching interval is customized.

 * If the next animation is enabled before the previous animation finished, the previ
ous animation is immediately terminated. The next animation starts after the final posi
tion of the previous animation is located.
 *
 * @param position The target position.
 * @param during The duration of the cutscene before each tab switching interval
.
 */
 public void selectTabAndAdjustLine(int position, int during)

 /**
 * Set the tab switching listener.
 *
 * @param tabSwitchListener
 */
 public void setTabSwitchListener(TabSwitchListener tabSwitchListener)

 /**
 * Add a red dot to the specified position.
 * @param view Red dot view.
 * @param position
 */
 public void addTextRightView(View view, int position)

 /**
 * Add a red dot to the specified position.
 * @param view Red dot view.
 * @param params The relative position of the red dot.
 * @param position
 */
 public void addTextRightView(View view, RelativeLayout.LayoutParams params, int posit
ion)

Description of the tab scrolling switching API
To use the scrolling function, set the custom property parameter scroll to true, for
example, adding app:scroll="true" to the layout file. The scrolling tab supports only the
following four APIs. Other APIs are invalid to the scrollable tab.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 142

 /**
 * Set the tab switching listener.
 * @param tabSwitchListener
 */
 public void setTabSwitchListener(TabSwitchListener tabSwitchListener)

 /**
 * Set the data source.
 * @param list
 */
 public void init(List<ItemCategory> list)
 /**
 * Set the selected tab.
 * @param position
 */
 public void setCurrentSelTab(int position)

 /**
 * Each tab has a fixed left-right spacing of 14dp. An option indicating whether to e
qually dividing the APIs is provided when the width of all tabs is less than the initia
l width.
 * By default, equal division is selected. If you set this parameter to false, equal
division is not allowed.
 * @param divideAutoSize
 */
 public void setDivideAutoSize(boolean divideAutoSize)

Custom properties
The scroll property is added to the SDK of a version of 10.0.20 or later.

Property Purpose Type

tabCount The tab quantity. Integer

tab1Text Tab1 text. String, Reference

tab2Text Tab2 text. String, Reference

tab3Text Tab3 text. String, Reference

tab4Text Tab4 text. String, Reference

tabTextArray The tab text array. String, Reference

uniformlySpaced Whether self-adaptive. Boolean

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 143

tabTextColor The text color. Reference, Color

tabTextSize The text size. Dimension

buttomLineColor The color of the bottom line. Color, Reference

scroll Whether to support scrolling. Boolean

Code sample
XML

<com.alipay.mobile.antui.segement.AUSegment
 android:id="@+id/switchtab_three"
 android:layout_width="fill_parent"
 android:layout_height="50dp"
 android:layout_marginTop="10dp"
 app:tab1Text="Left text"
 app:tab2Text="Middle text"
 app:tab3Text="Right text"
 app:tabCount="3"/>

AUTabBarItem is used to provide TabBar items in the mPaaS framework.

Dependency
For how to add dependency, follow the relevant instructions in Quick Start.

Custom properties

Property Description Type

topIconSid The icon. Reference

topIconSize The icon size. Dimension

textColor The text color. Color, Reference

Code sample
Here is the sample of using the component in XML.

1.2.8.8. TabBar item component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 144

<com.alipay.mobile.antui.bar.AUTabBarItem
 android:id="@+id/tab_2"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Koubei"
 android:textSize="@dimen/AU_ICONSIZE2"
 app:topIconSize="@dimen/AU_ICONSIZE2"
 app:topIconSid="@drawable/tab_bar_alipay"
 app:textColor="@color/tabbar_text_color1"/>

This article describes how to integrate the common UI component library to the iOS client.

Prerequisite
The project is accessed to mPaaS. For more information, please refer to: Access based on
native framework and using Cocoapods.

Add the SDK
Use the cocoapods-mPaaS plugin to add the common UI component library SDK. The steps
are as follows:

1. In the Podfile file, enter mPaaS_pod "mPaaS_CommonUI" to add the dependency on the
Common UI component.

2. Run pod install to integrate the component to the mPaaS.

Use the SDK
To use Common UI SDK in the baseline version 10.1.60 and later. You can refer to the official
demo of Common UI.

1.3. Native based - iOS component
library
1.3.1. Quick start

1.3.2. Basic components

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 145

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas

The activity indicator base class AUActivityIndicatorView is the UIActivityIndicatorView
version in mPaaS.
To facilitate subsequent extension, use AUActivityIndicatorView instead of
UIActivityIndicatorView of the system in all mPaaS apps.
Since current AUActivityIndicatorView is completely inherited from UIActivityIndicatorView
without additional properties and methods, this topic does not describe APIs and code
examples.

The switch base class AUSwitch in mPaaS is equivalent to UISwitch. To facilitate subsequent
extension, AUSwitch instead of UISwitch must be used in all mPaaS apps.
Since the current switch base class is completely inherited from UISwitch without additional
properties or methods, this topic does not provide APIs and code examples.

AUCheckBox is a radio button control.
AUCheckBox is migrated from the APCheckbox of APCommonUI. Use latest AUCheckBox.

API description

1.3.2.1. Activity Indicator base class

1.3.2.2. Switch base class

1.3.2.3. Check box control

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 146

/**
The check box type.

- AUCheckBoxStyleDefault: The default style, similar to the check box of the web.
- AUCheckBoxStyleCheckmark: The checkmark style of tableview.
*/
typedef NS_ENUM(NSInteger, AUCheckBoxStyle) {
AUCheckBoxStyleDefault,
AUCheckBoxStyleCheckmark
};

/**
The radio button control.
*/
@interface AUCheckBox : UIControl

/**
Initialize the AUCheckBox method according to the type.

@param style The type of the check box.

@return AUCheckBox
*/
- (instancetype)initWithStyle:(AUCheckBoxStyle)style;

/**
Whether to select a property.
*/
@property(nonatomic, assign, getter = isChecked) BOOL checked;

/**
Whether to disable a property.
*/
@property(nonatomic, assign, getter = isDisabled) BOOL disabled;

/**
The check box type (read-only, set only upon initialization).
*/
@property (nonatomic, assign, readonly) AUCheckBoxStyle style;

@end

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 147

AUCheckBox *checkbox = [[AUCheckBox alloc] initWithStyle:AUCheckBoxStyleDefault];
checkbox.checked = YES;
checkbox.disabled = NO;
checkbox.origin = CGPointMake(100, 250);
[checkbox addTarget:self action:@selector(checkboxValueChanged:)
forControlEvents:UIControlEventValueChanged];
[self.view addSubview:checkbox];

- (void)checkboxValueChanged:(id)sender
{
AUCheckBox *checkbox = (AUCheckBox *)sender;
NSLog(@"%@", checkbox);
}

The image base class AUImage is the version of UIImage in mPaaS.
To facilitate subsequent extension, use AUImage instead of system UIImage in all mPaaS
apps.
Since the current image base class is completely inherited from the UIImage without
additional properties and methods, this topic does not describe APIs and code examples.

The label base class AULabel in mPaaS is equivalent to UILabel. To facilitate subsequent
extension, AULabel instead of UILabel must be used in all mPaaS apps.
Since the current label base class is completely inherited from UILabel with no additional
properties or methods, this topic does not provide APIs and code examples.

Note
For complex label settings, TTTAttributedLabel (already imported to AntUI) can be
used.

The footer control mainly contains the text link component, the copyright component, and the
combination of the text link and copyright.

AUTextLinkView - text link

1.3.2.4. Image base class

1.3.2.5. Label base class

1.3.2.6. Footer base class

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 148

 @protocol AUTextLinkDelegate <NSObject>

@optional
/* Callback upon text link tapping.
 * textLinkView The text link.
 * Index Click a subscript, which starts from 0 and corresponds to the
params subscript.
 * Button The button to click.
 */
- (void)textLinkView:(AUTextLinkView *)textLinkView didClickOnIndex:(NSInteger)index at
Button:(UIButton *)button;

@end

//
@interface AUTextLinkView : UIView

@property (nonatomic, strong) UIView *containerView; // The container.
@property (nonatomic, weak) id <AUTextLinkDelegate> delegate;

// titles: The text description array.
- (instancetype)initWithFrame:(CGRect)frame params:(NSArray *)params;

@end

AUCopyrightView - copyright
@interface AUCopyrightView : UIView

@property (nonatomic, strong) AULabel *copyrightLabel;

//
- (instancetype)initWithFrame:(CGRect)frame string:(NSString *)string;

@end

AUPageAnkletView - combination of the text link and copyright

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 149

@interface AUPageAnkletModel : NSObject

@property (nonatomic, strong) NSMutableArray *textLinkInfos;
@property (nonatomic, strong) NSString *copyrightInfo;

@end

typedef void(^paramsBlock)(AUPageAnkletModel *model);

@interface AUPageAnkletView : UIView

@property (nonatomic, strong) AUTextLinkView *textLinkView; // The text link.
@property (nonatomic ,strong) AUCopyrightView *copyrightInfoView; // Copyright text.

//
- (instancetype)initWithFrame:(CGRect)frame params:(paramsBlock)params;

@end

Code sample
Text link:

 AUTextLinkView *textLinkBtns = [[AUTextLinkView alloc] initWithFrame:CGRectMake(0, C
GRectGetMaxY(copyRightView1.frame)+40, self.view.width, 50) params:@[@"Bottom link",
@"Bottom link", @"Bottom link"]];
 textLinkBtns.centerX = self.view.centerX;
 [self.view addSubview:textLinkBtns];

Copyright:

 AUCopyrightView *copyRightView1 = [[AUCopyrightView alloc]
initWithFrame:CGRectMake(0, 80, self.view.width, 40) string:@"© 2004-2017 Alipay.com.
All rights reserved."];
 copyRightView1.centerX = self.view.centerX;
 [self.view addSubview:copyRightView1];

Combination of text link and copyright:

 AUPageAnkletView *ankletView = [[AUPageAnkletView alloc] initWithFrame:CGRectMake(0,
CGRectGetMaxY(textLinkBtns.frame)+40, self.view.width, 100)
params:^(AUPageAnkletModel *model) {
 model.textLinkInfos = [[NSMutableArray alloc] initWithArray:@[@"Bottom link", @"Bot
tom link", @"Bottom link"]];
 model.copyrightInfo = @"© 2004-2017 Alipay.com. All rights reserved.";
 }];
 ankletView.centerX = self.view.centerX;
 [self.view addSubview:ankletView];

AULoadingIndicatorView is a custom loading control of mPaaS.

1.3.2.7. mPaaS customized loading control

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 150

The mPaaS-customized loading control is migrated from the APActivityIndicatorView of
APCommonUI. Use latest AULoadingIndicatorView.

API description
typedef enum{
AULoadingIndicatorViewStyleTitleBar, //Navigation bar loading box, diameter: 36 px, r
ing width: 3 px.
AULoadingIndicatorViewStyleRefresh, //List loading box, diameter: 48px, ring width:
4px
AULoadingIndicatorViewStyleToast, //Toast loading box, diameter: 72px, ring width:
6px
AULoadingIndicatorViewStyleLoading, //Page loading box, diameter: 90px, ring width:
6px
}AULoadingIndicatorViewStyle;

/**
The mPaaS-customized loading control.
*/
@interface AULoadingIndicatorView : UIView

@property (nonatomic, assign) BOOL hidesWhenStopped; //Whether to hide when stopp
ed.
@property (nonatomic, strong) UIColor *trackColor; //The color of the ring.
@property (nonatomic, strong) UIColor *progressColor; //The color of the loading i
ndicator.
@property (nonatomic, assign) float progressWidth; //Set the width of the ring
when customizing the ring size. Default value: 2.
@property (nonatomic, assign) CGFloat progress; //The ratio of the arch
length of the loading indicator to the perimeter of the ring. Default value: 0.1

/**
* The circlular loading box.
* Note: If the default style is not used, define the size of the circle and use initWit
hFrame to initialize the circle. The default width of the ring is 2, which can be adjus
ted by setting progressWidth.
*
* @param style The current loading type.
*
*/
- (instancetype)initWithLoadingIndicatorStyle:(AULoadingIndicatorViewStyle)style;

/**
Start an animation.
*/
- (void)startAnimating;

/**
End an animation.
*/
- (void)stopAnimating;

/**

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 151

/**
Whether an animation is being executed.

@return YES: An animation is being executed. NO: No animation is being executed.
*/
- (BOOL)isAnimating;

@end

Code sample
AULoadingIndicatorView *view = [[AULoadingIndicatorView alloc]
initWithLoadingIndicatorStyle:AULoadingIndicatorViewStyleLoading];
view.hidesWhenStopped = YES;
view.center = CGPointMake(280, 250);
view.trackColor = [UIColor redColor];
view.progressColor = [UIColor blueColor];
[view startAnimating];
[self.view addSubview:view];

AUButton follows the new UED requirements, currently contains two styles, and cannot be
fully interconnected with APButton in APCommonUI. These two styles do not include the
operation button of the warning type.

Dependency
The dependency of AUButton is as follows:

import <UIKit/UIKit.h>

API description

1.3.2.8. Button base class

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 152

/**
 Initialization method
 @param style The style.
 @return The created initialization object.
 */
 + (instancetype)buttonWithStyle:(AUButtonStyle)style;

 /**
 * An auxiliary method of the initialization, used for creating and initializing a
button object.
 *
 * @param buttonType The button type. It must be one of the values defined in AU
ButtonStyle.
 * @param title Button title.
 * @param target The object responding to the button tap event.
 * @param action The function responding to the button tap event.
 *
 * @return The button object newly created and initialized.
 *
 * The initialization object of this method. A frame needs to be set.
 */
 + (instancetype)buttonWithStyle:(AUButtonStyle)style title:(NSString *)title target
:(id)target action:(SEL)action;

 /**
 Display the loading icon animation and text (the loading icon is on the left and t
he text is on the right). When there is no text, the loading icon is centered.

 @param loadingTitle The text to be displayed along with the loading icon. If th
is parameter is set to nil or an empty string, text is not displayed and the loading ic
on is centered.
 @param currentVC The current VC that is used to remove the mask after the lo
ading is complete.
 */
 - (void)startLoadingWithTitle:(NSString *)loadingTitle currentViewController:(UIVie
wController *)currentVC;

 /**
 Stop the rotation of the loading icon.
 */
 - (void)stopLoading;

Custom properties

Property Description

AUButtonStyleNone The default style.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 153

AUButtonStyle1 Blue background, white text, borderless, and
large button.

AUButtonStyle2 White background, black text, light gray border,
and large button.

AUButtonStyle3 Transparent background, blue text, blue border,
and small button.

AUButtonStyle4

White background, with upper and lower
separation lines by default, and red text;
applicable to page bottom operation scenarios
(unfollow); default height: 44 units; width: same
as screen width.

AUButtonStyle5

White background, with upper and lower
separation lines by default, and ant blue text;
applicable to page bottom operation scenarios
(more services); default height: 44 units, and
width: same as screen width

AUButtonStyle6 Red background, white text, for operations of the
warning type, and large button.

AUButtonStyle7 White background, black text, light gray border,
and small button.

AUButtonStyle8 Blue background, white text, borderless, and
small button.

Code sample
AUButton *button = [AUButton buttonWithStyle:AUButtonStyle2 title:@"AUButtonStyle2"
target:self action:@selector(onButtonClicked:)];
 button.frame = CGRectMake(XX, XX,XX, XX);

 AUButton *buttonDisable = [AUButton buttonWithStyle:AUButtonStyle1];
 buttonDisable.enabled = NO;
 [buttonDisable setTitle:@"Style1disable" forState:UIControlStateNormal];
 buttonDisable.frame = CGRectMake(XX, XX,XX, XX);

 //Set the loading icon on the button.
 [button startLoadingWithTitle:@"Loading" currentViewController:self];

 //Stop the rotation of the loading icon on the button.
 [button stopLoading];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 154

AUImageInputBox is an input box with an icon on the left and is inherited from AUInputBox.

Sample image

API description
/**
The input box with an icon on the left side.
*/
@interface AUImageInputBox : AUInputBox

/**
Left-side icon view (read-only).
*/
@property (nonatomic, strong, readonly) UIImageView *iconView;

/**
Set the left-side icon.

@param image The icon image.
*/
- (void)setIconImage:(UIImage *)image;

Code sample
AUImageInputBox *imageInputBox = [AUImageInputBox inputboxWithOriginY:startY inputboxTy
pe:AUInputBoxTypeNone];
imageInputBox.textField.placeholder = @"Enter as promoted";
[imageInputBox setIconImage:image];
[self.view addSubview:imageInputBox];

AUParagraphInputBox is a multi-line input box control. The maximum number of characters
allowed in specific business can be specified for it.

API description

1.3.3. Input components

1.3.3.1. Image input box

1.3.3.2. Paragraph input box

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 155

// The multi-line text input box.

@interface AUParagraphInputBox : UIView

@property (nonatomic, strong) UITextView *textView; // Imput box
@property (nonatomic, assign) NSInteger maxInputLen; // Set the character limit (as
required)

// Initialization.
- (instancetype)initWithFrame:(CGRect)frame placeHolder:(NSString *)placeHolder;

// Set the placeHolder text.
- (void)setPlaceHolder:(NSString *)placeHolder;

@end

Code sample
_paragraphInputBox = [[AUParagraphInputBox alloc] init];
_paragraphInputBox.frame = CGRectMake(0, startY, AUCommonUIGetScreenWidth(), 10);
_paragraphInputBox.maxInputLen = 1240;
_paragraphInputBox.textView.delegate = self;
[_paragraphInputBox setPlaceHolder:@"Please enter text here"];
[self.view addSubview:_paragraphInputBox];

The simplified amount input box AUAmountEditTextField can be used together with the
amount display component AUAmountLabelText.

AUAmountEditTextField
Currently, the verification and preprocessing logic of input content is not contained, but can
be realized by setting delegate in the business.

Sample image

API description

1.3.3.3. Simplified amount input box

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 156

NS_ASSUME_NONNULL_BEGIN

@interface AUAmountEditTextField : UITextField

@end

/**
 The simplified amount input component with the "¥" symbol and an underscore.
 The font size of the input content is scaled with the content length.
 */
@interface AUAmountEditText : UIView

/**
 The amount input box, you can modify properties or set the delegate as needed.
 When a clear event occurs, [amountTextField
sendActionsForControlEvents:UIControlEventEditingChanged] is called.
 */
@property(nonatomic,strong) AUAmountEditTextField *amountTextField;

/**
 It is open to AUAmountLabelText for adjusting the font size when the length of inputTe
xt changes.
 Business parties do not use.

 @param textLength inputText length.
 @return UIFont
 */
+ (UIFont *)resetFontSize:(NSUInteger) textLength;

@end

NS_ASSUME_NONNULL_END

// amountTextField Initialization settings.
_amountTextField.textColor = RGB(0x000000);
_amountTextField.backgroundColor = [UIColor clearColor];
_amountTextField.font = [UIFont fontWithCustomName:kAmountNumberFontName size:45.0];
_amountTextField.contentVerticalAlignment= UIControlContentVerticalAlignmentCenter;
_amountTextField.inputView = [AUNumKeyboards
sharedKeyboardWithMode:AUNumKeyboardModeCommon];
_amountTextField.rightViewMode = UITextFieldViewModeWhileEditing;
_amountTextField.rightView = self.rightView;//Use rightView to implement clearButton.

Sample code
field = [[AUAmountEditText alloc] init];//Set the width to the screen width and the hei
ght to 70.
field.amountTextField.delegate = self;
[view addSubview:field];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 157

AUAmountLabelText
AUAmountLabelText is an amount display component used in conjunction with
AUAmountEditTextField.

Sample image

API description
NS_ASSUME_NONNULL_BEGIN

/**
 The amount display component used in conjunction with the AUAmountEditTextField.
 */
@interface AUAmountLabelText : UIView

@property (nonatomic, copy) NSString *amountText;//Amount, without the "¥" symbol, for
example, "80.01".

@end

NS_ASSUME_NONNULL_END

Sample code
label = [[AUAmountLabelText alloc] init];//Set the width to the screen width and the he
ight to 64.
label.amountText = @"1,345.0";
[view addSubview:label];

AUAmountInputBox, composed of AUAmountInputField and AUAmountInputFieldFooterView,
is an amount input box with the combination function.

AUAmountInputBox
Currently, it allows you to set titles (plain text) and add footers (plain text/input box).
Input content verification and preprocessing logic is not contained, but can be realized by
setting delegate in the business.

API description

1.3.3.4. Amount input box

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 158

NS_ASSUME_NONNULL_BEGIN

/**
The amount input box with the combination function.
Currently, it allows you to set titles (plain text) and add footers (plain text/input b
ox).
Input content verification and preprocessing logic is not contained, but can be realize
d by setting delegate in the business.
*/
@interface AUAmountInputBox : UIView

/**
 AUAmountInputBox initialization method

 @param views @[AUAmountInputField,AUAmountInputFieldFooterView]
 @return AUAmountInputBox
 */
+ (AUAmountInputBox *)amountInputBoxWithViews:(NSArray *) views;

@end

NS_ASSUME_NONNULL_END

Sample code
AUAmountInputField *inputField = [AUAmountInputField amountInputWithTitle:@"Transfer am
ount"];
AUAmountInputFieldFooterView *footerView = [AUAmountInputFieldFooterView
footerWithInput:@"Add notes (within 50 words)"];
AUAmountInputBox *inputBox = [AUAmountInputBox amountInputBoxWithViews:[NSArray arrayWi
thObjects:inputField,footerView,nil]];
inputField.textField.delegate = self;
footerView.inputTextField.delegate = self;
[_scrollView addSubview:inputBox];

AUAmountInputField
It is extended based on the AUAmountEditText combination. Currently, it supports title
setting.

API description

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 159

NS_ASSUME_NONNULL_BEGIN

/**
 It is extended based on the AUAmountEditText combination. Currently, it supports title
setting.
 */
@interface AUAmountInputField : UIView

- (AUAmountEditTextField *)textField;

+ (AUAmountInputField *)amountInputWithTitle:(NSString *) title;

@end

NS_ASSUME_NONNULL_END

Code sample
See Code sample of AUAmountInputBox.

AUAmountInputFieldFooterView
Description
AUAmountInputFieldFooterView is footerView of AUAmountInputBox, and currently supports
both “plain text” and “input box” .

Dependency
The dependency of AUAmountInputFieldFooterView is as follows:

pod 'AntUI'

API description
NS_ASSUME_NONNULL_BEGIN

@interface AUAmountInputFieldFooterView : UIView

@property (nonatomic, strong) UITextField * inputTextField;
@property (nonatomic, strong) UILabel * descTextLabel;

+ (AUAmountInputFieldFooterView *)footerWithInput:(nullable NSString *)placeholder;
+ (AUAmountInputFieldFooterView *)footerWithDesc:(nullable NSString *)text;

@end

NS_ASSUME_NONNULL_END

Sample code
See Code sample of AUAmountInputBox.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 160

AUInputBox is a single-line input box that supports the arrangement of a title on the left side
and an image button on the right side.

API description
typedef NS_ENUM(NSInteger, AUInputBoxType)
{
AUInputBoxTypeMobileNumber, // Mobile phone number
AUInputBoxTypeCreditCard, // Credit card
AUInputBoxTypeBankCard, // Debit card
AUInputBoxTypeAmount, // Amount
AUInputBoxTypeIDNumber, // ID card
AUInputBoxTypeNotEmpty, // Not empty
AUInputBoxTypeAlipayAccount, // mPaaS app account
AUInputBoxTypeNone // No authentication
};

typedef enum AUInputBoxStyle
{
AUInputBoxStyleNone, // No background image.
AUInputBoxStyleiOS6, // Rounded background image.
AUInputBoxStyleiOS7 // Non-rounded background image.
} AUInputBoxStyle;

/**
The single-line input box with title text and a button image.
*/
@interface AUInputBox : UIView

#pragma mark - AUInputBox property.

// The text input box.
@property(strong, nonatomic) AUTextField *textField;
@property(strong, nonatomic) NSString *textFieldText;
@property(strong, nonatomic) NSString *textFieldFormat;
@property(assign, nonatomic) CGFloat horizontalMargin;
@property(assign, nonatomic) CGFloat textFieldHorizontalMargin;

// The button.
@property(strong, nonatomic) UIButton *iconButton;
@property(assign, nonatomic) BOOL hidesButtonWhileNotEmpty;
@property(assign, nonatomic) BOOL hidesButton;

// The label displayed on the left part of the input box.
@property(nonatomic, readonly) UILabel *titleLabel;
@property(nonatomic, assign) CGFloat titleLabelWidth;

The style, authenticator, background image, and input box type.

1.3.3.5. Normal input box

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 161

@property(assign, nonatomic) AUInputBoxStyle style;
@property(readonly, nonatomic) UIImageView *backgroundImage;
@property(assign, nonatomic) AUInputBoxType inputBoxType;

#pragma mark - The AUInputBox static method.
/**
* Create an input box component.
* @param originY The Y coordinator of the input box.
* @param type The type of the text input box.
* @return The input box component.
*/
+ (instancetype)inputboxWithOriginY:(CGFloat)originY inputboxType:(AUInputBoxType)type;

/**
* Create an input box component with an icon button.
* @param originY The Y coordinator of the input box.
* @param icon The icon on the button, 44x44.
* @param type The type of the text input box.
* @return The input box component with a button.
*/
+ (instancetype)inputboxWithOriginY:(CGFloat)originY buttonIcon:(UIImage *)icon inputbo
xType:(AUInputBoxType)type;

/**
* @return The control height. The default value is 44. The value is 47 for iPhone6 plus
.
*/
+ (float)heightOfControl;

#pragma mark - The AUInputBox instance method.

- (instancetype)initWithFrame:(CGRect)frame inputboxType:(AUInputBoxType)type;

- (void)buildIconButton:(UIImage *)icon;

/**
* Add a space to the text in the specified format.
* @param text The text content.
* @return The text to which a space has been added.
*/
- (NSString *)formatText:(NSString *)text;

/**
* Add an icon by using this method for inputBox without any icon specified during the i
nitialization.
* @param icon The icon on the button.
*
*/
- (void)setRightButtonIcon:(UIImage *)icon;

/**
* Check the input validity.
*/
- (BOOL)checkInputValidity;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 162

- (BOOL)checkInputValidity;

/**
* Filter text. Only digits are allowed. The maximum length is specified.
* The parameter is the delegate parameter and the maximum length is specified by maxLen
gth.
*/
- (BOOL)shouldChangeRange:(NSRange)range replacementString:(NSString *)string withMaxLe
ngth:(int)maxLength;

/**
* Specify the maximum length.
* @maxLength Maximum length, excluding format spaces.
*/
- (BOOL)shouldChangeRange:(NSRange)range replacementString:(NSString *)string withForma
tStringMaxLength:(int)maxLength;

Code sample
Single-line input box

AUInputBox *inputBox = [AUInputBox inputboxWithOriginY:startY
inputboxType:AUInputBoxTypeNone];
 inputBox.titleLabel.text = @"Label";
 inputBox.textField.placeholder = @"Please enter text as prompted";
 [self.view addSubview:inputBox];

Icon

AUInputBox *iconInputBox = [AUInputBox inputboxWithOriginY:startY buttonIcon:image in
putboxType:AUInputBoxTypeNone];
 iconInputBox.titleLabel.text = @"Label";
 iconInputBox.textField.placeholder = @"Please enter text as prompted";
 [self.view addSubview:iconInputBox];

AUSearchTitleView is a search bar control. It is similar to a search bar but can only be
tapped. It supports the following styles:

 AUSearchTitleStyleDefault = 0 : search box with black text, which is applicable when a
light color background is used.
Example: search box displayed on the navigation pane on an mPaaS app page.
 AUSearchTitleStyleMiddleAlign : search box with centered black text, which is applicable
when a light color background is used.
Example: search box on the contact page.
 AUSearchTitleStyleContent : search box with white text, which is applicable when a deep
color background is used
Example: search box displayed on the navigation pane on the mPaaS app homepage.

Dependency
The dependency of AUSearchTitleView is as follows:

1.3.3.6. Search input box

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 163

 AntUI(iOS)
 1.0.0.161108003457
 APCommonUI(iOS)
 1.2.0.161108102201

API description
 typedef NS_ENUM(NSInteger, AUSearchTitleStyle) {
 AUSearchTitleStyleDefault = 0, // Search box with black text, which is
applicable when a light color background is used.
 AUSearchTitleStyleMiddleAlign, // Search box with centered black text, which
is applicable when a light color background is used.
 AUSearchTitleStyleContent, // Search box with white text, which is applic
able when a deep color background is used.
};

@class AUSearchTitleView;

@protocol AUSearchTitleViewDelegate <NSObject>

@optional

// The search bar control.
- (void)didPressedTitleView:(AUSearchTitleView *)titleView;

// The voice icon of the search bar control.
- (void)didPressedVoiceButton:(AUSearchTitleView *)titleView;

@end

/**
The search bar control. (The width is the same as that of the screen by default.)
*/
@interface AUSearchTitleView : UIView

@property(nonatomic, assign)AUSearchTitleStyle style; // The background style o
f the search box. The light color background is used by default

@property(nonatomic,strong) NSString *placeHolder; // The search box
placeholder, which is "Search" by default.
@property(nonatomic,strong) UIColor *placeHolderColor; // The text color of the
search box placeholder.

@property (nonatomic, weak) id<AUSearchTitleViewDelegate> delegate;

@property(nonatomic,strong) UIImage *searchIconImage; // The search icon.
@property(nonatomic,strong) UIColor *normalBackgroundColor; // The background color o
f the search box.
@property(nonatomic,assign) BOOL isShowVoiceIcon; // Whether to display the
Voice icon. Default value: No.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 164

/**
* The padding to the left and right of the outer-layer transparent view. The default va
lue is 9. To configure the space between the view of the instance to be initialized and
another view for a business, consider the padding as well to prevent a visual error.
* Note: If the instance to be initialized is defined as the titleView of a
navigationItem, the system specifies the spacing between the titleView and the views on
its left and right in an adaptive manner. To meet the visual requirements, the system s
ets the padding between the search box and the outer-layer view.
*
* If there are any special requirements, change the padding.
*
*/
@property(nonatomic,assign) CGFloat marginBetweenItem;

/**
* The method for getting the instance.
*
* @param style The search box style.
*
* @return Return the instance.
*/
- (id)initWithSearchStyle:(AUSearchTitleStyle)style;

/**
 * This method calls the global search page by default. To define the event of tapping
the search box for a business, override this method in the subclass.
 */
- (void)onClicked;

@end

Code sample
Used in a navigation bar

AUSearchTitleView *titleView = [[AUSearchTitleView alloc]
initWithSearchStyle:AUSearchTitleStyleDefault];
 titleView.placeHolder = @"The search bar style";
 titleView.placeHolderColor = [UIColor blackColor];
 titleView.normalBackgroundColor = [UIColor orangeColor];
 titleView.isShowVoiceIcon = YES;
 titleView.delegate = self;
 self.navigationItem.titleView = titleView;

Used in a common view

titleView = [[AUSearchTitleView alloc]
initWithSearchStyle:AUSearchTitleStyleMiddleAlign];
 titleView.placeHolder = @"The AUSearchTitleStyleMiddleAlign style";
 titleView.isShowVoiceIcon = YES;
 titleView.delegate = self;
 [self.view addSubview:titleView];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 165

The dependency of AUSearchBar is as follows:
AUSearchBar is a search bar control of mPaaS.
It supports the following styles:

 AUSearchBarStyleNormal : search bar with a Cancel button, for example, search bar on
the homepage for global search
 AUSearchBarStyleDetail : search bar with a Cancel button and a back icon, for example,
search bar on a level-2 page for global search

Sample images

Dependency
The dependency of AUSearchBar is as follows:

AntUI(iOS)
1.0.0.161108003457
APCommonUI(iOS)
1.2.0.161108102201

API description
@class AUSearchBar;

@protocol AUSearchBarDelegate <NSObject>

@optional

#pragma mark - Proxy methods corresponding to UITextField.
//
- (BOOL)searchBarTextShouldBeginEditing:(AUSearchBar *)searchBar;
//
- (BOOL)searchBarTextShouldEndEditing:(AUSearchBar *)searchBar;
// Called when text starts editing.
- (void)searchBarTextDidBeginEditing:(AUSearchBar *)searchBar;
// Called when text ends editing.
- (void)searchBarTextDidEndEditing:(AUSearchBar *)searchBar;
// Called when text changes (including clear).
- (void)searchBar:(AUSearchBar *)searchBar textDidChange:(NSString *)searchText;
// Called before text changes.
- (BOOL)searchBar:(AUSearchBar *)searchBar shouldChangeTextInRange:(NSRange)range repla
cementText:(NSString *)text;

- (BOOL)searchBarShouldClear:(AUSearchBar *)searchBar;

1.3.3.7. Search bar component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 166

#pragma mark - Other proxy methods.

// Called when the search icon is clicked.
- (void)searchBarSearchButtonClicked:(AUSearchBar *)searchBar;

// Called when the Cancel button is clicked.
- (void)searchBarCancelButtonClicked:(AUSearchBar *) searchBar;

// Called when the back icon is clicked (valid for the AUSearchBarStyleDetail style).
- (void)searchBarBackButtonClicked:(AUSearchBar *)searchBar;

// Called when the voice icon is clicked (valid when shouldShowVoiceButton is set to YE
S).
- (void)searchBarOpenVoiceAssister:(AUSearchBar *)searchBar;

@end

typedef NS_ENUM(NSUInteger, AUSearchBarStyle) {
AUSearchBarStyleNormal = 0,//normal.
AUSearchBarStyleDetail, //has back Button
};

/**
The search bar control. (By default, the width is the same as that of the screen, and t
he height is 44.)
*/
@interface AUSearchBar : UIView

@property (nonatomic, strong) NSString *text; // The search bo
x text.
@property (nonatomic, assign) BOOL isSupportHanziMode; // Whether to su
pport search while input. Default value: YES.
@property (nonatomic, assign) AUSearchBarStyle style; // The style of
the search box.
@property (nonatomic, assign) BOOL shouldShowVoiceButton; // Whether to di
splay the Voice button. Default value: NO.
@property (nonatomic, strong, readonly) UITextField *searchTextField; // The search b
ox.
@property (nonatomic, weak) id<AUSearchBarDelegate> delegate;

/**
The initialization method.

@param style The search bar style.

@return Return an AUSearchBar instance.
*/
- (instancetype)initWithStyle:(AUSearchBarStyle)style;

@end

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 167

@end

Code sample
Add to the navigation bar

AUSearchBar *searchBar = [[AUSearchBar alloc] initWithStyle:AUSearchBarStyleNormal];
 searchBar.searchTextField.placeholder = @"The search bar style
(AUSearchBarStyleNormal)";
 searchBar.delegate = self;
 searchBar.isSupportHanziMode = YES;
 searchBar.shouldShowVoiceButton = YES;
 self.navigationItem.titleView = searchBar;
 self.navigationItem.leftBarButtonItem = nil; // Add no button to the left of the
search bar.
 self.navigationItem.rightBarButtonItem = nil; // Add no button to the right of the
search bar.
 self.navigationItem.hidesBackButton = YES; // Hide the back icon.

Add to a normal view

searchBar = [[AUSearchBar alloc] initWithStyle:AUSearchBarStyleDetail];
 searchBar.searchTextField.placeholder = @"The search bar style
(AUSearchBarStyleDetail)";
 searchBar.delegate = self;
 searchBar.isSupportHanziMode = YES;
 searchBar.shouldShowVoiceButton = YES;
 [self.view addSubview:searchBar];

AUTextCodeInputBox is a verification code input control.

API description

1.3.3.8. Verification code input box

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 168

/**
The SMS verification code input box with a countdown timer.
*/
@interface AUTextCodeInputBox : AUSecurityCodeBox

/**
The wait time before an SMS message is sent.
*/
@property (nonatomic, assign) NSTimeInterval interval;

/**
* Create an SMS verification code input box.
* @param frame The position and size in the parent class.
* @param interval The wait time before an SMS message is sent.
* @return The input box for the text message verification code.
*/
- (AUTextCodeInputBox *)initWithFrame:(CGRect)frame interval:(NSTimeInterval)interval;

/**
* Create an SMS verification code input box.
* @param originY The Y-coordinate of the component.
* @param interval The wait time before an SMS message is sent.
* @return The input box for the text message verification code.
*/
- (AUTextCodeInputBox *)initWithOriginY:(CGFloat)originY interval:
(NSTimeInterval)interval;

/**
* Set a block to be executed when countdown ends.
* @param block The block to be executed.
*/
- (void)setCountdownDidCompleteBlock:(void (^)(void))block;

Code sample
AUTextCodeInputBox *smsInputBox = [[AUTextCodeInputBox alloc] initWithOriginY:startY in
terval:60];
[smsInputBox.actionButton addTarget:self action:@selector(onSmsButtonClicked:) forContr
olEvents:UIControlEventTouchUpInside]; // The callback for processing the event that th
e button on the right is tapped.
[self.view addSubview:smsInputBox];

AUListItem is a series of controls designed based on the new UED requirements. It cannot be
used interchangeably with the APTableView control in the original APCommonUI because
most UED styles are different.
AUListItem contains four ListItems. The following table lists the elements supported by them
respectively.

1.3.4. Item component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 169

AUListI
tem Title Subtitl

e
Left
icon

Right
icon

Left
icon in

a
custom

ized
size

Show a
check
mark
when

selecte
d

Rightm
ost

assista
nt

arrow

AUSingle
TitleListIt
em

YES️ YES YES️ YES YES️ YES YES️

AUDoubl
eTitleListI
tem

YES️ YES YES️ - YES️ - YES️

AUCheck
BoxListIt
em

YES️ - -️ - -️ - YES️

AUSwitch
ListItem YES️ - -️ - -️ - -️

Sample images
AUSingleTitleListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 170

AUDoubleTitleListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 171

AUCheckBoxListItem

AUSwitchListItem

Dependency
The dependency of AUListItem is as follows:

import <UIKit/UIKit.h>

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 172

API description
Common APIs
Model layer
Multiple delegates are set to standardize parameter transfer by external clients. For elements
that are not supported, external clients cannot transfer the corresponding parameters. For
example, AUDoubleTitleListItem does not support the right icon. Therefore,
AUDoubleTitleListItemModelDelegate does not contain the rightImage parameter.

AUListItemProtocols.h
 /**
Data items that can be set and accessed in AUSingleTitleListItem.
*/
@protocol AUSingleTitleListItemModelDelegate <NSObject>

@property (nonatomic, copy) NSString *subtitle; // The subtitle.
@property (nonatomic, strong) UIImage *leftImage; // The left-side image.
@property (nonatomic, strong) UIImage *rightImage; // The image before the
text on the right side.
@property (nonatomic, strong) UIImage *rightAssistImage; // The image after the
text on the right side.
@property (nonatomic, assign) CGSize leftimageSize; // You can set the size
of the left-side image. Default size: 22.
@property (nonatomic, assign) CGSize rightAssistImageSize; // You can set the size
of the image after the text on the right side. Default size: 22.

@end

/**
Data items that can be set and accessed in AUDoubleTitleListItem.

*/
@protocol AUDoubleTitleListItemModelDelegate <NSObject>

@property (nonatomic, copy) NSString *subtitle; // The subtitle.
@property (nonatomic, strong) UIImage *leftImage; // The left-side image.
@property (nonatomic, assign) CGSize leftimageSize; // You can set the size
of the left-side image. The default size is used if you do not set this parameter.
@property (nonatomic, copy) NSString *timeString; // The time displayed
on the right side.
@property (nonatomic, copy) NSString *rightAssistString; // The auxiliary inform
ation on the right side, which is centered by default.
@property (nonatomic, assign) NSInteger subtitleLines; // The number of
auxiliary subtitle lines, which must be specified by the client.
//@property (nonatomic, assign) BOOL showAccessory; // Whether to display th
e auxiliary icon.

@end

/**
Data items that can be set and accessed in AUCheckBoxListItem.

*/

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 173

@protocol AUCheckBoxListItemModelDelegate <NSObject>
//@property (nonatomic, assign) BOOL showAccessory; // Whether to display
the auxiliary icon.

@end

/**
Data items that can be set and accessed in AUMultiListItemDelagate.

*/
@protocol AUMultiListItemDelagate <NSObject>

@property (nonatomic, copy) NSString *subtitle; // The subtitle.
@property (nonatomic, strong) UIImage *leftImage; // The left-side image.
//@property (nonatomic, assign) CGSize leftimageSize; // The size of the left-side
image.
@property (nonatomic, assign) BOOL showAccessory; // Whether to display the au
xiliary icon.
@property (nonatomic, assign) NSInteger subtitleLines; // Set the number of subtitl
e lines.

@end

/**
Data items that can be set and accessed in AUMultiListBottomAssistDelagate.

*/
@protocol AUMultiListBottomAssistDelagate <NSObject>

@property (nonatomic, strong) NSString *originalText; // The source of the text.
@property (nonatomic, strong) NSString *timeDesc; // The time description.
@property (nonatomic, strong) NSString *othersDesc; // Other description.

@end

/**
Data items that can be set and accessed in AUParallelTitleListItem.

*/
@protocol AUParallelTitleListItemModelDelegate <NSObject>
@property (nonatomic, copy) NSString *subtitle; // Title 2
@property (nonatomic, copy) NSString *describe; // Description 1
@property (nonatomic, copy) NSString *subDescribe; // Description 2

@end

/**
Data items that can be set and accessed in AULineBreakListItem.

*/
@protocol AULineBreakListItemModelDelegate <NSObject>
@property (nonatomic, copy) NSString *subtitle; // The subtitle.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 174

@property (nonatomic, copy) NSString *subtitle; // The subtitle.
@end

/**
Data items that can be set and accessed in AUCouponsItemDelagate.

*/
@protocol AUCouponsItemDelagate <NSObject>

@property (nonatomic, copy) NSString *subtitle; // The subtitle.
@property (nonatomic, strong) UIImage *leftImage; // The left-side image.
@property (nonatomic, strong) UIImage *leftImageUrl; // The URL of the left-side
image.
@property (nonatomic, strong) NSString *assistDesc; // The text assisted descrip
tion.
@property (nonatomic, assign) NSInteger totalWidth; // Set the width of the card
.

@end

/**
The rich text protocol of TTTAttributeLabelDelagate.

*/

@protocol TTTAttributeLabelDelagate <NSObject>

@property (nonatomic, copy) NSString *attributeText; // The rich-text
content.
@property (nonatomic, copy) NSString *linkText; // The rich-text link
text.
@property (nonatomic, copy) NSString *linkURL; // The URL of the ric
h-text content.

@end

AUListItemModel.h
import "AUListItemProtocols.h"
@interface AUListItemModel : NSObject
@property (nonatomic, copy) NSString *title; // The title.
@property (nonatomic, assign) UIEdgeInsets separatorLineInset; // You can set the
margin between the left-side and right-side separation lines and the cell.
@end

View layer

AUBaseListItem.h:

@interface AUBaseListItem : UITableViewCell
// The following data items are open so that external clients can set extra properties,
such as the title color.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 175

@property(nonatomic,strong) UILabel *titleLabel;
@property(nonatomic,strong) UIView *separatorLine;
/**
The initialization function.
@param reuseIdentifier The reuse identifier.
@param block The block imported externally. Generally, title and leftimage are
set in this block externally.
@return Return a self instance.
*/
- (instancetype)initWithReuseIdentifier:(NSString *)reuseIdentifier model:(void(^)(AUL
istItemModel*model))block;
/**
Return the cell height.
@return Return the cell height.
*/
+ (CGFloat)cellHeight ;
@end

#ifdef AUBaseListItem_protected
// This identifier is open only to the subclass. Before importing AUBaseListItem in the
subclass, set AUBaseListItem_protected to 1.
@interface AUBaseListItem ()
@property (nonatomic,strong) AUListItemModel* baseModel;
@end

#endif
/**
Generally, a client simply needs to call the initWithReuseIdentifier:model: method in t
he AUBaseListItem subclass to meet the requirement.
Here, independent methods oriented to parameters such as title are provided.
All parameters, except title, are implemented in the subclass and isolated from each ot
her.
*/
@interface AUBaseListItem (Extensions)
/**
Set the title.
@param title The title string.
*/
- (void)setTitle:(NSString*)title;

/**
The method for getting the title.
@return Return the title string.
*/
- (NSString*)title ;

/**
Set the spacing between the separation line and the left or right side of a cell.
@param separatorLineInset UIEdgeInsets parameter
*/
- (void)setSeparatorLineInset:(UIEdgeInsets)separatorLineInset;

/**
Get the inset of the separation line.
@return Return the inset of the separation line.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 176

@return Return the inset of the separation line.
*/
- (UIEdgeInsets)separatorLineInset;

AUSingleTitleListItem
typedef NS_ENUM(NSInteger, AUSingleTitleListItemStyle) {
AUSingleTitleListItemStyleDefault, // Height: 92; icon: 58.
AUSingleTitleListItemStyleValue1, // Height: 110; icon: 72.
};

@interface AUSingleTitleListItem : AUBaseListItem

@property(nonatomic,strong) UILabel *subtitleLabel;
@property(nonatomic,strong) UIImageView *leftImageView;
@property(nonatomic,strong) UIImageView *rightImageView;
@property(nonatomic,strong) UIImageView *rightAssistImageView;

/**Important
The initialization function.

@param reuseIdentifier The reuse identifier.
@param block The block imported externally. Generally, title and leftimage
are set in this block externally.

@return Return a self instance.
*/
- (instancetype)initWithReuseIdentifier:(NSString*)reuseIdentifier model:(void(^)(AULis
tItemModel<AUSingleTitleListItemModelDelegate>*model))block __deprecated_msg("Do not u
se this method because it will be discarded.");

/**
Set all data required for showing a cell.

@param block The block to be transferred.
*/
- (void)setModelBlock:(void(^)
(AUListItemModel<AUSingleTitleListItemModelDelegate>*model))block;

/**
The initialization function.

@param reuseIdentifier The reuse identifier.
@param style The custom style. For more information, see AUSingleTitleListItemStyle.
@return Return a self instance.
*/
- (instancetype)initWithReuseIdentifier:(NSString*)reuseIdentifier customStyle:(AUSingl
eTitleListItemStyle)style;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 177

/**
Return a height based on the style.

@param style
@return Return a custom style. For more information, see AUSingleTitleListItemStyle.
*/
+ (CGFloat)cellHeightForStyle:(AUSingleTitleListItemStyle)style;

@end

AUDoubleTitleListItem
typedef NS_ENUM(NSInteger, AUDoubleTitleListItemStyle) {
 AUDoubleTitleListItemStyleDefault, // Has a left icon; height: 120 px; icon: 76.
 AUDoubleTitleListItemStyleValue1, // Has no left icon; height: 120 px.
 AUDoubleTitleListItemStyleValue2, // Has a left icon; height: 144 px; icon: 88.
};

@interface AUDoubleTitleListItem : AUBaseListItem<AUDoubleTitleListItemModelDelegate, T
TTAttributeLabelDelagate>

@property(nonatomic,strong) UILabel *subtitleLabel;
@property(nonatomic,strong) UIImageView *leftImageView;
@property(nonatomic,strong) UILabel* timeLabel;
@property(nonatomic,strong) UILabel *rightAssistLabel;

/**
 Set all data required for showing a cell.

 @param block The block to be transferred.
 */
- (void)setModelBlock:(void(^)(AUListItemModel<AUDoubleTitleListItemModelDelegate, TTTA
ttributeLabelDelagate>*model))block;

/**
 The initialization function.

 @param reuseIdentifier The reuse identifier.
 @param style The custom style. For more information, see AUDoubleTitleListItemStyle.
 @return Return a self instance.
 */
- (instancetype)initWithReuseIdentifier:(NSString*)reuseIdentifier customStyle:(AUDoubl
eTitleListItemStyle)style;

/**
 Return a height aaccording to the style.

 @param style The custom style. For more information, see AUDoubleTitleListItemStyle.
 @return Return the cell height.
 */
+ (CGFloat)cellHeightForStyle:(AUDoubleTitleListItemStyle)style;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 178

/**
 Return a dynamic height according to the style.

 @param style The custom style. For more information, see AUDoubleTitleListItemStyle.
 @param block The data model. For more information, see
AUDoubleTitleListItemModelDelegate.
 Note: 1. The method must transfer a exact value of model.accessoryType.
 2. If line feeds are required, use subtitleLines to specify the number of
lines.
 @return Return the cell height.
 */
+ (CGFloat)cellHeightForStyle:(AUDoubleTitleListItemStyle)style
 modelBlock:(void(^)
(AUListItemModel<AUDoubleTitleListItemModelDelegate,
TTTAttributeLabelDelagate>*model))block;

@end

AUCheckBoxListItem
@protocol AUCheckBoxListItemDelegate <NSObject>

/**
 The callback to be triggered when the check box status changes.

 @param item The check box instance.
 */
- (void)checkboxValueDidChanged:(AUCheckBox *)item;// Take the tag of the cell as the t
ag of the item.

@end

@interface AUCheckBoxListItem : AUBaseListItem<AUCheckBoxListItemModelDelegate>

@property(nonatomic, assign, getter = isChecked) BOOL checked;// Set the check box to t
he selected state.
@property(nonatomic, assign, getter = isDisableCheck) BOOL disableCheck;// Specify whet
her to disable the check box.
@property(nonatomic, weak) id <AUCheckBoxListItemDelegate> delegate;

@end

AUSwitchListItem

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 179

@interface AUSwitchListItem : AUNBaseListItem

@property (nonatomic,strong) UISwitch *switchControl; // The switch control in a cel
l.

// Specify whether to show or hide the loading icon.
- (void)showLoadingIndicator:(BOOL)show;

@end

Custom properties

Property Purpose Type

title The title. NSString

titleLabel The title label. UILabel

subtitle The subtitle. NSString

subtitleLabel The subtitle label. UILabel

leftImage The left-side icon. UIImage

leftImageView The view of the left-side icon. UIImageView

rightImage The right-side icon. UIImage

rightImageView The view of the right-side icon. UIImageView

leftimageSize The size of the left-side icon. CGSize

timeString The time string on the right. NSString

timeLabel The time label on the right. UILabel

showMarkWhenSelected Whether to show a checkmark
for a selected cell. BOOL

showAccessory Whether to show an assistant
icon. BOOL

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 180

checked Whether AUCheckBoxListItem
is selected. BOOL

disableCheck Whether AUCheckBoxListItem
is disabled. BOOL

Property Purpose Type

Note
Note: The following code sample shows the properties supported in each control.

Code sample
AUSingleTitleListItem

The recommended usage is as follows:

AUSingleTitleListItem*cell = [[AUSingleTitleListItem alloc]
initWithReuseIdentifier:identifierSingle1
model:^(AUListItemModel<AUSingleTitleListItemModelDelegate> *model) {
 model.title = @"Title";
 model.subtitle = @"Subtitle";
 model.showAccessory = YES;
 model.XXX = XXXX;
 // The supported properties ar
e contained in AUListItemModel and AUSingleTitleListItemDelegate. For more information,
see their API descriptions.
 }];

You can also set the provided properties separately. The property names are the same as
those in model in the preceding recommended usage.

AUSingleTitleListItem*cell = [[AUSingleTitleListItem alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:@"testsingle"];
cell.title = @"Subtitle";

Each element on the control can be set.

AUSingleTitleListItem*cell = [[AUSingleTitleListItem alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:@"testsingle"];
cell.titleLabel.backgroundColor = [UIColor redColor];

AUDoubleTitleListItem
The recommended usage is as follows:

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 181

AUDoubleTitleListItem*cell = [[AUDoubleTitleListItem alloc]
initWithReuseIdentifier:identifierDouble3
model:^(AUListItemModel<AUDoubleTitleListItemModelDelegate> *model) {
 model.title = @"Right icon not
supported";
 model.leftImage = [UIImage ima
geNamed:@"AntUI.bundle/ilustration_ap_expection_limit.png"];
 model.leftimageSize = CGSizeMa
ke(100, 100);
 model.showAccessory = YES;

 // The supported properties ar
e contained in AUListItemModel and AUSingleTitleListItemDelegate. For more information,
see their API descriptions.
 }];

You can also set provided properties separately.

AUDoubleTitleListItem*cell = [[AUDoubleTitleListItem alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:@"testdouble"];
cell.leftImage = [UIImage
imageNamed:@"AntUI.bundle/ilustration_ap_expection_limit.png"];

Each element on the control can be set.

AUDoubleTitleListItem*cell = [[AUDoubleTitleListItem alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:@"testdouble"];
cell.leftImageView.image = [UIImage
imageNamed:@"AntUI.bundle/ilustration_ap_expection_limit.png"];

AUCheckBoxListItem
The recommended usage is as follows:

AUCheckBoxListItem* cell = [[AUCheckBoxListItem alloc]
initWithReuseIdentifier:identifierChecbkox
model:^(AUListItemModel<AUCheckBoxListItemModelDelegate> *model) {
 model.title = @"Selected by de
fault";
 model.showAccessory = NO;
 // Only the preceding two prop
erties can be set.
 }];
cell.disableCheck = YES;// Set the check button to the disabled state.

You can also set provided properties separately.

AUCheckBoxListItem*cell = [[AUCheckBoxListItem alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:@"testcheck"];
cell.showAccessory =YES;

Each element on the control can be set.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 182

AUCheckBoxListItem*cell = [[AUDoubleTitleListItem alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:@"testcheck"];
cell.titleLabel.text = @"Selected by default";

AUSwitchListItem
AUSwitchListItem *switchCell = [[AUSwitchListItem alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:@"switchCell"];
AUListItemModel *model = _datas[indexPath.row];
switchCell.titleLabel.text = model.title;
switchCell.leftAccessorView = [[UIImageView alloc] initWithImage:[UIImage
imageNamed:@"certify.png"]];
switchCell.leftAccessorType = AUListItemLeftAccessorTypeIcon;
switchCell.switchControl.on = NO;
UISwitch *switchView = (UISwitch *)switchCell.accessoryView;
[switchView addTarget:self action:@selector(switchValueDidChanged:)
forControlEvents:UIControlEventValueChanged];
return switchCell;

AUActionSheet is migrated from APActionSheet. The style is slightly adjusted, supporting the
common layout with the deletion button and the common sheet layout.

Sample images
Common layout with the delete button:

Tab layout:

1.3.5. Pop-up window component

1.3.5.1. Action sheet

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 183

Badges:

Dependency
The dependency of AUActionSheet is as follows:

 AntUI(iOS)
 1.0.0.161108003457
 APCommonUI(iOS)
 1.2.0.161108102201

API description
typedef NS_ENUM(NSInteger, AUActionSheetButtonType) {
AUActionSheetButtonTypeDefault = 0, // The default type.
AUActionSheetButtonTypeDisabled, // The button cannot be tapped.
AUActionSheetButtonTypeDestructive, // The red destructive button.
AUActionSheetButtonTypeCustom // The customized type.
};

/**

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 184

AUActionSheet The API is migrated from APActionSheet, and the style is adjusted.
*/
@interface AUActionSheet: UIView<UIAppearanceContainer>

/// The button height is 42 by default.
@property (nonatomic) CGFloat buttonHeight UI_APPEARANCE_SELECTOR;
/// The height of the Cancel button.
@property (nonatomic) CGFloat cancelButtonHeight UI_APPEARANCE_SELECTOR;
/// The color of the separation line, which is AU_COLOR_LINE by default.
@property (strong, nonatomic) UIColor *separatorColor UI_APPEARANCE_SELECTOR;
/// The background color of a tapped button.
@property (strong, nonatomic) UIColor *selectedBackgroundColor UI_APPEARANCE_SELECTOR;
// The attributes of UI components.
@property (copy, nonatomic) NSDictionary *titleTextAttributes UI_APPEARANCE_SELECTOR;
@property (copy, nonatomic) NSDictionary *buttonTextAttributes UI_APPEARANCE_SELECTOR;
@property (copy, nonatomic) NSDictionary *disabledButtonTextAttributes
UI_APPEARANCE_SELECTOR;
@property (copy, nonatomic) NSDictionary *destructiveButtonTextAttributes
UI_APPEARANCE_SELECTOR;
@property (copy, nonatomic) NSDictionary *cancelButtonTextAttributes
UI_APPEARANCE_SELECTOR;

/// The duration for showing or hiding an animation, which is 0.5s by default.
@property (nonatomic) NSTimeInterval animationDuration UI_APPEARANCE_SELECTOR;
/// The title.
@property(nonatomic,copy) NSString *title;
/// Whether the item is visible
@property(nonatomic, readonly, getter=isVisible) BOOL visible;
/// The header view of a custom button.
@property (strong, nonatomic) UIView *headerView;
/// The keyWindow before the ActionSheet instance is displayed.
@property (weak, nonatomic, readonly) UIWindow *previousKeyWindow;
/// The protocol delegate.
@property(nonatomic,weak)id<UIActionSheetDelegate> delegate;
/// The title of the Cancel button.
@property (copy, nonatomic) NSString *cancelButtonTitle;
/// The number of buttons.
@property(nonatomic, readonly) NSInteger numberOfButtons;
/// The index of the Cancel button, which is -1 by default.
@property(nonatomic) NSInteger cancelButtonIndex;
/// The index of a destructive red button, which is -1 by default and can be ignored if
only one button exists.<UActionSheetButtonTypeDestructive, // The red
destructive button.>
@property(nonatomic) NSInteger destructiveButtonIndex;
/**
The AUActionSheet initialization method

@param title The title information.
@param delegate The delegate object.
@param cancelButtonTitle The title of the Cancel button.
@param destructiveButtonTitle The title of a destructive button.
@param otherButtonTitles The list of other button title parameters.
@return The AUActionSheet instance.
*/
- (instancetype)initWithTitle:(NSString *)title delegate:

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 185

- (instancetype)initWithTitle:(NSString *)title delegate:
(id<UIActionSheetDelegate>)delegate cancelButtonTitle:(NSString *)cancelButtonTitle des
tructiveButtonTitle:(NSString *)destructiveButtonTitle otherButtonTitles:(NSString *)ot
herButtonTitles, ... NS_REQUIRES_NIL_TERMINATION;

/**
The AUActionSheet initialization method.

@param title The title information.
@param delegate The delegate object.
@param cancelButtonTitle The title of the Cancel button.
@param destructiveButtonTitle The title of a destructive button.
@param items The customOption data list (with custom title colors and
badges).
@return The AUActionSheet instance.
*/
- (instancetype)initWithTitle:(NSString *)title
delegate:(id<UIActionSheetDelegate>)delegate
cancelButtonTitle:(NSString *)cancelButtonTitle
destructiveButtonTitle:(NSString *)destructiveButtonTitle
items:(NSArray<AUActionSheetItem *> *)items;

/**
Add a button of a default type.

@param title The button title.
@return The button index, starting from 0.
*/
- (NSInteger)addButtonWithTitle:(NSString *)title;

/**
Add a button.

@param title The button title.
@param type The button type.
@return The button index, starting from 0.
*/
- (NSInteger)addButtonWithTitle:(NSString *)title type:(AUActionSheetButtonType)type;

/**
Obtain the button title based on the index.

@param buttonIndex The button index.
@return The button title.
*/
- (NSString *)buttonTitleAtIndex:(NSInteger)buttonIndex;

/**
Set a button in a position.

@param item The button type after information encapsulation.
@param index The index of the button to be replaced. The index is less than the number
of existing buttons.
*/
- (void)setButton:(AUActionSheetItem *)item atIndex:(NSInteger)index;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 186

- (void)setButton:(AUActionSheetItem *)item atIndex:(NSInteger)index;

/** The ActionSheet display method. */
- (void)show;

/**
Manually call the hiding method.

@param animate Whether a hiding animation is available.
*/
- (void)closeWithAnimate:(BOOL)animate;

/**
Manually simulate the hiding method based on button tapping (a protocol method related
to button tapping is called back).

@param buttonIndex The button index.
@param animated Whether a hiding animation is available.
*/
- (void)dismissWithClickedButtonIndex:(NSInteger)buttonIndex animated:(BOOL)animated;

/**
* Dynamically add an item.
* Note: Call this method after the actionSheet is shown on the screen. To add a button
before the action sheet is shown, use addButtonWithTitle.
*
* @param item The custom item.
* @param index The position where the item is added.
*/
- (void)addButton:(AUActionSheetItem *)item atIndex:(NSInteger)index;

// Set the background mode. If the value is YES or @(YES), all displayed action sheets
are hidden. The default value is NO.
+(void)setIsBackGroundMode:(BOOL)isBackGroundMode;
+(void)weakSetIsBackGroundMode:(id)isBackGroundMode;

- (void)showFromToolbar:(UIToolbar *)view;
- (void)showFromTabBar:(UITabBar *)view;
- (void)showFromBarButtonItem:(UIBarButtonItem *)item animated:(BOOL)animated
NS_AVAILABLE_IOS(3_2);
- (void)showFromRect:(CGRect)rect inView:(UIView *)view animated:(BOOL)animated NS_AVAI
LABLE_IOS(3_2);
- (void)showInView:(UIView *)view;

@end

/** The ActionSheet button class after encapsulation. */
@interface AUActionSheetItem: NSObject
/// The button title.
@property (copy, nonatomic) NSString *title;
/// The button type.
@property (nonatomic) AUActionSheetButtonType type;
/// The color of the button title. When you set this value, manually change the button
type to AUActionSheetButtonTypeCustom.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 187

type to AUActionSheetButtonTypeCustom.
@property (strong,nonatomic) UIColor *titleColor;

/**
* Set the style for displaying badges.
*
* badgeValue: @"." A red dot is displayed.
* @"new" "new" is displayed.
* @"digit" A digit is displayed. If the digit is larger than 99, the
more (...) image is displayed.
* @"a Chinese character for "xin"" "xin" is displayed.
* @"a Chinese character for "hui"" "hui" is displayed.
* nil Clear the displayed content.
*/
@property (nonatomic, copy) NSString *badgeValue;

@end

Code sample
Common layout with the delete button:

AUActionSheet *actionSheet = [[AUActionSheet alloc] initWithTitle:@ "Provide one or two
lines of comments for information classification."
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:@"Delete"
 otherButtonTitles:nil];
[actionSheet show];

Tab layout:

AUActionSheet *actionSheet = [[AUActionSheet alloc] initWithTitle:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:nil
 otherButtonTitles:@"Option
1",@"Option 2",@"Option 3", nil];
[actionSheet show];

Add a badge to an option:

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 188

 AUActionSheet *actionSheet = [[AUActionSheet alloc] initWithTitle:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:nil
 otherButtonTitles:@"Option
1",@"Option 2",@"Option 3", nil];
 AUActionSheetItem *item = [[AUActionSheetItem alloc] init];
 item.title = @"Option 3";
 item.type = AUActionSheetButtonTypeCustom;
 item.badgeValue = @"new";
 item.titleColor = [UIColor redColor];
 [actionSheet setButton:item atIndex:2];

 [actionSheet show];

AUDatePicker is a date selection control.

Sample images

1.3.5.2. Date picker component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 189

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 190

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 191

API description
AUDatePicker.h

//
// ALPPicketView.h
// TestCell
//

#import <UIKit/UIKit.h>

@class AUDatePicker;

@protocol AUDatePickerDelegate <UIPickerViewDataSource, UIPickerViewDelegate>

/*
 * Callback is performed when Cancel is clicked.
 */

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 192

 */
- (void)cancelPickerView:(AUDatePicker *)pickerView;

/*
 * Callback is performed when Completed is clicked. The selected items can be returned
through pickerView/Users/zhuwei/ios-phone-
antui/ANTUI/Sources/Views/pickerView/AUDatePicker.h selectedRowInComponent.
 */
- (void)selectedPickerView:(AUDatePicker *)pickerView;

@end
/*!
 @class AUDatePicker
 @abstract UIView
 @discussion The frame-encapsulated picker with the Cancel and Completed buttons.
 */

@interface AUDatePicker : UIView

@property(nonatomic, strong) UIPickerView *pickerView; // The general transaction
picker.
@property(nonatomic, strong) UIDatePicker *datePickerView; // The time picker.

@property(nonatomic, assign) BOOL isDatePicker; // Whether the current picke
r is the time picker. The default value is NO.

@property(nonatomic, weak) id<AUDatePickerDelegate> delegate;

/*
 * Create components.
 *
 * @param title The title. Its value can be nil.
 * @return The created component, not shown by default. The show method needs
to be called to show it.
 */
+ (AUDatePicker *)pickerViewWithTitle:(NSString *)title;

/*
 * Initialize objects.
 *
 * @param frame The display position.
 * @param title Show the title. Set the value to nil if you do not want to show the
title.
 * @return Do not show the object by defaut. call the show method if showing t
he object.
 */
- (id)initWithFrame:(CGRect)frame withTitle:(NSString *)title;

/*
 * Show
 */
- (void)show;

/*

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 193

/*
 * Hide
 */
- (void)hide;

/**
 * Reload data.
 */
- (void)reload;

/**
 When isDatePicker is YES, select the time using datePickerView.

 @param minDate The earliest time.
 @param maxDate The latest time.
 */
- (void) setTimeDateminDate:(NSDate *)minDate MaxDate:(NSDate *)maxDate;

/**
 When isDatePicker is YES, set the current time for datePickerView.

 @param currentDate Set the current date.
 */
- (void) setCurrentDate:(NSDate *) currentDate;

/**
 When isDatePicker is YES, set the time selected in the time picker.

 @param date The selected date.
 @param animated Whether an animation is available.
 */
- (void)setAUDatePickerDate:(NSDate *)date animated:(BOOL)animated; // if animated is Y
ES, animate the wheels of time to display the new date

@end

Sample code
//
// APPickerViewViewController.m
// UIDemo
//

#import "APPickerViewViewController.h"
#import "AUDatePicker.h"

@interface APPickerViewViewController ()
<AUDatePickerDelegate,UIPickerViewDelegate,UIPickerViewDataSource>
@property(nonatomic,strong)AUDatePicker* apPickerView;
@property(nonatomic,strong)AUDatePicker* apPickerView2;
@property(nonatomic,strong)AUDatePicker* apPickerView3;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 194

@property(nonatomic,strong)AUDatePicker* apPickerView3;
@property(nonatomic,strong)AUDatePicker* apPickerView4;

@property(nonatomic,strong)UILabel* textLabel;
@property(nonatomic,strong)NSArray* yearArray;
@property(nonatomic,strong)NSArray* monthArray;
@property(nonatomic,strong)NSArray* nameArray;
@end

@implementation APPickerViewViewController

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 // Custom initialization
 self.yearArray =
@[@"2009",@"2010",@"2011",@"2012",@"2013",@"2014",@"2015",@"2016"];
 self.monthArray =
@[@"1",@"2",@"3",@"4",@"5",@"6",@"7",@"8",@"9",@"10",@"11",@"12"];
 self.nameArray = @[@"Tom",@"Jack",@"Brown",@"David"];
 }
 return self;
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view.
 [self.view setBackgroundColor:[UIColor whiteColor]];

 NSArray* items = @[@"Class Method",@"Member Method",@"Time Picker 1",@"Time Picker
2"];
 UISegmentedControl* segmentControl = [[UISegmentedControl
alloc]initWithItems:items];
 [segmentControl addTarget:self action:@selector(onClick:)
forControlEvents:UIControlEventValueChanged];
 segmentControl.selectedSegmentIndex = 0;
 [segmentControl setFrame:CGRectMake(15, 70, AUCommonUIGetScreenWidth() - 30, 30)];
 [self.view addSubview:segmentControl];

 // The label is used to display the item selected by pickerView.
 self.textLabel = [[UILabel alloc]initWithFrame:CGRectMake(0, 110, 220, 50)];
 self.textLabel.frame = CGRectOffset(self.textLabel.frame,
(AUCommonUIGetScreenWidth()-self.textLabel.frame.size.width)/2, 0);
 self.textLabel.layer.cornerRadius = 12.f;
 self.textLabel.lineBreakMode = NSLineBreakByWordWrapping;
 self.textLabel.numberOfLines = 0;
 self.textLabel.textAlignment = NSTextAlignmentCenter;
 [self.view addSubview:self.textLabel];

 // pickerView created by the class method.
 self.apPickerView = [AUDatePicker pickerViewWithTitle:nil];
 self.apPickerView.delegate = self;
 self.apPickerView.tag = 1000;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 195

 self.apPickerView.tag = 1000;
 [self.view addSubview:self.apPickerView];
 [self.apPickerView show];

 // pickerView created by the member method.
 _apPickerView2 = [[AUDatePicker alloc]initWithFrame:CGRectMake(0, 200, 200, 200) wi
thTitle:nil];
 _apPickerView2.delegate = self;
 _apPickerView2.tag = 1001;
 [self.view addSubview:_apPickerView2];

 // Time picker 1.
 self.apPickerView3 = [AUDatePicker pickerViewWithTitle:@"Select time"];
 self.apPickerView3.tag = 1002;
 self.apPickerView3.isDatePicker = YES;
 NSDate * curretntDate = [NSDate date];
 NSDate * minxDate = [NSDate dateWithTimeInterval:-(3600*24*3000)
sinceDate:curretntDate];
 NSDate * maxDate = [NSDate dateWithTimeInterval:3600*24*3000
sinceDate:curretntDate];
 [self.apPickerView3 setTimeDateminDate:minxDate MaxDate:maxDate];
 [self.apPickerView3 setCurrentDate:curretntDate];
 [self.view addSubview:self.apPickerView3];

 // Time picker 2.
 self.apPickerView4 = [AUDatePicker pickerViewWithTitle:@"Select time"];
 self.apPickerView4.tag = 1003;
 self.apPickerView4.isDatePicker = YES;
 [self.apPickerView4 setTimeDateminDate:minxDate MaxDate:maxDate];
 [self.apPickerView4 setCurrentDate:curretntDate];
 NSDate * selectDate =[NSDate dateWithTimeInterval:3600*24*888
sinceDate:curretntDate];
 [self.apPickerView4 setAUDatePickerDate:selectDate animated:NO];
 [self.view addSubview:self.apPickerView4];

// self.navigationItem.rightBarButtonItem = [APUtil
getBarButtonWithTitle:RightBarButtonTitle target:self];
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

#pragma mark - Button onClick
- (void)onBarButtonClick:(id)sender
{
}

- (void)onClick:(id)sender
{
 [self.apPickerView hide];
 [self.apPickerView2 hide];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 196

 [self.apPickerView2 hide];
 [self.apPickerView3 hide];
 [self.apPickerView4 hide];
 UISegmentedControl* segmentControl = (UISegmentedControl*)sender;

 switch (segmentControl.selectedSegmentIndex) {
 case 0:
 [self.apPickerView show];
 break;
 case 1:

 [self.apPickerView2 show];
 break;
 case 2:

 [self.apPickerView3 show];
 break;
 case 3:

 [self.apPickerView4 show];
 break;

 default:
 break;
 }
}

#pragma APPickerDelegate delegate
- (void)cancelPickerView:(AUDatePicker *)pickerView
{
 switch (pickerView.tag) {
 case 1000:
 [self.apPickerView hide];
 break;
 case 1001:
 [self.apPickerView2 hide];
 break;
 case 1002:
 [self.apPickerView3 hide];
 break;
 case 1003:
 [self.apPickerView4 hide];
 break;

 default:
 break;
 }
 [self.textLabel setText:@"The callback when the Cancel button is clicked."];

}

- (void)selectedPickerView:(AUDatePicker *)pickerView
{
 NSInteger index = [pickerView.pickerView selectedRowInComponent:0];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 197

 NSInteger index = [pickerView.pickerView selectedRowInComponent:0];
 NSString *result = [self.yearArray objectAtIndex:index];

 index = [pickerView.pickerView selectedRowInComponent:1];
 result = [result stringByAppendingString:[NSString stringWithFormat:@" %@",[self.m
onthArray objectAtIndex:index]]];

 index = [pickerView.pickerView selectedRowInComponent:2];
 result = [result stringByAppendingString:[NSString stringWithFormat:@" %@",[self.n
ameArray objectAtIndex:index]]];

 [self.textLabel setText:result];
}

#pragma UIPickerView delegate
- (NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(NSInteger)row
forComponent:(NSInteger)component
{
 if (component == 0) {
 return [self.yearArray objectAtIndex:row];
 } else if (component == 1){
 return [self.monthArray objectAtIndex:row];
 } else {
 return [self.nameArray objectAtIndex:row];
 }
}

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView
{
 return 3;
}

- (NSInteger)pickerView:(UIPickerView *)pickerView numberOfRowsInComponent:
(NSInteger)component
{
 if (component == 0) {
 return [self.yearArray count];
 } else if (component == 1){
 return [self.monthArray count];
 } else {
 return [self.nameArray count];
 }
}

@end

The floating layer menu provides a menu containing icons and an option list.
When using it, you need to change the APNavPopview and APNavItemView in the original
AntUI frameWork to AUFloatMenu and AUNavItemView.

Sample images

1.3.5.3. Menu component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 198

Popover with red dots

Popover with icons

Popover with texts only

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 199

API description
AUFloatMenu.h

//
// AUFloatMenu.h
// AntUI
//

#import <UIKit/UIKit.h>
/* The notice of popview hiding. */
static NSString * const APExtUIPopViewDissmissedNotification =
@"APExtUIPopViewDissmissedNotification";

@class AUNavItemView;
/*!
 @class AUFloatMenu
 @abstract UIView
 @ Discussion floatViewMenu The floating layer.
 */
@interface AUFloatMenu : UIView<UIGestureRecognizerDelegate>
@property(nonatomic, assign) CGFloat marginToRight; // The right margin of a white pop
view, which is 10 by default.

/**
 * Create a floating menu view.
 *
 * @param position The position where the floating menu is displayed on the screen.
 * @param items The array of displayed content, which is generally an APNavItemView obj
ect.
 *
 * @return The floating menu view.
 */
+(AUFloatMenu *)showAtPostion:(CGPoint)position items:(NSArray<AUNavItemView *> *)items

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 200

+(AUFloatMenu *)showAtPostion:(CGPoint)position items:(NSArray<AUNavItemView *> *)items
;

/**
 * Create a floating menu view.
 *
 * @param position The position where the floating menu is displayed on the screen.
 * @param orignY The y-coordinate value of the floating menu on the screen.
 * @param items The array of displayed content, which is generally an APNavItemView obj
ect.
 *
 * @return The floating menu view.
 */
+(AUFloatMenu *)showAtPostion:(CGPoint)position startOrignY:(CGFloat)orignY items:(NSAr
ray<AUNavItemView *> *)items;

/**
 * The interface method for hiding a floating menu.
 */
-(void)dismiss;

/**
 * After the menu is open, RPC is executed to load dynamically delivered menu items. Af
ter RPC is completed, the update() method is called to remove the original view and add
a new view.
 */
- (void)updateWithItems:(NSArray<AUNavItemView*> *)items;

@end

AUNavItemView.h

//
// AUNavItemView.h
// AntUI
//

#import <UIKit/UIKit.h>

typedef NS_ENUM(NSInteger, AUCurrentTabType) {
 AUCurrentTabTypeHome = 0,
 AUCurrentTabTypeKouBei,
 AUCurrentTabTypeFriend,
 AUCurrentTabTypeWealth
};
/*!
 @class AUNavItemView
 @abstract UIView
 @ Discussion floatMenu The view of each column at the floating layer.
 */
@interface AUNavItemView : UIView
/**
 * title
 */
@property(nonatomic,strong)NSString *itemTitle;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 201

@property(nonatomic,strong)NSString *itemTitle;

@property(nonatomic,strong,readonly)UIFont *titleFont;

/**
 * The normal state.
 */
@property(nonatomic,strong)UIImage *nomarlStateIconImage;

/*
 * IconFont Name: If iconFont needs to be set, the AUNavItemView.h but not AUFloatMenu.
h API is invoked.
 */
@property(nonatomic,strong)NSString *nomarlStateIconFontName;

/**
 * If widgetId is set, badgeNumber does not need to be set.
 */
@property(nonatomic,strong)NSString *badgeNumber;

/**
 * widgetId
 */
@property(nonatomic, copy) NSString *widgetId;

/**
 * The required prompt text for VoiceOver. The default value is the value of itemTitle.
If itemTitle is not set, you need to manually set this attribute to support VoiceOver.
 */
@property(nonatomic,strong)NSString *voiceOverText;

@property(nonatomic,assign)BOOL isNavigationItem;

@property(nonatomic,assign,readonly)CGFloat touchEventMargin;

@property(nonatomic,assign)AUCurrentTabType currentTabType;

@property(nonatomic,assign,readonly)CGFloat marginBetweenIconTitle;

@property(nonatomic,assign,readonly)CGFloat marginBetweenLeftIcon;

@property(nonatomic,assign,readonly)CGFloat badgeViewWidth;

/**
 * This method needs to be rewritten for a sub-class, and then the clicking event is pr
ocessed.
 */
- (void)onClicked;

/**
 Return the size of the icon view.

 @return size
 */
- (CGSize) iconViewSize;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 202

- (CGSize) iconViewSize;

@end

Sample code
Example of a popover with red dots:

//
// APNavPopViewViewController.m
// UIDemo
//

#import "APNavPopViewViewController.h"
#import "AUUtils.h"
#import "AUNavItemView.h"
#import "AUFloatMenu.h"
#import "AntUIShellObject.h"
#import "AUIconView.h"

@interface APNavPopViewViewController ()

@end

@implementation APNavPopViewViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 self.view.backgroundColor = RGB(0xF5F5F9);

 self.navigationItem.title = @"Popover with red dots";
 UIBarButtonItem *rightItem = [[UIBarButtonItem alloc]initWithImage:[UIImage
imageNamed:@"APCommonUI_ForDemo.bundle/more.png"] style:UIBarButtonItemStylePlain targe
t:self action:@selector(onClick:)];
 self.navigationItem.rightBarButtonItem = rightItem;
 [[AURegisterManager shareInstance] registerAUObject:[[AntUIShellObject alloc] init]
];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

- (void)onClick:(id)sender
{
 NSMutableArray *array = [[NSMutableArray alloc]initWithCapacity:4];

 NSArray *items = @[@"Add Contacts",@"New Chat",@"Scan",@"Receive Money",@"Help"];
 int i = 0;
 for (NSString *typeName in items) {
 AUNavItemView *item = [[AUNavItemView alloc]initWithFrame:CGRectMake(20, 0, 0,
40)];
 item.itemTitle = typeName;
 item.isNavigationItem = NO;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 203

 // iconfont is supported.
 // item.nomarlStateIconFontName = kICONFONT_USER_ADD;
 if (i == 0) {
 item.badgeNumber = @"1";
 UIImage *image = [UIImage imageNamed:@"ap_add_friend.png"];
 item.nomarlStateIconImage = image;
 } else if(i == 1) {
 item.badgeNumber = @"10";
 UIImage *image = [UIImage imageNamed:@"ap_group_talk.png"];
 item.nomarlStateIconImage = image;
 } else if(i == 2) {
 item.badgeNumber = @"100";
 UIImage *image = [UIImage imageNamed:@"ap_scan.png"];
 item.nomarlStateIconImage = image;
 } else if(i == 3) {
 item.badgeNumber = @"5";
 UIImage *image = [UIImage imageNamed:@"ap_qrcode.png"];
 item.nomarlStateIconImage = image;
 } else if(i == 4) {
 UIImage *image = [UIImage imageNamed:@"ap_help.png"];
 item.nomarlStateIconImage = image;
 }
 i++;

 [array addObject:item];
 }

 [AUFloatMenu showAtPostion:CGPointMake(0, 0) startOrignY:70 items:array];
}

- (void)onBarButtonClick:(id)sender
{
}

@end

Example of a popover with icons:

//
// APNavPopViewViewController.m
// UIDemo
//

#import "APNavPopViewNoneRedViewController.h"
#import "AUUtils.h"
#import "AUNavItemView.h"
#import "AUFloatMenu.h"
#import "AntUIShellObject.h"
#import "AUIconView.h"

@interface APNavPopViewNoneRedViewController ()

@end

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 204

@end

@implementation APNavPopViewNoneRedViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 self.view.backgroundColor = RGB(0xF5F5F9);

 self.navigationItem.title = @"Popover with icons";
 UIBarButtonItem *rightItem = [[UIBarButtonItem alloc]initWithImage:[UIImage
imageNamed:@"APCommonUI_ForDemo.bundle/more.png"] style:UIBarButtonItemStylePlain targe
t:self action:@selector(onClick:)];
 self.navigationItem.rightBarButtonItem = rightItem;
 [[AURegisterManager shareInstance] registerAUObject:[[AntUIShellObject alloc] init]
];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

- (void)onClick:(id)sender
{
 NSMutableArray *array = [[NSMutableArray alloc]initWithCapacity:4];

 NSArray *items = @[@"Add Contacts",@"New Chat",@"Scan",@"Receive Money",@"Help"];
 int i = 0;
 for (NSString *typeName in items) {
 AUNavItemView *item = [[AUNavItemView alloc]initWithFrame:CGRectMake(20, 0, 0,
40)];
 item.itemTitle = typeName;
 item.isNavigationItem = NO;
 // iconfont is supported.
 // item.nomarlStateIconFontName = kICONFONT_USER_ADD;
 if (i == 0) {
// item.badgeNumber = @"1";
 UIImage *image = [UIImage imageNamed:@"ap_add_friend.png"];
 item.nomarlStateIconImage = image;
 } else if(i == 1) {
// item.badgeNumber = @"10";
 UIImage *image = [UIImage imageNamed:@"ap_group_talk.png"];
 item.nomarlStateIconImage = image;
 } else if(i == 2) {
// item.badgeNumber = @"100";
 UIImage *image = [UIImage imageNamed:@"ap_scan.png"];
 item.nomarlStateIconImage = image;
 } else if(i == 3) {
// item.badgeNumber = @"5";
 UIImage *image = [UIImage imageNamed:@"ap_qrcode.png"];
 item.nomarlStateIconImage = image;
 } else if(i == 4) {
 UIImage *image = [UIImage imageNamed:@"ap_help.png"];
 item.nomarlStateIconImage = image;
 }

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 205

 i++;

 [array addObject:item];
 }

 [AUFloatMenu showAtPostion:CGPointMake(0, 0) startOrignY:70 items:array];
}

- (void)onBarButtonClick:(id)sender
{
}

@end

Example of a popover with texts only:

//
// APNavPopViewViewController.m
// UIDemo
//

#import "APNavPopViewOnlyViewController.h"
#import "AUUtils.h"
#import "AUNavItemView.h"
#import "AUFloatMenu.h"
#import "AntUIShellObject.h"
#import "AUIconView.h"

@interface APNavPopViewOnlyViewController ()

@end

@implementation APNavPopViewOnlyViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 self.view.backgroundColor = RGB(0xF5F5F9);

 self.navigationItem.title = @"Popover with texts only";
 UIBarButtonItem *rightItem = [[UIBarButtonItem alloc]initWithImage:[UIImage
imageNamed:@"APCommonUI_ForDemo.bundle/more.png"] style:UIBarButtonItemStylePlain targe
t:self action:@selector(onClick:)];
 self.navigationItem.rightBarButtonItem = rightItem;
 [[AURegisterManager shareInstance] registerAUObject:[[AntUIShellObject alloc] init]
];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

- (void)onClick:(id)sender

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 206

- (void)onClick:(id)sender
{
 NSMutableArray *array = [[NSMutableArray alloc]initWithCapacity:4];

 NSArray *items = @[@"Add Contacts",@"New Chat",@"Scan",@"Receive Money",@"Help"];
 int i = 0;
 for (NSString *typeName in items) {
 AUNavItemView *item = [[AUNavItemView alloc]initWithFrame:CGRectMake(0, 0, 0,
40)];
 item.itemTitle = typeName;
 item.isNavigationItem = NO;
 // iconfont is supported.
 // item.nomarlStateIconFontName = kICONFONT_USER_ADD;
// if (i == 0) {
//// item.badgeNumber = @"1";
// UIImage *image = [UIImage imageNamed:@"ap_add_friend.png"];
// item.nomarlStateIconImage = image;
// } else if(i == 1) {
//// item.badgeNumber = @"10";
// UIImage *image = [UIImage imageNamed:@"ap_group_talk.png"];
// item.nomarlStateIconImage = image;
// } else if(i == 2) {
//// item.badgeNumber = @"100";
// UIImage *image = [UIImage imageNamed:@"ap_scan.png"];
// item.nomarlStateIconImage = image;
// } else if(i == 3) {
//// item.badgeNumber = @"5";
// UIImage *image = [UIImage imageNamed:@"ap_qrcode.png"];
// item.nomarlStateIconImage = image;
// } else if(i == 4) {
// UIImage *image = [UIImage imageNamed:@"ap_help.png"];
// item.nomarlStateIconImage = image;
// }
 i++;

 [array addObject:item];
 }

 [AUFloatMenu showAtPostion:CGPointMake(0, 0) startOrignY:70 items:array];
}

- (void)onBarButtonClick:(id)sender
{
}

@end

AURecordFloatTip is a floating layer that displays the recording status. It provides users with
more direct voice recording experience.

Sample image

1.3.5.4. Recording status layer

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 207

API description
@interface AURecordFloatTip : UIView

@property (nonatomic, strong) UILabel *messageLabel; // The prompt for voice recording.
Default value: Recording...

// Show the floating layer.
- (void)showRecodingInView:(UIView *)view;

// Hide the floating layer.
- (void)dismissRecordView;

@end

Code sample
AURecordFloatTip *_tipView = [[AURecordFloatTip alloc] init];
 [_tipView showRecodingInView:self.view];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 208

AUImageDialog is a dialog box with images. The dialog box has rounded corners, and the
style can be customized. The window level of AUImageDialog is: self.windowLevel =
UIWindowLevelAlert - 1 .

API description
// The index corresponding to button clicking.
 typedef NS_ENUM(NSInteger, AUImageDialogButtonIndex) {
 AUImageDialogButtonIndex_Close = -2,
 AUImageDialogButtonIndex_Link = -1,
 AUImageDialogButtonIndex_Action = 0
 };

 /**
 The image dialog box is a special-style dialog box meeting the UED requirements, t
he shape of the images is round.
 Two modes are available:
 Common image mode: The Add button is a common button.
 Action button mode: An action button and a link button can be added. A cros
s icon (X) is displayed in the upper right corner for users to exit.
 The buttons in one mode cannot be added in the other mode. Otherwise, the adding c
annot pass the assert check.
 */
 @interface AUImageDialog : AUDialogBaseView

 /**
 The method of dialog box initialization without the button title.

 @param image The image.
 @param title The title.
 @param message The message details.
 @param delegate The AUDialogDelegate-compliant protocol object.
 @return The AUImageDialog instance.
 */
 - (instancetype)initWithImage:(UIImage *)image
 title:(NSString *)title
 message:(NSString *)message
 delegate:(id<AUDialogDelegate>)delegate;

 /**
 The method of dialog box initialization with the button title.

 @param image The image.
 @param title The title.
 @param message The message details.
 @param delegate The AUDialogDelegate-compliant protocol object.
 @param buttonTitle The list of button title parameters.
 @return The AUImageDialog instance.
 */
 - (instancetype)initWithImage:(UIImage *)image
 title:(NSString *)title

1.3.5.5. Image dialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 209

 title:(NSString *)title
 message:(NSString *)message
 delegate:(id<AUDialogDelegate>)delegate
 buttonTitles:(NSString *)buttonTitle, ...
NS_REQUIRES_NIL_TERMINATION;

 /**
 The initialization method with a blue action button.

 @param image The image.
 @param title The title.
 @param message The message details.
 @param delegate The AUDialogDelegate-compliant protocol object.
 @param actionTitle The title of the action button.
 @return The AUImageDialog instance.
 */
 - (instancetype)initWithImage:(UIImage *)image
 title:(NSString *)title
 message:(NSString *)message
 delegate:(id<AUDialogDelegate>)delegate
 actionButtonTitle:(NSString *)actionTitle;

 /**
 The initialization method with a blue action button and a link button.

 @param image The image.
 @param title The title.
 @param message The message details.
 @param delegate The AUDialogDelegate-compliant protocol object.
 @param linkText The link text.
 @param actionTitle The title of the action button.
 @return The AUImageDialog instance.
 */
 - (instancetype)initWithImage:(UIImage *)image
 title:(NSString *)title
 message:(NSString *)message
 delegate:(id<AUDialogDelegate>)delegate
 linkText:(NSString *)linkText
 actionButtonTitle:(NSString *)actionTitle;

 - (instancetype)init NS_UNAVAILABLE;

 - (instancetype)initWithCustomView:(UIView *)customView; // The custom view, with t
he X button in the upper right corner by default.

 /**
 The dialog box display method.
 */
 - (void)show;

 /**
 Set the text color to gray. Default value: NO.
 */
 - (void)setGrayMessage:(BOOL)grayMessage;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 210

 /**
 Set the text alignment mode.

 @param alignment The alignment mode.
 */
 - (void)setMessageAlignment:(NSTextAlignment)alignment;

 /**
 Set the custom image size. The width cannot exceed the dialog box's maximum width
of 270. Default value: 135 x 135.
 */
 - (void)configImageAreaSize:(CGSize)imageSize;

 /**
 Add a common button and its callback method (The common button cannot contain an a
ction or a link).

 @param buttonTitle The common button title.
 @param actionBlock The callback of the button.
 */
 - (void)addButton:(NSString *)buttonTitle actionBlock:
(AUDialogActionBlock)actionBlock;

 /**
 Add an action button and its callback method.

 @param actionTitle The title of the action button.
 @param actionBlock The callback of the action button.
 */
 - (void)addActionButton:(NSString *)actionTitle actionBlock:
(AUDialogActionBlock)actionBlock;

 /**
 Add a link button and its callback method.

 @param linkText The link text.
 @param actionBlock The callback of the link button.
 */
 - (void)addLinkButton:(NSString *)linkText actionBlock:
(AUDialogActionBlock)actionBlock;

 /**
 Hide the close button in the upper right corner.
 */
 - (void)setCloseButtonHidden:(BOOL) hidden;

API for a large image style AUImageDialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 211

/**
 The image dialog box has a special UED-required style.
 * Style: The large icon style. In this style, the image has a fixed height of 312 px,
and the close button is in the upper right corner of the image.
 * The icon font of the close button. Default value: white.
 */

@interface AUImageDialog (largeImageStyle)

/**
 The method of dialog box initialization without the button title.

 @param image The image.
 @param title The title.
 @param message The message details.
 @param delegate The AUDialogDelegate-compliant protocol object.
 @return The AUImageDialog instance.
 */
- (instancetype)initWithLargeImage:(UIImage *)image
 title:(NSString *)title
 message:(NSString *)message
 delegate:(id<AUDialogDelegate>)delegate;

/**
 * Set the color of the close button in the upper right corner. Default value: white.
 */
- (void)resetCloseIconColor:(UIColor *)color;

@end

Sample code
With common buttons

UIImage *image = [UIImage imageNamed:@"panghu.jpg"];
 AUImageDialog *dialog = [[AUImageDialog alloc] initWithImage:image title:@"Goda Tak
eshi" message:@"Strict match. The one not in the delegate is not a standard control.
The one not in the delegate but has been used in many places should be delivered in t
he candidate control set. A delegate, such as the title delegate, may not be implemen
ted as a single control." delegate:self];
 [dialog addButton:@"Cancel" actionBlock:nil];
 [dialog addButton:@"OK" actionBlock:nil];
 [dialog show];

Custom style

UIView *customView = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 240, 60)];
 customView.backgroundColor = [UIColor greenColor];
 AUImageDialog *dialog = [[AUImageDialog alloc] initWithCustomView:customView];
 [dialog addButton:@"Cancel" actionBlock:nil];
 [dialog addButton:@"OK" actionBlock:nil];
 [dialog show];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 212

With a large image

UIImage *image = [UIImage imageWithColor:[UIColor colorWithRGB:0xD8D8D8] size:CGSizeM
ake(100, 100)];
 AUImageDialog *dialog = [[AUImageDialog alloc] initWithLargeImage:image
title:@"Title in a line" message:@"Illustrate the status and prompt a solution. No mo
re than two lines." delegate:self];
 [dialog addButton:@"Cancel" actionBlock:nil];
 [dialog addButton:@"OK" actionBlock:nil];
 [dialog resetCloseIconColor:[UIColor redColor]];
 [dialog show];

AUInputDialog specifies the style of a pop-up window with an input box. The Window level of
the pop-up window follows the logic self.windowLevel = UIWindowLevelAlert - 1 .

API description
@interface AUInputDialog : AUDialogBaseView

/// The input box.
@property (nonatomic, strong, readonly) UITextField *textField;

/**
Specify whether this instance is displayed. This applies when a pointer points at this
instance.
If another dialog box overrides this one, the attribute value is fixed as YES.
*/
@property (nonatomic, assign, readonly) BOOL isDisplay;

/**
* The title.
*/
@property (nonatomic, strong) NSString *title;

/**
* The text message.
*/
@property (nonatomic, strong) NSString *message;

/**
The method of dialog box initialization without the button title.

@param title The title.
@param message The message details.
@return The AUInputDialog instance.
*/
- (instancetype)initWithTitle:(NSString *)title
message:(NSString *)message;

/**
The AUInputDialog instance initialization method.

1.3.5.6. Input dialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 213

@param title The title.
@param message The message details.
@param placeholder The placeholder in the text box.
@param delegate The delegate object.
@param buttonTitle The button title.
@return The AUInputDialog instance.
*/
- (instancetype)initWithTitle:(NSString *)title
message:(NSString *)message
placeholder:(NSString *)placeholder
delegate:(id<AUDialogDelegate>)delegate
buttonTitles:(NSString *)buttonTitle, ... NS_REQUIRES_NIL_TERMINATION;

- (instancetype)initWithCustomView:(UIView *)customView; // The custom view.

/// The disabled initialization method.
- (instancetype)init NS_UNAVAILABLE;

/**
The dialog box display method.
*/
- (void)show;

/**
The method of closing the dialog box. If will/didDismissWithButtonIndex is monitored, t
he index called back is 0 by default.
*/
- (void)dismiss;

/**
Hide all dialog views in the dialog window.
*/
+ (void)dismissAll;

/**
Set the color of the text to gray. Default value: YES.
*/
- (void)setGrayMessage:(BOOL)grayMessage;

/**
Set the text alignment mode.

@param alignment The alignment mode.
*/
- (void)setMessageAlignment:(NSTextAlignment)alignment;

/**
Add a button and its callback method.

@param buttonTitle The button title.
@param actionBlock The callback of the button tapping action.
*/
- (void)addButton:(NSString *)buttonTitle actionBlock:(AUDialogActionBlock)actionBlock;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 214

Code sample
Common style

AUInputDialog *dialog = [[AUInputDialog alloc] initWithTitle:@"Title" message:@"The mes
sage may contain the sound icon and button of a notification alarm. This message can be
sent to " placeholder:@"To friends." delegate:self buttonTitles:@"Cancel", @"Main actio
n", nil];
[dialog show];

Custom style

UIView *customView = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 240, 60)];
customView.backgroundColor = [UIColor greenColor];
AUInputDialog *dialog = [[AUInputDialog alloc] initWithCustomView:customView];
[dialog addButton:@"Cancel" actionBlock:nil];
[dialog addButton:@"OK" actionBlock:nil];
[dialog show];

AUToast defines Toast controls for mPaaS. AUToast is developed from APToast of
APCommonUI. Use AUToast instead of APToast.
This component contains two types of Toast controls:

Common Toast
Modal Toast

The modal Toast has a transparent background layer, but the common Toast does not. Users
cannot click the area covered by the background layer.

API description
// The declaration of the log output function, which is set by the external system.
typedef void(*AUToastLogFunc)(NSString *tag, NSString *format, ...);
extern AUToastLogFunc g_ToastExternLogFunc; // The global variables of the log output f
unction are set by external system.
#define AUToastLog(fmt, ...)
{if(g_ToastExternLogFunc)g_ToastExternLogFunc(@"@AUToast",fmt,##__VA_ARGS__);}

#define AUToast_Default_Duration 2.0 // AUToast Default display duration.
#define AUToast_Strong_Duration 1.5 // AUToast Display duration of the strong promp
t.
#define AUToast_Weak_Duration 1.0 // AUToast Display duration of the weak prompt.

/**
* Add a new toast icon to the end of the existing icons instead of in the middle. Other
wise, an error will occurs in business use.
*/
typedef enum{
AUToastIconNone = 0, // No icon.
AUToastIconSuccess, // The success icon.

1.3.5.7. Toast component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 215

AUToastIconFailure, // The failure icon.
AUToastIconLoading, // The loading icon.
AUToastIconNetFailure, // Network failure.
AUToastIconSecurityScan,// Security scanning.
AUToastIconNetError, // The network error causing connection failure.
AUToastIconProgress, // The loading icon indicating the loading progress.
AUToastIconAlert, // The alarm icon.
} AUToastIcon;

/**
* The Toast control.
*/
@interface AUToast : UIView

@property (nonatomic, assign) CGFloat xOffset; // Set the offset to the central point o
f the parent view in the x-axis.
@property (nonatomic, assign) CGFloat yOffset; // Set the offset to the central point o
f the parent view in the y-axis.

/*
* The modal display prompt displayed in the key window. The system does not respond to
user operations.
* Call the dismissToast method to hide the Toast.
*
* @param text The displayed text. Default value: loading.
* @param logTag The log ID.
*
* @return The displayed Toast object.
*/
+ (AUToast *)presentToastWithText:(NSString *)text
logTag:(NSString*)logTag;

/**
* Show the Toast. To hide the Toast, call the dismissToast method.
*
* @param superview The parent view.
* @param text Displayed text.
* @param logTag The log tag.
*
* @return The displayed Toast object.
*/
+ (AUToast *)presentToastWithin:(UIView *)superview
text:(NSString *)text
logTag:(NSString*)logTag;

/**
* Show the Toast. To hide the Toast, call the dismissToast method.
*
* @param superview The parent view.
* @param icon The icon type.
* @param text Displayed text.
* @param logTag The log tag.
*
* @return The displayed Toast object.
*/

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 216

*/
+ (AUToast *)presentToastWithin:(UIView *)superview
withIcon:(AUToastIcon)icon
text:(NSString *)text
logTag:(NSString*)logTag;

/**
* Show the Toast.
*
* @param superview The parent view.
* @param icon The icon type.
* @param text Displayed text.
* @param duration The display duration.
* @param logTag The log tag.
*
* @return The displayed Toast object.
*/
+ (AUToast *)presentToastWithin:(UIView *)superview
withIcon:(AUToastIcon)icon
text:(NSString *)text
duration:(NSTimeInterval)duration
logTag:(NSString*)logTag;

/**
* Show the Toast.
*
* @param superview In which view of Toast is displayed.
* @param icon The icon type.
* @param text Displayed text.
* @param duration Display duration.
* @param logTag The log tag.
* @param completion Callback after Toast automatically disappears.
*
* @return The displayed Toast object.
*/
+ (AUToast *)presentToastWithin:(UIView *)superview
withIcon:(AUToastIcon)icon
text:(NSString *)text
duration:(NSTimeInterval)duration
logTag:(NSString*)logTag
completion:(void (^)())completion;

/**
* Show the Toast.
*
* @param superview In which the view of Toast is displayed.
* @param icon The icon type.
* @param text Displayed text.
* @param duration Display duration.
* @param delay Display delay duration.
* @param logTag The log tag.
* @param completion Callback after Toast automatically disappears.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 217

* @param completion Callback after Toast automatically disappears.
*
* @return The displayed Toast object.
*/
+ (AUToast *)presentToastWithin:(UIView *)superview
withIcon:(AUToastIcon)icon
text:(NSString *)text
duration:(NSTimeInterval)duration
delay:(NSTimeInterval)delay
logTag:(NSString*)logTag
completion:(void (^)())completion;

/*
* Show the modal Toast. To hide the Toast, call the dismissToast method.
* Different from the common Toast, the modal Toast has a transparent background layer,
which prevents users from clicking the screen.
*
* @param superview The parent view.
* @param text Displayed text.
* @param logTag The log tag.
*
* @return The displayed Toast object.
*/
+ (AUToast *)presentModelToastWithin:(UIView *)superview
text:(NSString *)text
logTag:(NSString*)logTag;

/**
* Show the modal Toast.
* Different from the common Toast, the modal Toast has a transparent background layer,
which prevents users from clicking the screen.
*
* @param superview In which view of Toast is displayed.
* @param icon The icon type.
* @param text Displayed text.
* @param duration Display duration.
* @param logTag The log tag.
* @param completion Callback after Toast automatically disappears.
*
* @return The displayed Toast object.
*/
+ (AUToast *)presentModalToastWithin:(UIView *)superview
withIcon:(AUToastIcon)icon
text:(NSString *)text
duration:(NSTimeInterval)duration
logTag:(NSString*)logTag
completion:(void (^)())completion;

/**
* Show the modal Toast.
* Different from the common Toast, the modal Toast has a transparent background layer,

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 218

* Different from the common Toast, the modal Toast has a transparent background layer,
which prevents users from clicking the screen.
*
* @param superview In which the view of Toast is displayed.
* @param icon Icon type.
* @param text Displayed text.
* @param duration Display duration.
* @param delay Display delay duration.
* @param logTag The log tag.
* @param completion Callback after Toast automatically disappears.
*
* @return The displayed Toast object.
*/
+ (AUToast *)presentModalToastWithin:(UIView *)superview
withIcon:(AUToastIcon)icon
text:(NSString *)text
duration:(NSTimeInterval)duration
delay:(NSTimeInterval)delay
logTag:(NSString*)logTag
completion:(void (^)())completion;

/*
* Hide the Toast.
*/
- (void)dismissToast;

/**
* Set the prefix text of the progress. If this parameter is not set, the default value
is "Loading data".
* The setting is effective only when the Toast type is AUToastIconProgress. Otherwise,
ignore this parameter.
*
* @param prefix The text.
*/
- (void)setProgressPrefix:(NSString*)prefix;

/**
* Show the data loading progress in percentage.
* The setting is effective only when the Toast type is AUToastIconProgress. Otherwise,
ignore this parameter.
*
* @param value Currently loaded data. The value range is 0.0 to 1.0.
*
*/
- (void)setProgressText:(float)value;

@end

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 219

[AUToast presentToastWithin:self.view withIcon:AUToastIconNetFailure text:@"System Busy
" logTag:@"demo"];
[AUToast presentToastWithin:self.view withIcon:AUToastIconSuccess text:@"Success" logTa
g:@"demo"];
[AUToast presentToastWithin:self.view withIcon:AUToastIconFailure text:@"Failure" logTa
g:@"demo"];
[AUToast presentToastWithin:self.view withIcon:AUToastIconAlert text:@"Alarm"
logTag:@"demo"];

// Loading.
[AUToast presentToastWithin:self.view withIcon:AUToastIconLoading text:nil
logTag:@"demo"];

// Set the scenario where the progress appears.
AUToast *toast = [AUToast presentToastWithin:self.view withIcon:AUToastIconProgress tex
t:@"Loading" logTag:@"demo"];
toast.origin = point;
[toast setProgressPrefix:@"~~~"];
[toast setProgressText:0.5];

// The modal Toast.
[AUToast presentModalToastWithin:weakSelf.view withIcon:AUToastIconLoading text:@"Modal
toast,There are so many longest texts,is too long" duration:3 logTag:@"demo" completion
:NULL];
[AUToast presentModalToastWithin:weakSelf.view withIcon:AUToastIconLoading text:@"Modal
toast,There are so many longest texts,is too long" duration:3 delay:2 logTag:@"demo" c
ompletion:NULL];

The card menu is used to pop up a selection menu when the user clicks a card on the client
page. In iOS, beeviews:BEEPopMenuView needs to be replaced with AUCardMenu.h .

Sample images
Pop-up menu / Multi-line style

1.3.5.8. Card menu

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 220

Pop-up menu / Pressed effect

Pop-up menu / Double line

Pop-up menu + Option buttons

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 221

API description
AUCardMenu.h

//
// AUCardMenu.h
// AntUI
//

@class AUMultiStyleCellView;
@class AUWindow;
/*!
 @class AUCardMenu
 @abstract AUWindow
 @discussion The pop-up menu with a mask for the other part of the screen and an arr
ow-like corner in the upper right of the menu.
*/

@interface AUCardMenu : AUWindow
{

}

/**
 * The AUMultiStyleCellDelegate protocol needs to be implemented for cellView to respon
d to clicking events.
 * Assign the value in your own viewcontroller. popMenuView.cellView.delegate = self
 */
@property (nonatomic, strong) AUMultiStyleCellView *cellView;

/**
 * The initialization method (highly recommended).
 *
 * @param data The array storage object model CellDataModel.
 * @param location The reference point of the arrow-like corner.
 * @param offset The offset of the arrow-like corner relative to the reference point
.
 *
 * @return self
 */

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 222

- (instancetype)initWithData:(NSArray *)data
 location:(CGPoint)location
 offset:(CGFloat)offset;

/**
 * Show the pop-up menu.
 *
 * @param superView superView of PopMenuView
 */
- (void)showPopMenu:(UIView *)superView;

// Hide the pop-up menu, whose calling is also recommended in the dealloc method.
- (void)hidePopMenu;

// Note: If a menu is shown with animation, the menu must be hidden with animation. If
a menu is shown without animation, the menu must be hidden without animation.

// Show a menu with animation.
- (void)showPopMenu:(UIView *)superView animation:(BOOL) isAnimation;

// Hide a menu with animation.
- (void)hidePopMenuWithAnimation:(BOOL)isAnimation;

@end

AUCellDataModel.h

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 223

//
// AUCellDataModel.h
// AntUI
//

#import <Foundation/Foundation.h>

/*!
 @class AUMultiStyleCellView
 @abstract UIView
 @discussion The sub-view in a menu.
 */

@interface AUCellDataModel : NSObject

@property (nonatomic, strong) NSString *iconUrl;
@property (nonatomic, strong) NSString *titleText;
@property (nonatomic, strong) NSString *descText;
@property (nonatomic, strong) NSString *checkMarkUrl; // The check mark URL.
@property (nonatomic, strong) NSString *indicatorUrl; // The right arrow URL.
@property (nonatomic, strong) NSArray *buttonsArray; // NSArray<NSString>
@property (nonatomic, strong) NSDictionary *extendDic; // The extended field for the cl
ient.
@property (nonatomic, assign) BOOL selectedState; // Whether the current model is
selected. The default value is NO.

@end

AUMultiStyleCellView.h

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 224

//
// AUMultiStyleCellView.h
// AntUI
//

#import <UIKit/UIKit.h>
#import "AUCellDataModel.h"

@class AUMultiStyleCellView;
@protocol AUMultiStyleCellDelegate <NSObject>

@optional
/**
 * The clicking event callback.
 *
 * @param dataModel The data model corresponding to the clicked view.
 * @param indexPath The index of the clicked view in CellDataModel. (If
CellDataModel.buttonsArray == nil, the default value of row is - 1.)
 */
- (void)DidClickCellView:(AUCellDataModel *)dataModel ForRowAtIndexpath:(NSIndexPath *)
indexPath;
- (void)DidClickCellButton:(AUCellDataModel *)dataModel ForRowAtIndexpath:(NSIndexPath
*)indexPath;
- (void)DidClickCellView:(AUCellDataModel *)dataModel ForRowAtIndexpath:(NSIndexPath *)
indexPath cellView:(AUMultiStyleCellView *)cellView;
@end

/**
 * cellView integrating multiple styles.
 * 1. Icon + Main title
 * 2. Icon + Main title + Subtitle below the main title
 * 3. Icon + Main title + Framed button controls in multiple lines and multiple rows
 */

@interface AUMultiStyleCellView : UIView

@property (nonatomic, weak) id<AUMultiStyleCellDelegate> delegate;
@property (nonatomic, strong) NSArray *cellDataArray;

// If cellDataArray is empty, this method is equal to the initWithFrame method.
- (instancetype)initWithFrame:(CGRect)frame
 cellDataArray:(NSArray *)cellDataArray
 isUpward:(BOOL)isUpward;

// Process the status indicating whether cellView is selected.
- (void)updateSelectedState;

@end

Sample code
//

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 225

//
// cardMenuController.m
// AntUI
//

#import "cardMenuController.h"
#import "AUCardMenu.h"
#import "AUCellDataModel.h"
#import "AUMultiStyleCellView.h"

@interface cardMenuController ()<AUMultiStyleCellDelegate>

@property (nonatomic,strong) AUCardMenu * popMenuView;

@end

@implementation cardMenuController

- (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading the view.
 self.view.backgroundColor = RGB(0xF5F5F9);
 UIButton * button = [UIButton buttonWithType:UIButtonTypeCustom];
 [button setFrame:CGRectMake(0, 100, self.view.width, 100)];
 [button setTitle:@"Pop-up menu/Multi-line style" forState:UIControlStateNormal];
 [button setTitleColor:RGB(0x888888) forState:UIControlStateNormal];
 [button addTarget:self
 action:@selector(handleButton:)
 forControlEvents:UIControlEventTouchUpInside];
 [button.titleLabel setTextAlignment:NSTextAlignmentLeft];
 [button.titleLabel setFont:[UIFont systemFontOfSize:14]];
 [button setTitleEdgeInsets:UIEdgeInsetsMake(0, 5, 0, 0)];
 [button setContentHorizontalAlignment:UIControlContentHorizontalAlignmentLeft];

 [self.view addSubview:button];

 UIButton * button2 = [UIButton buttonWithType:UIButtonTypeCustom];
 [button2 setFrame:CGRectMake(0, 220, self.view.width, 100)];
 [button2 setTitle:@"Pop-up menu/Pressed effect" forState:UIControlStateNormal];
 [button2 addTarget:self
 action:@selector(handleButton2:)
 forControlEvents:UIControlEventTouchUpInside];
 [button2.titleLabel setTextAlignment:NSTextAlignmentLeft];
 [button2 setTitleEdgeInsets:UIEdgeInsetsMake(0, 5, 0, 0)];
 [button2 setContentMode:UIViewContentModeLeft];
 [button2 setContentHorizontalAlignment:UIControlContentHorizontalAlignmentLeft];

 [button2 setTitleColor:RGB(0x888888) forState:UIControlStateNormal];
 [button2.titleLabel setFont:[UIFont systemFontOfSize:14]];

 [self.view addSubview:button2];

 UIButton * button3 = [UIButton buttonWithType:UIButtonTypeCustom];
 [button3 setFrame:CGRectMake(0, 320, self.view.width, 100)];
 [button3 setTitle:@"Pop-up menu/Double line" forState:UIControlStateNormal];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 226

 [button3 setTitle:@"Pop-up menu/Double line" forState:UIControlStateNormal];
 [button3 addTarget:self
 action:@selector(handleButton3:)
 forControlEvents:UIControlEventTouchUpInside];
 [button3.titleLabel setTextAlignment:NSTextAlignmentLeft];
 [button3 setTitleEdgeInsets:UIEdgeInsetsMake(0, 5, 0, 0)];
 [button3 setContentHorizontalAlignment:UIControlContentHorizontalAlignmentLeft];
 [button3.titleLabel setFont:[UIFont systemFontOfSize:14]];

 [button3 setTitleColor:RGB(0x888888) forState:UIControlStateNormal];

 [self.view addSubview:button3];

 UIButton * button4 = [UIButton buttonWithType:UIButtonTypeCustom];
 [button4 setFrame:CGRectMake(0, 420, self.view.width, 100)];
 [button4 setTitle:@"Pop-up Menu + Select button" forState:UIControlStateNormal];
 [button4 addTarget:self
 action:@selector(handleButton4:)
 forControlEvents:UIControlEventTouchUpInside];
 [button4.titleLabel setTextAlignment:NSTextAlignmentLeft];
 [button4 setTitleEdgeInsets:UIEdgeInsetsMake(0, 5, 0, 0)];
 [button4 setContentHorizontalAlignment:UIControlContentHorizontalAlignmentLeft];
 [button4.titleLabel setFont:[UIFont systemFontOfSize:14]];

 [button4 setTitleColor:RGB(0x888888) forState:UIControlStateNormal];

 [self.view addSubview:button4];

}

- (void)handleButton4:(UIButton *)button
{
 AUCellDataModel * model = [[AUCellDataModel alloc] init];
 model.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_dislike.png";
 model.titleText = @"Not interested";
 model.buttonsArray = @[@"Outdated",@"Have seen before",@"Bad quality"];
 model.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};

 AUCardMenu *tmpView=[[AUCardMenu alloc]initWithData:@[model]
location:CGPointMake(button.width - 20, button.centerY) offset:13];
 tmpView.cellView.delegate=self;
 [tmpView showPopMenu:button animation:YES];
 self.popMenuView=tmpView;

}

- (void)handleButton3:(UIButton *)button
{
 AUCellDataModel * model = [[AUCellDataModel alloc] init];
 model.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_ignore.png";

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 227

 model.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_ignore.png";
 model.titleText = @"Ignore";
 // model.buttonsArray = @[@"Hello",@"do you stutter?",@"I'm not
hungry",@"Hello",@"I'm fine"];
 model.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};

 AUCellDataModel * model4 = [[AUCellDataModel alloc] init];
 model4.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_reject.png";
 model4.titleText = @"No longer receive this type of messages";
 model4.descText = @"Receive this type of messages less";
 model4.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};
 AUCardMenu *tmpView=[[AUCardMenu alloc]initWithData:@[model,model4]
location:CGPointMake(button.width - 20, button.centerY) offset:13];
 tmpView.cellView.delegate=self;
 [tmpView showPopMenu:button animation:YES];
 self.popMenuView=tmpView;

}

- (void)handleButton2:(UIButton *)button
{
 AUCellDataModel * model = [[AUCellDataModel alloc] init];
 model.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_ignore.png";
 model.titleText = @"Ignore";
 // model.buttonsArray = @[@"Hello",@"do you stutter?",@"I'm not
hungry",@"Hello",@"I'm fine"];
 model.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};
 AUCellDataModel * model2 = [[AUCellDataModel alloc] init];
 model2.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_dislike.png";
 model2.titleText = @"Not interested";
 model2.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};
 model2.highlightState = YES;
 AUCellDataModel * model3 = [[AUCellDataModel alloc] init];
 model3.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_inform.png";
 model3.titleText = @"Report";
 model3.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};
 AUCellDataModel * model4 = [[AUCellDataModel alloc] init];
 model4.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_reject.png";
 model4.titleText = @"No longer receive this type of messages";
 model4.descText = @"Receive this type of messages less";
 model4.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};
 AUCardMenu *tmpView=[[AUCardMenu alloc]initWithData:@[model,model2,model3,model4] l
ocation:CGPointMake(button.width - 20, button.centerY) offset:13];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 228

ocation:CGPointMake(button.width - 20, button.centerY) offset:13];
 tmpView.cellView.delegate=self;
 [tmpView showPopMenu:button animation:YES];
 self.popMenuView=tmpView;

}
- (void)handleButton:(UIButton *)button
{
 AUCellDataModel * model = [[AUCellDataModel alloc] init];
 model.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_ignore.png";
 model.titleText = @"Ignore";
// model.buttonsArray = @[@"Hello",@"do you stutter?",@"I'm not
hungry",@"Hello",@"I'm fine"];
 model.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};
 AUCellDataModel * model2 = [[AUCellDataModel alloc] init];
 model2.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_dislike.png";
 model2.titleText = @"Not interested";
 model2.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};
 AUCellDataModel * model3 = [[AUCellDataModel alloc] init];
 model3.iconUrl = @"APCommonUI_ForDemo.bundle/hc_popmenu_inform.png";
 model3.titleText = @"Report";
 model3.extendDic =
@{@"type":@"reject",@"cardId":@"201609261515032720200000091128291606950000902688",@"CCard":
@""};
 AUCardMenu *tmpView=[[AUCardMenu alloc]initWithData:@[model,model2,model3]
location:CGPointMake(button.width - 20, button.centerY) offset:13];
 tmpView.cellView.delegate=self;
 [tmpView showPopMenu:button animation:YES];
 self.popMenuView=tmpView;

}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

- (void)hidePopMenu
{
 if (self.popMenuView) {
 [self.popMenuView hidePopMenuWithAnimation:YES];
 self.popMenuView.cellView.delegate = nil;
 self.popMenuView = nil;

 }
}

#pragma mark --- AUMultiStyleCellDelegate

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 229

/**
 * The clicking event callback.
 *
 * @param dataModel The data model corresponding to the tapped view.
 * @param indexPath The index of the tapped view in CellDataModel. (If
CellDataModel.buttonsArray == nil, the default value of row is - 1.)
 */
- (void)DidClickCellView:(AUCellDataModel *)dataModel ForRowAtIndexpath:(NSIndexPath *)
indexPath
{
 [self hidePopMenu];
}
- (void)DidClickCellButton:(AUCellDataModel *)dataModel ForRowAtIndexpath:(NSIndexPath
*)indexPath
{
 [self hidePopMenu];
}
- (void)DidClickCellView:(AUCellDataModel *)dataModel ForRowAtIndexpath:(NSIndexPath *)
indexPath cellView:(AUMultiStyleCellView *)cellView
{
 [self hidePopMenu];
}

- (void)dealloc
{
 self.popMenuView = nil;

}

/*
#pragma mark - Navigation

// In a storyboard-based application, you will often want to do a little preparation be
fore navigation
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
 // Get the new view controller using [segue destinationViewController].
 // Pass the selected object to the new view controller.
}
*/

@end

AUOperationResultDialog is a dialog box with a result image. The default size of the image is
90 x 58, in pixels. UED requires the style. The window level of AUOperationResultDialog is:
 self.windowLevel = UIWindowLevelAlert - 1 .

1.3.5.9. Operation result dialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 230

Note
AUOperationResultDialog applies only to social sharing and checkout counter business.
For the dialog box applying to other business, see AUImageDialog.

Sample image

API description
@interface AUOperationResultDialog : AUDialogBaseView

/**
 Specify whether this instance is displayed. This applies when a pointer points at this
instance.
 If another dialog box overrides this one, the attribute value is fixed as YES.
 */
@property (nonatomic, assign, readonly) BOOL isDisplay;

/**
 * The dialog box description.
 */
@property (nonatomic, strong) NSString *describe;

/**
 The method of dialog box initialization without the button title.

 @param image The image.
 @param describe The message details.
 @param delegate The AUDialogDelegate-compliant protocol object.
 @return The AUImageDialog instance.
 */
- (instancetype)initWithImage:(UIImage *)image
 message:(NSString *)message
 delegate:(id<AUDialogDelegate>)delegate;

/**
 The method of dialog box initialization with the button title.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 231

 @param image The image.
 @param describe The message details.
 @param delegate The AUDialogDelegate-compliant protocol object.
 @param buttonTitle The list of button title parameters.
 @return The AUImageDialog instance.
 */
- (instancetype)initWithImage:(UIImage *)image
 message:(NSString *)message
 delegate:(id<AUDialogDelegate>)delegate
 buttonTitles:(NSString *)buttonTitle, ... NS_REQUIRES_NIL_TERMINATION;

/**
 With a download link.

 @param imageUrl The URL of the image.
 @param placeholder The placeholder image.
 @param describe The message details.
 @param delegate The AUDialogDelegate-compliant protocol object.
 @return The AUImageDialog instance.
 */
- (instancetype)initWithImageUrl:(NSString *)imageUrl
 placeholder:(UIImage *)placeholder
 message:(NSString *)message
 delegate:(id<AUDialogDelegate>)delegate;

/// The disabled initialization method.
- (instancetype)init NS_UNAVAILABLE;

/**
 The dialog box display method.
 */
- (void)show;

/**
 The method of closing the dialog box. If will/didDismissWithButtonIndex is monitored,
the index called back is 0 by default.
 */
- (void)dismiss;

/**
 Hide all dialog views in the dialog window.
 */
+ (void)dismissAll;

/**
 Add a common button and its callback method. The common button cannot contain an actio
n.

 @param buttonTitle The common button title.
 @param actionBlock The callback of the button.
 */
- (void)addButton:(NSString *)buttonTitle actionBlock:(AUDialogActionBlock)actionBlock;

@end

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 232

@end

Sample code
UIImage *image = [UIImage imageNamed:@"panghu.jpg"];
 AUOperationResultDialog *dialog = [[AUOperationResultDialog alloc]
initWithImage:image message:@"Sent successfully" delegate:self];
 [dialog addButton:@"Back to Taobao" actionBlock:nil];
 [dialog addButton:@"Stay in Alipay" actionBlock:nil];
 [dialog show];

AUCascadePicker is a multi-level cascade picker control that supports up to three levels.

Sample image

API description
// Set the selected item for the picker.
@interface AUCascadePickerSelectedRowItem : NSObject

@property (nonatomic, strong) NSString *selectedLeftTitle; // The title selected for
the sublist on the left.
@property (nonatomic, strong) NSString *selectedMiddleTitle; // The title selected for
the sublist in the middle.
@property (nonatomic, strong) NSString *selectedRightTitle; // The title selected for
the sublist on the right.

@end

@interface AUCascadePickerRowItemModel : NSObject

1.3.5.10. Cascade picker

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 233

@property (nonatomic, strong) NSString *rowTitle;
@property (nonatomic, strong) NSArray<AUCascadePickerRowItemModel *> *rowSubList;

@end

// The data model required for the linkage effect.
@interface AUCascadePickerModel : NSObject

@property (nonatomic,strong) AUCascadePickerSelectedRowItem *preSelected; /
/ The selected item transferred from the client.
@property (nonatomic, strong) AUCascadePickerSelectedRowItem *selectedItem;
// The selected data list that is automatically recorded in the current component.
@property (nonatomic, strong) NSArray<AUCascadePickerRowItemModel *> *dataList;
// The data list.
@property (nonatomic, strong) NSString *title; //
The picker title.

@end

@interface AUCascadePicker : AUPickerBaseView <UIPickerViewDataSource,
UIPickerViewDelegate>

@property (nonatomic, strong) AUCascadePickerModel *dataModel;
@property (nonatomic, assign) NSInteger numberOfComponents;
@property (nonatomic, weak) id <AUCascadePickerDelegate> linkageDelegate;

- (instancetype)initWithPickerModel:(AUCascadePickerModel *)model;

@end

// The callback for the Cancel and Completed buttons at the top.
@protocol AUCascadePickerDelegate <AUPickerBaseViewDelegate>
/*
 * Callback is performed when Cancel is clicked.
 */
- (void)cancelPickerView:(AUCustomDatePicker *)pickerView;

/*
 * Callback is performed when Completed is clicked. The selected items can be returned
through selectedRowInComponent.
 */
- (void)selectedPickerView:(AUCustomDatePicker *)pickerView

@end

JSAPI description
API
 antUIGetCascadePicker

Usage

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 234

AlipayJSBridge.call('antUIGetCascadePicker',
{
 title: 'nihao',// The cascade option title.
 selectedList:[{"name":"Hangzhou",subList:[{"name":"Shangcheng district"}]}],
 list: [
 {
 name: "Hangzhou",// The entry name.
 subList: [
 {
 name: "Xihu district",
 subList: [
 {
 name: "Gucui Street"
 },
 {
 name: "Wenxin Street"
 }
]
 },
 {
 name: "Shangcheng district",
 subList: [
 {
 name: "Yan'an Street"
 },
 {
 name: "Longxiangqiao Street"
 }
]
 }
]// The cascade sub-data list.
 }
]// The cascade data list.
},
function(result){
 console.log(result);
});

Input parameters

Name Type Description Required Version

title String The cascade control title. NO 10.1.2

selectedLis
t Json

The selected sub-items, in the same
format as Input parameters.
 ([{"name":"Hangzhou",subList:
[{"name":"Shangcheng
District"}]}])

NO 10.1.2

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 235

list Json The selector data list. YES 10.1.2

name String The entry name in list . YES 10.1.2

subList Json The sub-list in list . NO 10.1.2

fn function The callback function after selection is
complete. NO 10.1.2

Name Type Description Required Version

Output parameters

Name Type Description Version

success Bool Whether selection is complete. If selection is canceled,
false is returned. 10.1.2

result Json
The selected items, for example,
 [{"name":"Hangzhou",subList:
[{"name":"Shangcheng District"}]}]

10.1.2

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 236

model = [[AULinkagePickerModel alloc] init];

 NSMutableArray *modelList = [[NSMutableArray alloc] init];
 for (int i=0; i<6; i++)
 {
 AULinkagePickerRowItemModel *item = [[AULinkagePickerRowItemModel alloc] init];
 item.rowTitle = [NSString stringWithFormat:@"Level-1 %d", i];
 NSMutableArray *array = [[NSMutableArray alloc] init];
 for (int j=0; j<7; j++)
 {
 if (i == 0)
 {
 break;
 }
 AULinkagePickerRowItemModel *item1 = [[AULinkagePickerRowItemModel alloc] i
nit];
 item1.rowTitle = [NSString stringWithFormat:@"Level-2 %d", j];
 NSMutableArray *array1 = [[NSMutableArray alloc] init];
 for (int k=0; k<5; k++) {
 AULinkagePickerRowItemModel *item2 = [[AULinkagePickerRowItemModel alloc
] init];
 item2.rowTitle = [NSString stringWithFormat:@"Level-3 %d", k];
 [array1 addObject:item2];
 if (j == 1 || j== 2) {
 break;
 }
 }
 item1.rowSubList = array1;
 [array addObject:item1];
 if (i == 3 || i== 5) {
 break;
 }
 }
 item.rowSubList = array;
 [modelList addObject:item];
 }

 model.dataList = modelList;

 AULinkagePickerSelectedRowItem *item = [[AULinkagePickerSelectedRowItem alloc] init
];
 item.selectedLeftTitle = @"Level-1 0";
 item.selectedMiddleTitle = @"Level-2 0";
 item.selectedRightTitle = @"Level-3 0";

 model.selectedItem = item;

self.linkagePickerView = [[AULinkagePickerView alloc] initWithPickerModel:model];
self.linkagePickerView.linkageDelegate = self;
[self.linkagePickerView show];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 237

AUNoticeDialog specifies the style of a common dialog box. It references AlertView but does
not contain the blur background. The Window level of the dialog box follows the logic
 self.windowLevel = UIWindowLevelAlert - 1 .

API description
/**
The common dialog box style. It is the same as the system style but does not contain th
e blur background.
*/
@interface AUNoticeDialog : AUDialogBaseView

/**
The method of dialog box initialization without the button title.

@param title The title.
@param message The message details.
@return The AUNoticeDialog instance.
*/
- (instancetype)initWithTitle:(NSString *)title
message:(NSString *)message;

/**
The method of initializing the dialog box with the button title.

@param title The title.
@param message The message details.
@param delegate The AUDialogDelegate-compliant protocol object.
@param buttonTitle The button title list.
@return The AUNoticeDialog instance.
*/
- (instancetype)initWithTitle:(NSString *)title
message:(NSString *)message
delegate:(id<AUDialogDelegate>)delegate
buttonTitles:(NSString *)buttonTitle, ... NS_REQUIRES_NIL_TERMINATION;

- (instancetype)initWithCustomView:(UIView *)customView; // The custom view.

- (instancetype)init NS_UNAVAILABLE;

/**
The dialog box display method.
*/
- (void)show;

/**
Add a button and its callback method.

@param buttonTitle The button title.
@param actionBlock The callback of the button tapping action.
*/
- (void)addButton:(NSString *)buttonTitle actionBlock:(AUDialogActionBlock)actionBlock;

1.3.5.11. Notification dialog

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 238

/**
The method of closing the dialog box. It is similar to the
dismissWithClickedButtonIndex method of APAlertView.
*/
- (void)dismissWithClickedButtonIndex:(NSInteger)buttonIndex animated:(BOOL)animated;

/**
Set the text alignment mode.
@param alignment The alignment mode.
*/
- (void)setMessageAlignment:(NSTextAlignment)alignment;

Add a new dialog box
Use the block to add a callback of the button tapping action.

 AUNoticeDialog *dialog = [[AUNoticeDialog alloc] initWithTitle:@"Title" message:@"Me
ssage details"];
 [dialog addButton:@"Got it" actionBlock:^{
 NSLog(@"print pressed")
 }];
 [dialog addButton:@"OK" actionBlock:nil];
 [dialog show];

Use the delegate to add a callback of the button tapping action.

 AUNoticeDialog *dialog = [[AUNoticeDialog alloc] initWithTitle:@"Title" message:@"Me
ssage details" delegate:delegate buttonTitles:@"OK", nil];
 [dialog show];

 The delegate protocol is AUDialogDelegate, similar to UIAlertViewDelegate.

Create a dialog box in a simple way.

 NS_INLINE AUNoticeDialog *AUNoticeDialogWithTitle(NSString *title)
 NS_INLINE AUNoticeDialog *AUNoticeDialogWithTitleAndMessage(NSString *title, NSStri
ng *message)

Use APAlertView and UIAlertView
This section describes how to modify APAlertView and UIAlertView to AUNoticeDialog.
Most APIs of AUNoticeDialog support APAlertView and UIAlertView. In most cases, you may
only need to modify the class name. The detailed operations are as follows:

Use an API of AUNoticeDialog that supports APAlertView to create a dialog box.

 - (instancetype)initWithTitle:(NSString *)title
 message:(NSString *)message
 delegate:(id<AUDialogDelegate>)delegate
 cancelButtonTitle:(NSString *)cancelButtonTitle
 otherButtonTitles:(NSString *)otherButtonTitles, ...
NS_REQUIRES_NIL_TERMINATION;

Change the class name from [[APAlertView alloc] initWithxxxxxx] to [[AUNoticeDial

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 239

Change the class name from [[APAlertView alloc] initWithxxxxxx] to [[AUNoticeDial
og alloc] initWithxxxxxx] .
Use the following method to create UIAlertView. No modification is required, because
relevant modification has been added to the API.

 NS_INLINE UIAlertView *UIAlertViewWithTitleAndMessage(NSString *title, NSString *me
ssage)
 //
 NS_INLINE UIAlertView *UIAlertViewWithTitle(NSString *title)
 NS_INLINE UIAlertView *UIAlertViewWithMessage(NSString *message)

Use the addButtonWithTitle API that supports APAlertView to create a dialog box. No
modification is required.

 - (NSInteger)addButtonWithTitle:(NSString *)title callback:(void (^)(int index, NSS
tring *title))callback;

 /**
 @brief Add a cancel button and its callback.
 @param title The button title.
 @param callback The callback.
 */
 - (NSInteger)addCancelButtonWithTitle:(NSString *)title callback:(void (^)(int inde
x, NSString *title))callback;

 /**
 @brief Add a button.
 @param title The button title.
 */
 - (NSInteger)addButtonWithTitle:(NSString *)title;

 /**
 @brief Add a cancel button.
 @param title The button title.
 */
 - (NSInteger)addCancelButtonWithTitle:(NSString *)title;

 +(void)setBackgroundMode:(BOOL)isBackMode;

Use the following method of UIAlertView to create a dialog box. No modification is
required. AUNoticeDialog has a method of the same name.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 240

 /**
 The method of closing the dialog box. It is similar to the
dismissWithClickedButtonIndex method of APAlertView.
 */
 - (void)dismissWithClickedButtonIndex:(NSInteger)buttonIndex animated:
(BOOL)animated
 - (nullable NSString *)buttonTitleAtIndex:(NSInteger)buttonIndex;
 /**
 Specify the number of buttons. (It is similar to numberOfButtons of APAlertView.)
 */
 @property(nonatomic,readonly) NSInteger numberOfButtons;

 /**
 The index of the cancel button. (It is similar to cancelButtonIndex of
APAlertView.)
 */
 @property(nonatomic) NSInteger cancelButtonIndex;

When you call the following APIs of APAlertView, you only need to change the method
name.

Change the showAlert method to show .
For example, change [alertView showAlert] to [alertView show] .
Change the removeAllAlerviews method to dismissAll .
For example, change [APAlertView removeAllAlerviews] to [AUNoticeDialog
dismissAll] .

To use the input box feature of APAlertView or UIAlertView, replace the corresponding
methods with those of AUInputDialog. The operations are the same as those of
AUNoticeDialog.

Note
The class file is AUInputDialog.h.

Use UIAlertController
Modify the creation method as follows:

 [UIAlertController alertControllerWithTitle:title message:message
preferredStyle:UIAlertControllerStyleAlert]
 Modified to:
 [[AUNoticeDialog alloc] initWithTitle:@"Title" message:@"Message details"]

Modify the button and callback addition method as follows:

 [UIAlertAction actionWithTitle:title style:(UIAlertActionStyle)style
handler:handler]
 Modified to:
 [dialog addButton:@"Got it" actionBlock:^{
 NSLog(@"xxxx");
 }]

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 241

Standard style

 AUNoticeDialog *dialog = [[AUNoticeDialog alloc] initWithTitle:@"Standard control" m
essage:@"The controls of the same type must have the same name on two platforms. The
prefix in a control name is \"AU\". Custom properties of a control are named in the c
amel-case format. Note: Some controls may be implemented in one platform but not in t
he other platform."] ;
 [dialog addButton:@"Got it" actionBlock:nil];
 [dialog addButton:@"OK" actionBlock:nil];
 [dialog show];

Custom style

 UIView *customView = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 240, 60)];
 customView.backgroundColor = [UIColor greenColor];

 AUNoticeDialog *dialog = [[AUNoticeDialog alloc] initWithCustomView:customView];
 [dialog addButton:@"Cancel" actionBlock:nil];
 [dialog addButton:@"OK" actionBlock:nil];
 [dialog show];

ACustomDatePicker is a custom date selection control and currently supports the following
modes:

 AUDatePickerModeTime : hour/minute, 24-hour clock
 AUDatePickerModeDate : year/month/day
 AUDatePickerModeDateAndTime : month/day/day of week/hour/minute, 24-hour clock

Note
The year is defined based on minimumDate and is 2000 (leap year) by default.
Therefore, February 29 exists.

 AUDatePickerYear : year
 AUDatePickerYearMonth : year/month

Sample images
AUDatePickerModeTime

1.3.5.12. Custom date picker

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 242

AUDatePickerModeDate

AUDatePickerModeDateAndTime

AUDatePickerYear

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 243

AUDatePickerYearMonth

With a custom bottom view

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 244

API description
AUCustomDatePicker.h

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 245

// The custom bottom view.
@property (nonatomic,strong) UIView *bottomView;

/**
 * Create a picker, in AUDatePickerModeDate mode by default.
 *
 */
+ (AUCustomDatePicker *)pickerViewWithTitle:(NSString *)title;

+ (AUCustomDatePicker *)pickerViewWithTitle:(NSString *)title pickerMode:
(AUCustomDatePickerMode)mode;

/**
 * Set an available date range.
 @param minDate The earliest time (included), which is 00:00:00 on January 1, 2000 by d
efault.
 @param maxDate The latest time (included), which is 23:59:59 on December 31, 2050 by d
efault.
 */
- (void) setTimeDateminDate:(NSDate *)minDate MaxDate:(NSDate *)maxDate;

/**
 @param currentDate The time selected by default.
 */
- (void) setCurrentDate:(NSDate *) currentDate animated:(BOOL) animated;

/**
 Show the date selection control.
 */
-(void) show;

/**
 Hide the date selection control.
 */
-(void) hide;

Code sample
Create

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 246

 self.apCustomDatePickerView = [AUCustomDatePicker
pickerViewWithTitle:@"AUDatePickerYearMonth" pickerMode:AUDatePickerYearMonth];

 UIView *customBottomView = [[UIView alloc]initWithFrame:CGRectMake(0, 0, AUCommonUI
GetScreenWidth(), 40)];
 customBottomView.backgroundColor = RGB(0x00AAEE);
 self.apCustomDatePickerView.bottomView = customBottomView;

 [self.apCustomDatePickerView setCurrentDate:[NSDate date] animated:NO];
 self.apCustomDatePickerView.tag = 1004;
 self.apCustomDatePickerView.delegate = self;
 [self.view addSubview:self.apCustomDatePickerView];

Show/Hide

 [self.apCustomDatePickerView show];
 [self.apCustomDatePickerView hide];

Value

 - (void)cancelPickerView:(AUCustomDatePicker *)pickerView
 {
 [self.apCustomDatePickerView hide];
 }

 - (void)selectedPickerView:(AUCustomDatePicker *)pickerView
 {

 NSDate *selectedDate = picker.selectedDate;

 NSDateFormatter *formatter = [[NSDateFormatter alloc]init];
 formatter.dateFormat = @"YYYY-MM-dd HH:mm:ss";

 [self.textLabel setText:[formatter stringFromDate:selectedDate]];

 [pickerView hide];

 }

AUDragLoadingView and Aupullloadingview provide the loading style when the page is pulled
up or down.
The following controls are not customized for businesses and must be switched to the
AUPullLoadingView or AUDragLoadingView control:
CommonUI: ODRefreshControl, APCircleRefreshControl, EGORefreshTableHeaderView, and
APNextPagePullView

Sample image

1.3.6. Loading components

1.3.6.1. Pull-up refresh control

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 247

API description
AUDragLoadingView.h

 //
 // AUDragLoadingView.h
 // AntUI
 //

 #import <AntUI/AntUI.h>

 @interface AUDragLoadingView : AUPullLoadingView

 @end

AUPullLoadingView.h
For more information, see Pull loading view control.

Sample code
//
// APRefreshTableViewController.m

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 248

// APRefreshTableViewController.m
// UIDemo
//

#import "APRefreshTableViewController.h"
@interface APRefreshTableViewController ()
{
 BOOL _headerReloading;
 BOOL _footerReloading;
 BOOL _isHeader;
}
@property(nonatomic,strong)AUPullLoadingView *refreshHeaderView;
@property(nonatomic,strong)AUDragLoadingView *refreshFooterView;
@property(nonatomic, strong) UITableView *tableView;
@property(nonatomic, strong) NSMutableArray* listArray;

@end

@implementation APRefreshTableViewController

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 // Custom initialization
 NSArray *array = @[@"0",
 @"1",
 @"2",
 @"3",
 @"4",
 @"5",
 @"6",
 @"7",
 @"8",
 @"9",
 @"10",
 @"11",
 @"12",
 @"13",
 @"14",
 @"15",
 @"16",
 @"17",
 @"18",
 @"19"];
 self.listArray = [NSMutableArray arrayWithArray:array];
 }
 return self;
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 249

 // Do any additional setup after loading the view.
 self.edgesForExtendedLayout = UIRectEdgeNone;
// self.navigationItem.rightBarButtonItem = [APUtil
getBarButtonWithTitle:RightBarButtonTitle target:self];

 self.tableView = [[UITableView alloc]initWithFrame:self.view.bounds
style:UITableViewStylePlain];
 self.tableView.dataSource = self;
 self.tableView.delegate = self;
 self.tableView.backgroundColor = [UIColor colorWithRGB:0xf5f5f9];
 self.tableView.separatorColor = [UIColor colorWithRGB:0xdddddd];
 [self.view addSubview:self.tableView];

 if (_refreshHeaderView == nil) {

 AUPullLoadingView *view = [[AUPullLoadingView alloc]
initWithFrame:CGRectMake(0.0f, 0.0f - self.tableView.bounds.size.height,
self.view.frame.size.width, self.tableView.bounds.size.height)];
 view.delegate = self;
 [view ShowLastPullDate:YES];
 [view ShowStatusLabel:NO];

 [self.tableView addSubview:view];
 _refreshHeaderView = view;
 }
 [_refreshHeaderView refreshLastUpdatedDate];

 if (_refreshFooterView == nil) {
 AUDragLoadingView *view = [[AUDragLoadingView alloc]
initWithFrame:CGRectMake(0, 0, self.view.bounds.size.width, 48)];
 view.delegate = self;
 [view setPullUp:@"release to load more"];
 [view setRelease:@"Relax"];
 self.tableView.tableFooterView = view;
 _refreshFooterView = view;
 }

 _isHeader = YES;
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

#pragma tableview datasource
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
(NSInteger)section
{

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 250

{
 return _listArray.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexP
ath *)indexPath
{
 static NSString *CellIdentifier = @"RefreshCell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (nil == cell)
 {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 }
 cell.textLabel.text = _listArray[indexPath.row];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

 return cell;
}

#pragma mark -
#pragma mark Data Source Loading / Reloading Methods

- (void)reloadHeaderTableViewDataSource{

 // should be calling your tableviews data source model to reload
 // put here just for demo
 NSInteger first = [_listArray[0] integerValue] - 1;
 [_listArray insertObject:[NSString stringWithFormat:@"%li",(long)first] atIndex:0];

 _headerReloading = YES;
}

- (void)doneLoadingHeaderTableViewData{

 // model should call this when its done loading
 _headerReloading = NO;
 [_refreshHeaderView
egoRefreshScrollViewDataSourceDidFinishedLoading:self.tableView];
 [self.tableView reloadData];

}

- (void)reloadFooterTableViewDataSource{

 // should be calling your tableviews data source model to reload
 // put here just for demo
 NSInteger count = [_listArray count];
 NSInteger last = [_listArray[count-1] integerValue] + 1;
 [_listArray addObject:[NSString stringWithFormat:@"%li",(long)last]];

 _footerReloading = YES;
}

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 251

- (void)doneLoadingFooterTableViewData{

 // model should call this when its done loading
 _footerReloading = NO;
 [_refreshFooterView
egoRefreshScrollViewDataSourceDidFinishedLoading:self.tableView];
 [self.tableView reloadData];

}

#pragma mark -
#pragma mark UIScrollViewDelegate Methods

- (void)scrollViewDidScroll:(UIScrollView *)scrollView
{
 if (scrollView.contentInset.top + scrollView.contentOffset.y < 0) {
 _isHeader = YES;
 } else {
 _isHeader = NO;
 }

 if (_isHeader) {
 [_refreshHeaderView egoRefreshScrollViewDidScroll:scrollView];
 } else {
 [_refreshFooterView egoRefreshScrollViewDidScroll:scrollView];
 }
}

- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView willDecelerate:
(BOOL)decelerate
{
 if (_isHeader) {
 [_refreshHeaderView egoRefreshScrollViewDidEndDragging:scrollView];
 } else {
 [_refreshFooterView egoRefreshScrollViewDidEndDragging:scrollView];
 }
}

#pragma mark -
#pragma mark EGORefreshTableHeaderDelegate Methods

- (void)egoRefreshTableHeaderDidTriggerRefresh:(AUPullLoadingView*)view
{
 if (_isHeader) {
 [self reloadHeaderTableViewDataSource];
 [self performSelector:@selector(doneLoadingHeaderTableViewData) withObject:nil
afterDelay:2.0];
 } else {
 [self reloadFooterTableViewDataSource];
 [self performSelector:@selector(doneLoadingFooterTableViewData) withObject:nil
afterDelay:2.0];
 }

}

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 252

- (BOOL)egoRefreshTableHeaderDataSourceIsLoading:(AUPullLoadingView*)view
{
 if (_isHeader) {
 return _headerReloading;
 } else {
 return _footerReloading; // should return if data source model is reloading
 }

}

- (NSDate*)egoRefreshTableHeaderDataSourceLastUpdated:(AUPullLoadingView*)view{

 return [NSDate date]; // should return date data source was last changed

}

@end

The AUDragLoadingView and the Aupullloadingview provide the loading style when the page
is pulled up or down.
The following controls are not customized for businesses and must be switched to the
AUPullLoadingView or AUDragLoadingView control.
CommonUI: ODRefreshControl, APCircleRefreshControl, EGORefreshTableHeaderView, and
APNextPagePullView.

Sample image

1.3.6.2. Pull-down refresh component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 253

API description
AUPullLoadingView.h

 //
 // EGORefreshTableHeaderView.h
 // Demo
 //

 #import <UIKit/UIKit.h>
 #import <QuartzCore/QuartzCore.h>

 typedef enum {
 AUEGOPullingDown = 1000,
 AUEGOPullingUp
 } AUEGOPullDirection;

 typedef enum{
 AUEGOOPullRefreshPulling = 0,
 AUEGOOPullRefreshNormal,
 AUEGOOPullRefreshLoading,
 } AUEGOPullRefreshState;

 @class AULoadingIndicatorView;
 @protocol AURefreshLoadingViewDelegate;
 /*!

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 254

 /*!
 @class AURefreshLoadingView
 @abstract UIView
 @discussion This class is migrated from EGORefreshTableHeaderView. The class is
used to load more views through pulling up or down.
 */

 @interface AUPullLoadingView : UIView {

 __weak id _delegate;
 AUEGOPullRefreshState _state;

 UILabel *_lastUpdatedLabel;
 UILabel *_statusLabel;
 // APActivityIndicatorView *_activityView;
 AUEGOPullDirection _pullDirection;

 BOOL isAutoPullFlag;
 }
 @property(nonatomic, strong) AULoadingIndicatorView *activityView;

 /**
 * Set the text for pull-up-to-load in initial state. The default value is "Pull u
p to load more", which is displayed upon pull-up.
 *
 * @param tip The tip text.
 *
 */
 - (void)setPullUp:(NSString *)tip;

 /**
 * Set the text for pull-down fresh in initial state. The default value is "Pull d
own to refresh", which is not displayed upon pull-down.
 *
 * @param tip The tip text.
 *
 */
 - (void)setPullDown:(NSString *)tip;

 /**
 * Set the text for the loading process displayed after release. The default value
is "Loading".
 * Note: The tip text is displayed in the loading process upon pull-up but not pul
l-down by default.
 *
 * @param tip The tip text.
 *
 */
 - (void)setLoading:(NSString *)tip;

 /**
 * The text displayed to prompt a user to release. The default value is "Release t
o refresh".
 *
 * @param tip The tip text.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 255

 * @param tip The tip text.
 *
 */
 - (void)setRelease:(NSString *)tip;

 /**
 * Specify whether to display the text about the last update. The text is not disp
layed by default.
 *
 * @param isOpen If this parameter is set to YES, the text is displayed.
 *
 */
 - (void)ShowLastPullDate:(BOOL)isOpen;

 /**
 * Specify whether to display the text for the loading process.
 *
 * Default: No text is displayed upon pull-down refresh, and "Loading" is displaye
d upon pull-up-to-load.
 *
 * @param isShow If this parameter is set to YES, the text is displayed.
 *
 */
 - (void)ShowStatusLabel:(BOOL)isShow;

 - (void)setDateFormat:(NSDateFormatter *)dateFromatter;

 - (void)setAutoPull:(BOOL)isAutoPull;

 @property(nonatomic,weak) id <AURefreshLoadingViewDelegate> delegate;

 - (void)refreshLastUpdatedDate;
 - (void)egoRefreshScrollViewDidScroll:(UIScrollView *)scrollView;
 - (void)egoRefreshScrollViewDidEndDragging:(UIScrollView *)scrollView;
 - (void)egoRefreshScrollViewDataSourceDidFinishedLoading:(UIScrollView
*)scrollView;
 - (void)egoRefreshScrollViewDataSourceDidFinishedLoadingWithoutUpdate:(UIScrollView
*)scrollView;

 - (void)autoUpdateScrollView:(UIScrollView *)scrollView;

 #pragma Mark -- for LegacySystem not recommend
 @property(nonatomic,assign) AUEGOPullRefreshState state;
 @property(nonatomic,retain) NSString *statusText;
 @property (nonatomic, retain) UILabel *lastUpdatedLabel;
 @property (nonatomic, retain) UILabel *statusLabel;

 - (void)setCurrentDate;

 @end

 @protocol AURefreshLoadingViewDelegate
 - (void)egoRefreshTableHeaderDidTriggerRefresh:(AUPullLoadingView*)view;
 - (BOOL)egoRefreshTableHeaderDataSourceIsLoading:(AUPullLoadingView*)view;
 @optional

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 256

 @optional
 - (NSDate*)egoRefreshTableHeaderDataSourceLastUpdated:(AUPullLoadingView*)view;
 @end

AUDragLoadingView.h
For more information, see Drag loading view control.

Sample code
//
// APRefreshTableViewController.m
// UIDemo
//

#import "APRefreshTableViewController.h"
@interface APRefreshTableViewController ()
{
 BOOL _headerReloading;
 BOOL _footerReloading;
 BOOL _isHeader;
}
@property(nonatomic,strong)AUPullLoadingView *refreshHeaderView;
@property(nonatomic,strong)AUDragLoadingView *refreshFooterView;
@property(nonatomic, strong) UITableView *tableView;
@property(nonatomic, strong) NSMutableArray* listArray;

@end

@implementation APRefreshTableViewController

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 // Custom initialization
 NSArray *array = @[@"0",
 @"1",
 @"2",
 @"3",
 @"4",
 @"5",
 @"6",
 @"7",
 @"8",
 @"9",
 @"10",
 @"11",
 @"12",
 @"13",
 @"14",
 @"15",
 @"16",
 @"17",
 @"18",

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 257

 @"19"];
 self.listArray = [NSMutableArray arrayWithArray:array];
 }
 return self;
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view.
 self.edgesForExtendedLayout = UIRectEdgeNone;
// self.navigationItem.rightBarButtonItem = [APUtil
getBarButtonWithTitle:RightBarButtonTitle target:self];

 self.tableView = [[UITableView alloc]initWithFrame:self.view.bounds
style:UITableViewStylePlain];
 self.tableView.dataSource = self;
 self.tableView.delegate = self;
 self.tableView.backgroundColor = [UIColor colorWithRGB:0xf5f5f9];
 self.tableView.separatorColor = [UIColor colorWithRGB:0xdddddd];
 [self.view addSubview:self.tableView];

 if (_refreshHeaderView == nil) {

 AUPullLoadingView *view = [[AUPullLoadingView alloc]
initWithFrame:CGRectMake(0.0f, 0.0f - self.tableView.bounds.size.height,
self.view.frame.size.width, self.tableView.bounds.size.height)];
 view.delegate = self;
 [view ShowLastPullDate:YES];
 [view ShowStatusLabel:NO];

 [self.tableView addSubview:view];
 _refreshHeaderView = view;
 }
 [_refreshHeaderView refreshLastUpdatedDate];

 if (_refreshFooterView == nil) {
 AUDragLoadingView *view = [[AUDragLoadingView alloc]
initWithFrame:CGRectMake(0, 0, self.view.bounds.size.width, 48)];
 view.delegate = self;
 [view setPullUp:@"Pull up to load more"];
 [view setRelease:@"Relax"];
 self.tableView.tableFooterView = view;
 _refreshFooterView = view;
 }

 _isHeader = YES;
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 258

#pragma tableview datasource
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
(NSInteger)section
{
 return _listArray.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexP
ath *)indexPath
{
 static NSString *CellIdentifier = @"RefreshCell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (nil == cell)
 {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 }
 cell.textLabel.text = _listArray[indexPath.row];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

 return cell;
}

#pragma mark -
#pragma mark Data Source Loading / Reloading Methods

- (void)reloadHeaderTableViewDataSource{

 // should be calling your tableviews data source model to reload
 // put here just for demo
 NSInteger first = [_listArray[0] integerValue] - 1;
 [_listArray insertObject:[NSString stringWithFormat:@"%li",(long)first] atIndex:0];

 _headerReloading = YES;
}

- (void)doneLoadingHeaderTableViewData{

 // model should call this when its done loading
 _headerReloading = NO;
 [_refreshHeaderView
egoRefreshScrollViewDataSourceDidFinishedLoading:self.tableView];
 [self.tableView reloadData];

}

- (void)reloadFooterTableViewDataSource{

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 259

 // should be calling your tableviews data source model to reload
 // put here just for demo
 NSInteger count = [_listArray count];
 NSInteger last = [_listArray[count-1] integerValue] + 1;
 [_listArray addObject:[NSString stringWithFormat:@"%li",(long)last]];

 _footerReloading = YES;
}

- (void)doneLoadingFooterTableViewData{

 // model should call this when its done loading
 _footerReloading = NO;
 [_refreshFooterView
egoRefreshScrollViewDataSourceDidFinishedLoading:self.tableView];
 [self.tableView reloadData];

}

#pragma mark -
#pragma mark UIScrollViewDelegate Methods

- (void)scrollViewDidScroll:(UIScrollView *)scrollView
{
 if (scrollView.contentInset.top + scrollView.contentOffset.y < 0) {
 _isHeader = YES;
 } else {
 _isHeader = NO;
 }

 if (_isHeader) {
 [_refreshHeaderView egoRefreshScrollViewDidScroll:scrollView];
 } else {
 [_refreshFooterView egoRefreshScrollViewDidScroll:scrollView];
 }
}

- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView willDecelerate:
(BOOL)decelerate
{
 if (_isHeader) {
 [_refreshHeaderView egoRefreshScrollViewDidEndDragging:scrollView];
 } else {
 [_refreshFooterView egoRefreshScrollViewDidEndDragging:scrollView];
 }
}

#pragma mark -
#pragma mark EGORefreshTableHeaderDelegate Methods

- (void)egoRefreshTableHeaderDidTriggerRefresh:(AUPullLoadingView*)view
{
 if (_isHeader) {
 [self reloadHeaderTableViewDataSource];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 260

 [self reloadHeaderTableViewDataSource];
 [self performSelector:@selector(doneLoadingHeaderTableViewData) withObject:nil
afterDelay:2.0];
 } else {
 [self reloadFooterTableViewDataSource];
 [self performSelector:@selector(doneLoadingFooterTableViewData) withObject:nil
afterDelay:2.0];
 }

}

- (BOOL)egoRefreshTableHeaderDataSourceIsLoading:(AUPullLoadingView*)view
{
 if (_isHeader) {
 return _headerReloading;
 } else {
 return _footerReloading; // should return if data source model is reloading
 }

}

- (NSDate*)egoRefreshTableHeaderDataSourceLastUpdated:(AUPullLoadingView*)view{

 return [NSDate date]; // should return date data source was last changed

}

@end

AULoadingView is a new loading control that provides a loading page with progress indicator,
loading progress, and loading text.

API description
AULoadingView.h

1.3.6.3. Loading component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 261

//
// AULoadingView.h
// AntUI
//

#import <UIKit/UIKit.h>

/**
 Set the middle loading control to display a percentage.
 */
@interface AULoadingView : UIView

@property (nonatomic,assign) BOOL isShowProgressPer; // Specify whether to display the
progress percentage. The default value is NO.
@property (nonatomic,assign) BOOL isShowLoadingText; // Specify whether to display the
loading text. The default value is NO.

/**
 Set the progress percentage.

 @param progress The percentage.
 */
- (void) setProgressPer:(CGFloat) progress;

@end

Sample code
//
// AULoadingViewController.m
// AntUI
//

#import "AULoadingViewController.h"
#import "AULoadingView.h"

@interface AULoadingViewController ()
@property (nonatomic,strong) AULoadingView * loadingView;
@property (nonatomic,strong) AULoadingView * loadingView2;
@property (nonatomic,strong) AULoadingView * loadingView3;

@property (nonatomic,assign) CGFloat progress;

@end

@implementation AULoadingViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 self.view.backgroundColor = [UIColor whiteColor];
 // Do any additional setup after loading the view.
 self.loadingView = [[AULoadingView alloc] init];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 262

 self.loadingView = [[AULoadingView alloc] init];
 self.loadingView.center = CGPointMake(200, 200);
 self.loadingView.isShowProgressPer = YES;
 self.loadingView.isShowLoadingText = YES;
 [self.view addSubview:self.loadingView];

 self.loadingView2 = [[AULoadingView alloc] init];
 self.loadingView2.center = CGPointMake(200, 150);
// self.loadingView2.isShowProgressPer = YES;
// self.loadingView2.isShowLoadingText = YES;
 [self.view addSubview:self.loadingView2];

 self.loadingView3 = [[AULoadingView alloc] init];
 self.loadingView3.center = CGPointMake(200, 300);
// self.loadingView3.isShowProgressPer = YES;
 self.loadingView3.isShowLoadingText = YES;
 [self.view addSubview:self.loadingView3];

 [NSTimer scheduledTimerWithTimeInterval:0.1
 target:self
 selector:@selector(loadingTimer:)
 userInfo:nil
 repeats:YES];

}

- (void) loadingTimer:(id)timer
{
 self.progress += 0.01;
 if ((int)(self.progress *100) > 100) {
 self.progress = 0.0;
 [timer invalidate];
 return;
 }
 [self.loadingView setProgressPer:self.progress];
 [self.loadingView2 setProgressPer:self.progress];
 [self.loadingView3 setProgressPer:self.progress];

}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

/*
#pragma mark - Navigation

// In a storyboard-based application, you will often want to do a little preparation be
fore navigation
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 263

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
 // Get the new view controller using [segue destinationViewController].
 // Pass the selected object to the new view controller.
}
*/

@end

AUResultView displays status result views with an image.

API description

1.3.7. Result page component

1.3.7.1. Result page component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 264

/**
The result view that displays the status.
*/
@interface AUResultView : UIView

/**
The image at the top.
*/
@property (nonatomic, strong) UIImage *icon;

/**
The middle-sized title in black at the top of the text field.
*/
@property (nonatomic, strong) NSString *mainTitleText;

/**
The large-sized title in black in the middle.
*/
@property (nonatomic, strong) NSString *midTitleText;

/**
The message in gray at the bottom.
*/
@property (nonatomic, strong) NSString *bottomMessage;

/**
Specify whether strikethrough is added to the message at the bottom.
*/
@property (nonatomic, assign) BOOL messageThrough;

/**
The expected height of the view. You can obtain the value after initialization is compl
eted.
*/
@property (nonatomic, assign, readonly) CGFloat expectHeight;

/**
The ResultView instance method.

@param icon The image.
@param mainTitleText The first title.
@param midTitleText The large-sized title in the middle.
@param bottomMessage The message in gray at the bottom.
@param messageThrough Specify whether strikethrough is added to the message.
@return The AUResultView instance.
*/
- (instancetype)initWithIcon:(UIImage *)icon mainTitleText:(NSString *)mainTitleText mi
dTitleText:(NSString *)midTitleText bottomMessage:(NSString *)bottomMessage messageThro
ugh:(BOOL)messageThrough;

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 265

UIImage *image = AUBundleImage(@"alipay-60");
AUResultView *resultView = [[AUResultView alloc] initWithIcon:image
mainTitleText:@"Payment succeeded"
midTitleText:@"998.00"
bottomMessage:@"CNY 1098.00"
messageThrough:YES];
resultView.frame = CGRectMake(marginX, originY, AUCommonUIGetScreenWidth()-2*marginX, r
esultView.expectHeight);
[self.view addSubview:resultView];

AUNetErrorView is the control that displays empty page errors, including two prompt styles:
Simple style (default): includes five types.
Illustrated style: includes five types.

The two styles differ in the used prompt images, as shown in the following sample images.

Sample images
Simple style (half-screen)

Complex style (full-screen)

1.3.7.2. Exception page component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 266

API description
typedef NS_ENUM(NSInteger, AUNetErrorType) {

 AUNetErrorTypeLimit, // Throttling.
 AUNetErrorTypeAlert, // System busy(error) or warning.
 AUNetErrorTypeNetworkError, // Poor network
 AUNetErrorTypeEmpty, // Empty content.
 AUNetErrorTypeNotFound, // Page not found. (The image is the same as that used
in AUNetErrorTypeAlert.)
 AUNetErrorTypeUserLogout, // User logout.

 AUNetErrorTypeFailure __attribute__((deprecated)) = AUNetErrorTypeNetworkError,
 AUNetErrorTypeError __attribute__((deprecated)) = AUNetErrorTypeNetworkError,
// No network connection.
 AUNetErrorTypeSystemBusy __attribute__((deprecated)) = AUNetErrorTypeAlert,
// Warning.
 APExceptionEnumNetworkError __attribute__((deprecated)) =
AUNetErrorTypeNetworkError, // No network connection.
 APExceptionEnumEmpty __attribute__((deprecated)) = AUNetErrorTypeEmpty, /
/ Empty content.
 APExceptionEnumAlert __attribute__((deprecated)) = AUNetErrorTypeAlert, /
/ Warning.
 APExceptionEnumLimit __attribute__((deprecated)) = AUNetErrorTypeLimit, /
/ Throttling.
 APExceptionEnumNetworkFailure __attribute__((deprecated)) =
AUNetErrorTypeNetworkError, // The network signal strength is poor
};

typedef NS_ENUM(NSInteger, AUNetErrorStyle) {
 AUNetErrorStyleMinimalist, // The simple style.
 AUNetErrorStyleIlustration, // The complex style.

 APExceptionStyleIlustration __attribute__((deprecated)) =
AUNetErrorStyleIlustration, // The complex style.
 APExceptionStyleMinimalist __attribute__((deprecated)) = AUNetErrorStyleMinimalist
// The simple style.
};

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 267

/**
 The control that displays empty page errors.

 Two prompt styles are supported:
 1. Simple style (default): includes three types.
 2. Illustrate style: includes seven types.

 The two styles differ in the used prompt images.
 */
 @interface AUNetErrorView : UIView

 @property(nonatomic, strong, readonly) UIButton *actionButton; // The default
text is refresh.
 @property(nonatomic, strong, readonly) UIImageView *iconImageView; // The icon vie
w.
 @property(nonatomic, strong, readonly) UILabel *infoLabel; // The label of
the primary prompt text.
 @property(nonatomic, strong, readonly) UILabel *detailLabel; // The label of
the detailed prompt text.

 @property(nonatomic, strong) NSString *infoTitle; // The primary t
ext.
 @property(nonatomic, strong) NSString *detailTitle; // The secondary
text.

 /**
 * Initialize the error view and set the error style and type.
 * (When target and action are empty, the refresh button will not be displayed.)
 *
 * @param frame Required. The coordinates of the view.
 * @param style Required. The complex or simple style.
 * @param type Required. The error type.
 * @param target The object to be processed in the refresh event.
 * @param action The method of processing the refresh event.
 *
 * @return APExceptionView
 */
 - (id)initWithFrame:(CGRect)frame
 style:(AUNetErrorStyle)style
 type:(AUNetErrorType)type
 target:(id)target
 action:(SEL)action;

 /**
 * Initialize the error view and display it on the specified view.
 * (When target and action are empty, the refresh button will not be displayed.)
 *
 * @param parent Required. The superView of view.
 * @param style Required. error style, the complex or simple style.
 * @param type Required. The error type.
 * @param target The object to be processed in the refresh event.
 * @param action The method of processing the refresh event.
 *
 * @return APExceptionView

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 268

 * @return APExceptionView
 */
 + (id)showInView:(UIView *)parent
 style:(AUNetErrorStyle)style
 type:(AUNetErrorType)type
 target:(id)target
 action:(SEL)action;

 /**
 * Cancel the display of the error view.
 */
 - (void)dismiss;

 /**
 * The countdown, which can only be used in the case of throttling.
 * If completeBlock is nil and the business does not set a clicking response event for
actionButton, the countdown function does not take effect.
 * If completeBlock isn't nil, directly execute completeBlock and hide actionButton whe
n the countdown is over.
 * To call getActionButton to add a button response event, ensure that the actionButton
response event has been added.
 */
- (void)setCountdownTimeInterval:(NSInteger)startTime // The countdown start time.
 completeBlock:(void (^)(void))completeBlock; // Countdown ends.

 @end

Sample code
netErrorView = [[AUNetErrorView alloc] initWithFrame:CGRectMake(0,
CGRectGetMaxY(label.frame) + 5, self.view.width, 300) style:AUNetErrorStyleIlustration
type:AUNetErrorTypeError target:self action:@selector(pressedNetErrorView)];
 netErrorView.detailTitle = @"AUNetErrorTypeError type";
 [self.view addSubview:netErrorView];

 // Set the countdown.
 [netErrorView setCountdownTimeInterval:10 completeBlock:^{
 NSLog(@"Countdown ends");
 }];

AUNumKeyboards is a custom numeric keypad component.

Sample images
Common mode

1.3.8. Numeric keypad component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 269

Chat mode

API description
typedef NS_ENUM(NSInteger, AUNumKeyboardMode) {
 AUNumKeyboardModeCommon, // The numeric keypad is in common mode.
 AUNumKeyboardModeChat, // The keypad is in chat mode.
 AUNumKeyboardModeInvalid // The keypad is in invalid mode and unavailable.
};

/**
 Define a numeric keypad.
 */
@interface AUNumKeyboards : UIView

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 270

@interface AUNumKeyboards : UIView

/**
 * Create a numeric keypad component, which uses the common mode by default.
 *
 * @return Return the initialized numeric keypad component.
 */
+ (AUNumKeyboards *)sharedKeyboard;

/**
 * Create a numeric keypad component.
 *
 * @param mode The numeric keypad mode.
 *
 * @return Return the initialized numeric keypad component.
 */
+ (AUNumKeyboards *)sharedKeyboardWithMode:(AUNumKeyboardMode)mode;

/**
 * Manually set textInput. The Y-coordinate of the numeric keypad needs to be set exte
rnally.
 */
@property (nonatomic, weak) id<UITextInput> textInput;

/**
 * The ID card number.
 */
@property (nonatomic, assign) BOOL idNumber;

/**
 * Set the numeric keypad mode.
 */
@property (nonatomic, assign, readonly) AUNumKeyboardMode mode;

/**
 * Specify whether to hide the decimal point.
 */
@property (nonatomic, assign) BOOL dotHidden;

/**
 * Specify whether to hide the numeric keypad.
 */
@property (nonatomic, assign) BOOL dismissHidden;

/**
 * Specify whether the submit button is clickable.
 */
@property (nonatomic, assign) BOOL submitEnable;

/**
 * The text of the submit button.
 * Note: To ensure the visual requirement, the text supports a maximum of six characte
rs.
 */
@property (nonatomic, strong) NSString *submitText;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 271

Code sample
UITextField *numTextField = ...
numTextField.inputView = [AUNumKeyboards
sharedKeyboardWithMode:AUNumKeyboardModeCommon] ; // The chat mode parameter: AUNumKeyb
oardModeChat.
[self.view addSubview:numTextField];

AUPopTipView is a boot prompt component.

API description
typedef NS_ENUM(NSInteger, AUPopViewIndicatorDirection) {
 AUPopViewIndicatorDirectionUp,
 AUPopViewIndicatorDirectionDown,
};

@interface AUPopTipView : AUPopDrawBoardView

AU_UNAVAILABLE_INIT

@property (nonatomic, assign) AUPopViewIndicatorDirection indicatorDirection;

- (void)dismiss:(BOOL)animated;

+ (instancetype)showFromView:(UIView *)fromView
 fromPoint:(CGPoint)fromPoint
 toView:(UIView *)toView
 animated:(BOOL)animated
 withText:(NSString *)text
 buttonTitle:(NSString *)buttonTitle;

@end

Sample code

1.3.9. Guidance component

1.3.9.1. Prompt component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 272

// Display
AUPopTipView *popTipView = [AUPopTipView showFromView:button
 fromPoint:CGPointZero
 toView:self.view
 animated:YES
 withText:@"Text sample"
 buttonTitle:@"Close"]; // When buttontitle is n
ot transferred, the right button is not displayed.

// Hide
[popTipView dismiss:YES];

AUPopBar is a guide floating layer bar component.

API description
@interface AUPopBar : AUView

AU_UNAVAILABLE_INIT

+ (instancetype)showInViewBottom:(UIView *)view
 animated:(BOOL)animated
 withText:(NSString *)text
 icon:(UIImage *)icon
 buttonTitle:(NSString *)buttonTitle
 actionBlock:(BOOL(^)())actionBlock;

- (void)dismiss:(BOOL)animated;

@end

Sample code
// Display
AUPopBar *popBar = [AUPopBar showInViewBottom:weakSelf.view animated:YES withText:@"Add
"City services" to the homepage" icon:[UIImage imageNamed:@"ap_scan"] buttonTitle:@"Add
now" actionBlock:^{
 NSLog(@"Clicked");
 return YES;
 }];

// Hide
[popBar dismiss:YES];

The AUPopMenu component provides popping-up menus when the user clicks the navigation
bar tabs.

1.3.9.2. Floating layer bar component

1.3.10. Pop menu component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 273

Different from AUFloatMenu, AUPopMenu has menu outlines but no bottom masks. All
menus are aligned in the center. The separation lines have a fixed length and are aligned in
the center.
Basic functions: Menus in this dialog box popping out upwards or downwards, the popping
positions are all defined by the business needs.

API description
AUPopMenu.h

 @protocol AUPopMenuDelegate <NSObject>

 @optional
 - (void)DidClickPopItemView:(AUPopItemModel *)viewModel;

 @end

 @interface AUPopMenu : UIView

 @property (nonatomic, weak) id<AUPopMenuDelegate> delegate;

 /* datas The AUPopItemModel object list.
 * position The position of the direction angle.
 * superView The parent view.
 * isArchViewUp The orientation of the arrow-like corner. Default value: Down.
 */
 - (instancetype)initWithDatas:(NSArray *)datas
 position:(CGPoint)position
 superView:(UIView *)superView
 isArchViewUp:(BOOL)isArchViewUp;

 /* Show and hide the menus with animation by default.
 * position The start and end positions of the arrow-like corner.
 * superView Describe which parent view the current floating layer is displayed on
.
 */
 - (void)showMenu;

 //
 - (void)hideMenu;

 @end

AUPopItemView.h

 @interface AUPopItemView : AUPopItemBaseView

 @property (nonatomic, strong) AUIconView *iconView; // Support the icon font imag
e.
 //@property (nonatomic, strong) UIView *badgeView // The badge is not supported
currently.

 - (instancetype)initWithModel:(AUPopItemModel *)model position:(CGPoint)position;

 @end

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 274

AUPopItemBaseView.h

 //
 @interface AUPopItemBaseView : UIControl

 @property (nonatomic, strong) AULabel *titleLabel; //

 @end

AUPopItemModel.h

 // The object model.
 @interface AUPopItemModel : NSObject

 @property (nonatomic, strong) NSString *titleString; // The main description.
 @property (nonatomic, strong) id iconImage; // The left-side icon, which
can be a UIImage object or URL.

 @end

Sample code
_menu = [[AUPopMenu alloc] initWithDatas:array
position:CGPointMake(CGRectGetMidX(button.frame), CGRectGetMaxY(button.frame)+5) superV
iew:self.view isArchViewUp:YES];
_menu.delegate = self;
[_menu showMenu];

AUVerticalTabView is a vertical tab-based component.

Dependency
The dependency of AUVerticalTabView is as follows:

AntUI

API description

1.3.11. Navigation components

1.3.11.1. Vertical tab

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 275

#import <UIKit/UIKit.h>

@protocol AUVerticalTabViewDataProtocol <NSObject>

@required
- (NSString *) tabName;

@end

@class AUVerticalTabView;

typedef void (^AUVerticalTabSelectedCallback)(AUVerticalTabView *verticalTabView);

@interface AUVerticalTabView : UIView

/**
 The recommended initialization method. The layout parameters are standardized by AntDN
A.
 AUVerticalTabView : width=110pt
 TabCell : width=110pt,height=55pt

 @param verticalTabViewDatas Set tab data.
 @param selectedCallback Set the tapping event callback.
 @param height The height of AUVerticalTabView.
 @param business The business identifier, such as GoldWord or BeeCityPicker.
 @return AUVerticalTabView
 */
+ (AUVerticalTabView *)verticalTabViewWithDatas:(NSArray
<id<AUVerticalTabViewDataProtocol>>*) verticalTabViewDatas
 selectedCallback:
(AUVerticalTabSelectedCallback)selectedCallback
 height:(CGFloat)height
 business:(NSString *)business;

@property(nonatomic, strong) NSArray <id<AUVerticalTabViewDataProtocol>>*
verticalTabViewDatas;
@property(nonatomic, assign) NSUInteger selectedIndex;//default 0
@property(nonatomic, copy) AUVerticalTabSelectedCallback selectedCallback;

@end

Code sample
// The external data object implementation AUVerticalTabViewDataProtocol, which returns
the required tabName.
@interface DemoVerticalTabData : NSObject <AUVerticalTabViewDataProtocol>

- (NSString *)tabName;

@end

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 276

NSArray *datas = @[[DemoVerticalTabData new],
 [DemoVerticalTabData new],
 [DemoVerticalTabData new],
 [DemoVerticalTabData new],
 [DemoVerticalTabData new],
 [DemoVerticalTabData new],
 [DemoVerticalTabData new]];

 AUVerticalTabView *tabView = [AUVerticalTabView verticalTabViewWithDatas:datas

selectedCallback:^(AUVerticalTabView *verticalTabView){
 NSUInteger selectedIndex = verticalTabView.selectedIndex;
 id<AUVerticalTabViewDataProtocol> selectedData =
[verticalTabView.verticalTabViewDatas objectAtIndex:selectedIndex];
 }

height:self.view.height
 business:@"AntUI"];

 [self.view addSubview:tabView];

AUDoubleTitleView is a view control containing a title line and a subtitle line in the navigation
pane.

Sample image

API description

1.3.11.2. Double title

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 277

 /**
 The titleView of a navigation pane that contains two lines.
 */
@interface AUDoubleTitleView : UIView

/**
 * Create TitleViews of the title and subtitle.
 *
 * @param title The main title.
 * @param detaileTitle The subtitle.
 *
 * @return Return the initialized APTitleView control.
 */
- (UIView *)initWithTitle:(NSString *)title detailTitle:(NSString *)detaileTitle;

/**
 * Modify the title text.
 *
 * @param title Main title text.
 *
 */
- (void)updateTitle:(NSString *)title;

/**
 * Modify the subtitle text.
 *
 * @param detailTitle Main title text.
 *
 */
- (void)updateDetailTitle:(NSString *)detailTitle;

/**
 Change the title font.

 @param titleFont The title font.
 */
- (void)updateTitleFont:(UIFont *)titleFont;

/**
 * Change the subtitle font.
 *
 * @param detailTitleFont Main title font.
 *
 */
- (void)updateDetailTitleFont:(UIFont *)detailTitleFont;

@end

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 278

self.navigationItem.titleView = [[AUDoubleTitleView alloc] initWithTitle:@"Title" detai
lTitle:@"Subtitle"];

AUNavigationBar is a navigation bar control of mPaaS. It extends the UINavigationBar control
and provides default mPaaS navigation bar styles. To facilitate subsequent extension, use
AUNavigationBar rather than UINavigationBar in all mPaaS apps.

Sample image

API description
/**
 The mPaaS navigation bar control that contains mPaaS navigation bar styles.
 Initialize:
 UINavigationController *navBar = [[UINavigationController alloc]
initWithNavigationBarClass:NSClassFromString(@"AUNavigationBar") toolbarClass:nil];
 */
@interface AUNavigationBar : UINavigationBar

@end

/**
 The UINavigationBar extension that defines default UINavigationBar styles.
 */
@interface UINavigationBar (AUNavigationBarExtensions)

/**
 * Return the default color of the title of framework navigation bar. The default valu
e is #000000.
 *
 * @return
 */
+ (UIColor*)getNavigationBarTitleDefaultColor;

/**
 * Return the color of the item of framework navigation bar. The default value is #108
EE9.
 *

1.3.11.3. Navigation bar

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 279

 *
 * @return
 */
+ (UIColor*)getNavigationBarButtonItemDefaultColor;

/**
 * Return the color of the item of framework navigation bar. The default value is #fff
ff.
 *
 * @return
 */
+ (UIColor*)getNavigationBarDefaultColor;

/**
 * Get the color of the bottom line of the navigation bar. The default value is #e1e1e
1.
 *
 * @return
 */
+ (UIColor*)getNavigationBarBotLineColor;

/**
 * Note:
 * 1. The base class DTViewController sets the default style of navigation bar in ViewW
illAppear.
 * 2. Business personnel can call the system APIs or the following APIs to change the s
tyle of navigation bar. The style is typically set in ViewWillAppear.
 * 3. If VC is a subclass of DTViewController, it must be set in ViewWillAppear, or it
will be overridden.
 * 4. Ensure that setNavigationBarDefaultStyle is used to restore the default style whe
n ViewWillDisappear is called after the modification.
 * 5. If VC defines the homepage in the UITabBarController container, do not use setNav
igationBarDefaultStyle to restore the default style, or the VC will be overridden upon
tab switching.
 */

/**
 *
 * Set the background of default navigation bar. The default background color and botto
m line color are #ffffff and #e1e1e1, respectively.
 *
 */
- (void)setNavigationBarDefaultStyle;

/**
 *
 * Set the default title style of the navigation bar.
 *
 */
- (void)setNavigationBarDefaultTitleTextAttributes;

/**
 *
 * Set the title color of the navigation bar in ViewWillAppear, or the title color will
be overridden by the default title color in the framework.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 280

 *
 */
- (void)setNavigationBarTitleTextAttributesWithTextColor:(UIColor *)textColor;

/**
 *
 * Set the transparency of the navigation bar.
 * Note: If this method sets the navigation bar to be completely transparent, returned
animation will flash white. Currently, this issue has not been resolved. Do not call th
is method. If the method is required, evaluate whether the impact is acceptable.
 */
- (void)setNavigationBarTranslucentStyle;

/**
 * Set the color of the navigation bar. To achieve the frosted glass effect, set transl
ucent to Yes.
 * Note: After calling this API, call the bottom line setting API if necessary, or the
bottom line color will be overridden by the default color #e1e1e1.
 *
 * @param color The color to be displayed.
 * @param translucent Whether to be transparent.
 *
 */
- (void)setNavigationBarStyleWithColor:(UIColor *)color translucent:(BOOL)translucent;

/**
 * There may be a separation line under the navigation bar, and the UI may fail to mee
t some UI requirements. Call this method to set the color of the separation line to pre
vent it from being recognized.
 * Note: If you have defined the background of navigation bar, for example, by calling
setNavigationBarStyleWithColor or rewriting opaqueNavigationBarColor, call this API aft
er changing the background color.
 * Otherwise, the bottom line color will be overridden by the default color #e1e1e1.
 */
- (void)setNavigationBarBottomLineColor:(UIColor*)color;

/**
 * Before calling the system methods setBarTintColor, setBackGroundImage, and setBackg
roundColor to set the color of navigation bar, call this method to eliminate the defaul
t effect.
 * Otherwise, the color will be overlaid with the default color and cause a color devi
ation.
 */
- (void)resetNavigationBarColor;

/**
 *
 * To prevent the issue that the navigation bar flashes when a user swipes right to go
back or cancel an operation, do not call this method.
 */
- (void)setNavigationBarMaskLayerWithtColor:(UIColor *)color;

/**
 * Return the current background color of the navigation bar.
 *

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 281

 *
 * @return Return the current background color of the navigation bar.
 */
- (UIColor*)getNavigationBarCurrentColor;

@end

Sample code
// Initialize UINavigationController.
UINavigationController *navBar = [[UINavigationController alloc]
initWithNavigationBarClass:NSClassFromString(@"AUNavigationBar") toolbarClass:nil];

// Configure the navigation bar in VC.
AUBarButtonItem *cancelItem = [AUBarButtonItem backBarButtonItemWithTitle:@"Back" targe
t:self action:@selector(cancel)];
cancelItem.backButtonTitle = @"Cancel";
self.navigationItem.leftBarButtonItem = cancelItem;

UIImage *image1 = [AUIconView iconWithName:kICONFONT_MAP width:22 color:AU_COLOR_LINK];
UIImage *image2 = [AUIconView iconWithName:kICONFONT_HELP width:22
color:AU_COLOR_LINK];
AUBarButtonItem *rightItem1 = [[AUBarButtonItem alloc] initWithImage:image1 style:UIBar
ButtonItemStylePlain target:self action:@selector(rightBarItemPressed)];
AUBarButtonItem *rightItem2 = [[AUBarButtonItem alloc] initWithImage:image2 style:UIBar
ButtonItemStylePlain target:self action:@selector(rightBarItemPressed)];
self.navigationItem.rightBarButtonItems = @[rightItem1, rightItem2];

AUCustomNavigationBar is a navigation bar component customized by mPaaS for the
transparent navigation bar scenario.
After the native navigation bar is changed from transparent to solid, users may have bad
visual experience. This class is provided for avoiding this issue.

API description
 /**
 Customize a transparent navigation bar as required.
 After the native navigation pane is changed from transparent to solid, users may have
bad visual experience. This class is provided for avoiding this issue.
 */
@interface AUCustomNavigationBar : UIView

@property(nonatomic, strong) UIView *backgroundView; // Ground glass
background view.

@property(nonatomic, strong) NSString *backButtonTitle; // The back button ti
tle (no title by default).
@property(nonatomic, strong) UIColor *backButtonTitleColor; // The title color of
the back button.
@property(nonatomic, strong) UIImage *backButtonImage; // The image of the
back button.

1.3.11.4. Custom navigation bar

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 282

back button.

@property(nonatomic, strong) NSString *title; // The title.
@property(nonatomic, strong) UIColor *titleColor; // The title color.
@property(nonatomic, strong) UIView *titleView; // Customized titlevie
w.

@property(nonatomic, strong) NSString *rightItemTitle; // The right item
title.
@property(nonatomic, strong) UIColor *rightItemTitleColor; // The color of the r
ight item title.
@property(nonatomic, strong) UIImage *rightItemImage; // The image of the
right item.

/**
 * The VoiceOver text for the item displayed on the right.
 * The item displayed on the left, which is "Back" by default.
 * The item displayed on the right, which is specified by rightItemTitle by default. If
rightItemTitle is not set, manually set this property to support VoiceOver.
 */
@property(nonatomic,strong) NSString *rightItemVoiceOverText;

@property(nonatomic,strong) NSString *leftItemVoiceOverText;

/**
 * Create a specified view of transparent navigation bar.
 *
 * (1) By default, the navigation bar displays an arrow instead of "Back" on the left
for users to go back. If the current page needs to set the back text that is consistent
with the framework logic, override the (UIView *)customNavigationBar method in VC.
 * (2) To set the title, item to be displayed on the right, and background in frosted
glass effect, call related APIs.
 *
 * @param currentVC The current VC.
 *
 * @return The view of transparent navigation bar.
 */
 + (AUCustomNavigationBar *)navigationBarForCurrentVC:(UIViewController *)currentVC;

/**
 * Set the background view of frosted glass. The transparency is 0 by default.
 */
- (void)setNavigationBarBlurEffective;

/**
 * Create an item to be displayed on the right of the navigation bar.
 *
 * @param rightItemTitle Displayed text.
 * @param target target
 * @param action action
 *
 */
- (void)setNavigationBarRightItemWithTitle:(NSString *)rightItemTitle target:(id)target
action:(SEL)action;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 283

 /**
 * Create an item to be displayed on the right of the navigation bar.
 *
 * @param rightItemImage Displayed image.
 * @param target target
 * @param action action
 *
 */
- (void)setNavigationBarRightItemWithImage:(UIImage *)rightItemImage target:(id)target
action:(SEL)action;

/**
 * Create an item to be displayed on the left of the navigation bar.
 *
 * @param leftItemTitle Displayed text.
 * @param target target
 * @param action action
 *
 */
- (void)setNavigationBarLeftItemWithTitle:(NSString *)leftItemTitle target:(id)target a
ction:(SEL)action;

/**
 * Create an item to be displayed on the left of the navigation bar.
 *
 * @param leftItemTitle Displayed image.
 * @param target target
 * @param action action
 *
 */
- (void)setNavigationBarLeftItemWithImage:(UIImage *)leftItemTitle target:(id)target ac
tion:(SEL)action;

@end

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 284

AUCustomNavigationBar *navBar = [AUCustomNavigationBar navigationBarForCurrentVC:self];
[navBar setNavigationBarBlurEffective]; // The frosted glass effect.
[self.view addSubview:navBar];
navBar.title = @"Title";
navBar.backButtonImage = [AUIconView iconWithName:kICONFONT_BILL width:22 color:AU_COLO
R_LINK];
navBar.backButtonTitle = @"Bill";
navBar.rightItemImage = [AUIconView iconWithName:kICONFONT_ADD width:22
color:AU_COLOR_LINK];

// When using this API on mPaaS, override the following methods of the parent class:
- (BOOL)autohideNavigationBar
{
 return YES;
}
- (UIView *)customNavigationBar
{
 return self.navBar;
}

AUQRCodeView is the Alert view that supports multiple option buttons. The Window level of
QR code component follows the logic self.windowLevel = UIWindowLevelAlert - 1 .

Sample image

API description

1.3.12. QR code component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 285

// The data model object.
@interface QRDataModel : NSObject

@property (nonatomic, strong) id topLeftIcon; // An image, a URL, or clou
dID can be imported.
@property (nonatomic, strong) NSString *topTitle; // An image, a URL, or
cloudID can be imported.
@property (nonatomic, strong) id qrCodeIcon; // The QR code image.
@property (nonatomic, strong) NSString *bottomTitle;
@property (nonatomic, strong) NSString *bottomMessage;
@property (nonatomic, strong) id actionButtonIcon; // An image, a URL, or
cloudID can be imported.
@property (nonatomic, strong) NSString *actionButtonTitle; // The primary description
of the action button at the bottom.
@property (nonatomic, strong) NSString *actionButtonMessage; // The secondary descripti
on of the action button at the bottom.

@end

// The action button under the QR code.
@interface QRActionButton : UIControl

@end

// The QR code component.
@interface AUQRCodeView : UIView

@property (nonatomic, strong) UIView *maskView;
@property (nonatomic, strong) UIView *containerView; // The QR code container.
@property (nonatomic, strong) UIImageView *topLeftImageView; // The image in the upper
left corner.
@property (nonatomic, strong) UILabel *topTitleLabel; // Description text for t
he title on the top.
@property (nonatomic, strong) UIImageView *qrCodeView; // The QR code image.
@property (nonatomic, strong) UILabel *bottomTitleLabel; // Main description text
at the bottom.
@property (nonatomic, strong) UILabel *bottomMessageLabel; // Secondary description
text at the bottom.
@property (nonatomic, strong) QRActionButton *actionButton; // The action button at t
he bottom.

// The control frame used to block the initialization data model.
- (instancetype)initWithFrame:(CGRect)frame model:(void(^)(QRDataModel *model))block;

// Start loading.
- (void)startLoading;

// Stop loading.
- (void)stopLoading;

@end

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 286

Code sample
The following sample shows the code of a standard style QR code.

 AUQRCodeView *qrCodeView = [[AUQRCodeView alloc] initWithFrame:frame
model:^(QRDataModel *model) {
 model.topLeftIcon = [UIImage imageWithColor:[UIColor colorWithRGB:0xbbbbbb] siz
e:CGSizeMake(54, 54)];
 model.topTitle = @"Alipay life account";
 model.bottomTitle = @"Scan this QR code to follow";
 model.bottomMessage = @"This QR code will expire on November 05, 2017";
 model.actionButtonTitle = @"Save locally";
 }];
 [self.view addSubview:qrCodeView];

AURefreshView is a new version of the pull-down refresh little ant style. There are currently
two color values, see the effect picture below.

Sample image
Add components
To enable AURefreshView, please add the Common UI component and the Lottie
component SDK first. The steps are as follows:

1. In the Podfile file, use mPaaS_pod "mPaaS_CommonUI" and mPaaS_pod "mPaaS_Lottie" to
add the dependencies on the Common UI component and the Lottie components.

2. Run pod install to complete adding the components.

Interface description
typedef NS_ENUM(NSUInteger, AURefreshViewState) {
 AURefreshViewStateNomal = 0, // Restore the list to the initial position.
 AURefreshViewStateBeginPulling = 1, // A user starts to pull the bar down.
 AURefreshViewStateLoading = 2, // Trigger RPC loading. The contentInset
list is delivered in the default position.
 AURefreshViewStateFinishedLoading = 3, // RPC loaded. The contentInset list is abou
t to be restored to the original position.
 AURefreshViewStateBeginResetting = 4, // The contentInset list starts to restore t
o the default inset.
};
typedef NS_ENUM(NSUInteger, AURefreshViewType) {
 AURefreshViewDefault, // The refresh style on the page.

1.3.13. Refresh component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 287

 AURefreshViewDefault, // The refresh style on the page.
 AURefreshViewTypeFeature1 // Apply it to the title bar, such as the homepage or t
he fortune tab with a background.
};
@protocol AURefreshViewDelegate;
/**
 Set the animation view of mPaaS during pull-down refresh.
 */
@interface AURefreshView : UIView
@property (nonatomic, readonly) AURefreshViewState state;
@property (nonatomic, weak) id <AURefreshViewDelegate> delegate;
/**
 Set the style of the Lottie component during pull-down refresh.
 */
@property (nonatomic, strong) UIView /*LOTAnimationView */ *lottieAnimationView;
/* Specify the parent view where pull-down refresh is performed. The initial default he
ight of pull-down refresh is the height of scrollView. By default, refreshView is to ad
d the parent scrollView.
 * The default initial frame is (0, 0 - scrollView.height, scrollView.width, scrollView
.height)). */
- (instancetype)initWithSuperView:(UIScrollView *)scrollView
 type:(AURefreshViewType)type
 bizType:(NSString *)bizType;
// Set a text that is displayed during pull-down refresh.
- (void)setupLabelText:(NSString *)text;
// Call the following methods in "delegate" of UIScrollView:
- (void)auRefreshScrollViewWillBeginDragging:(UIScrollView *)scrollView;
- (void)auRefreshScrollViewDidScroll:(UIScrollView *)scrollView;
- (void)auRefreshScrollViewDidEndDragging:(UIScrollView *)scrollView;
// To end the animation and hide the list, call the following method:
- (void)auRefreshScrollViewDidFinishedLoading:(UIScrollView *)scrollView;
// The client needs to scroll the page to the initial position and then call the automa
tic pull-down refresh function. Otherwise, a scrolling error will occur.
- (void)autoPullRefreshScrollView:(UIScrollView *)scrollView;
//
- (void)pauseAnimation;
// Expand the page.
- (void)resumeAnimation;
@end
@protocol AURefreshViewDelegate <NSObject>
@optional
// This protocol is triggered when the bar is dropped down to the default position, whi
ch is the height of (Lottie)View.
- (void)auRefreshViewDidTriggerloading:(AURefreshView *)view;
// Complete the reset action after a pull-down refresh.
- (void)auRefreshViewDidDidFinishAnimation:(AURefreshView *)view;
@end

Sample code
Standard style
The following code shows the sample code for a standard style refresh view.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 288

_refreshView = [[AURefreshView alloc] initWithSuperView:self.tableView
type:AURefreshViewDefault bizType:@"demo"];
[_refreshView setupLabelText:@"Refreshing"];
[self.tableView addSubview:_refreshView];
- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [_refreshView resumeAnimation];
}
- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
 [_refreshView pauseAnimation];
}
- (void)scrollViewWillBeginDragging:(UIScrollView *)scrollView
{
 [_refreshView auRefreshScrollViewWillBeginDragging:scrollView];
}
- (void)scrollViewDidScroll:(UIScrollView *)scrollView
{
 [_refreshView auRefreshScrollViewDidScroll:scrollView];
}
- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView willDecelerate:
(BOOL)decelerate
{
 [_refreshView auRefreshScrollViewDidEndDragging:scrollView];
 }

Custom style
To customize style, you must use the Lottie component and rewrite the Category of
 AUThemeManager .
The following sample code is for your reference:

+ (NSString *)au_defaultTheme_refresh_lottie_path{

 NSString *path = [[NSBundle mainBundle] pathForResource:@"ani" ofType:@"json"];
 return path;

}

AUBannerView is a carousel component.

Sample image

1.3.14. Other components

1.3.14.1. Carousel component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 289

API description
typedef NS_ENUM(NSUInteger, AUBannerStyle) {
 AUBannerStyleDeepColor, // The deep color style.
 AUBannerStyleLightColor // The light color style.
};

@interface AUBannerViewConfig : NSObject

@property (nonatomic, assign) AUBannerStyle style;
// The default style.
@property (nonatomic, strong) UIColor *pageControlNormalColor;
// The default color.
@property (nonatomic, strong) UIColor *pageControlSelectedColor;
// The selected color.
@property (nonatomic, assign) CGFloat pageControlMarginBottom;
// The margin between the pagination identifier and bottom.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 290

// The margin between the pagination identifier and bottom.
@property (nonatomic, assign) BOOL pageControlDotTapEnabled;
// Specify whether the pagination identifier (dot) is clickable. The default value is N
O.
@property (nonatomic, assign) UIEdgeInsets contentViewMargin;
// The margin of the content area.
@property (nonatomic, assign) UIEdgeInsets contentViewPadding;
// The padding of the content area. An image will pass the padding when it scrolls.
@property (nonatomic, assign) BOOL autoTurn;
// Whether to enable automatic carousel. Default value: YES.
@property (nonatomic, assign) BOOL autoStartTurn;
// Whether to automatically start carousel.
@property (nonatomic, assign) CGFloat duration;
// The automatic carousel interval.

@end

@class AUBannerView;
@protocol AUBannerViewDelegate <NSObject>

@required
- (NSInteger)numberOfItemsInBannerView:(AUBannerView *)bannerView;
- (UIView *)bannerView:(AUBannerView *)bannerView itemViewAtPos:(NSInteger)pos;

@optional
- (void)bannerView:(AUBannerView *)bannerView didTapedItemAtPos:(NSInteger)pos;
- (CGFloat)bannerView:(AUBannerView *)bannerView durationOfItemAtPos:(NSInteger)pos;

@end

@interface AUBannerView : UIView

AU_UNAVAILABLE_INIT

@property (nonatomic, readonly) UIView *contentView; // The content a
rea view.
@property (nonatomic, readonly) AUPageControl *pageControl; // The
pagination identifier view.

@property (nonatomic, copy) NSString *bizType; // The business
type.
@property (nonatomic, assign) NSInteger currentPage; // The current p
age, which starts from page 0.
@property (nonatomic, weak) id<AUBannerViewDelegate> delegate; // The data sou
rce and event delegate.

/**
 Create a banner view.

 @param frame frame
 @param bizType The business type, which cannot be left empty.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 291

 @param bizType The business type, which cannot be left empty.
 @param configOperation The configuration block.
 @return The banner view.
 */
- (instancetype)initWithFrame:(CGRect)frame
 bizType:(NSString *)bizType
 makeConfig:(void(^)(AUBannerViewConfig *config))configOperation;

/**
 Start automatic carousel. (Call this method only when autoStartTurn is set to NO.)
 */
- (void)startTurning;

/**
 Reload the banner. (Call this method to reload data when the data source changes.)
 */
- (void)reloadData;

@end

//################################
//####### UIImage ################
//################################

@interface AUBannerView (Image)

/**
 Create a banner view for images.
 Note: Ensure that the value of images is the same as that of actionURLs, or the banner
view will fail to be created.

 @param frame The frame.
 @param bizType The business type, which cannot be left empty.
 @param images The image set, which can be an array of image link strings or
image objects.
 @param placeholder The image placeholder, or the UIImage object.
 @param actionURLs The link to which a user is redirected after the user taps the
corresponding image. The link is a string. If an image does not support redirection, se
t this parameter to [NSNull null].
 @param configOperation The banner view configuration parameter.
 @return The banner view of image carousel.
 */
+ (instancetype)bannerViewWithFrame:(CGRect)frame
 bizType:(NSString *)bizType
 images:(NSArray *)images
 placeholder:(UIImage *)placeholder
 actionURLs:(NSArray *)actionURLs
 makeConfig:(void(^)(AUBannerViewConfig
*config))configOperation;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 292

*config))configOperation;

@end

//################################
//####### Extension ##############
//################################

@interface AUBannerView (Extension)

/**
 Update the banner view configuration.
 A reloading event will be automatically triggered.

 @param update The update block.
 */
- (void)updateConfigOperation:(void(^)(AUBannerViewConfig *config))update;

@end

Code sample
// The common deep color banner.
 for (NSInteger i = 0; i < 1; i ++) {
 CGRect rect = CGRectMake(10, 10 + (height + spaceY) * i, self.view.width - 20,
height);
 AUBannerView *bannerView = [[AUBannerView alloc] initWithFrame:rect
 bizType:@"demo"

makeConfig:^(AUBannerViewConfig *config)
 {
 config.duration = 1.5;
// config.contentViewMargin = UIEdgeInsetsMake(5,
5, 10, 5);
// config.contentViewPadding = UIEdgeInsetsMake(0,
50, 0, 50);
 config.style = AUBannerStyleDeepColor;
 config.autoTurn = YES;
 config.autoStartTurn = YES;
 }];

 bannerView.delegate = self;
 bannerView.tag = 1;
 bannerView.backgroundColor = [UIColor colorWithWhite:0 alpha:0.1];
 [self.view addSubview:bannerView];
 }

 // The common light color banner.
 for (NSInteger i = 1; i < 2; i ++) {
 CGRect rect = CGRectMake(10, 10 + (height + spaceY) * i, self.view.width - 20,

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 293

height);
 AUBannerView *bannerView = [[AUBannerView alloc] initWithFrame:rect
 bizType:@"demo"

makeConfig:^(AUBannerViewConfig *config)
 {
 config.duration = 1.5;
 config.style = AUBannerStyleLightColor;
 config.autoTurn = NO;
 config.pageControlDotTapEnabled = YES;
 }];

 bannerView.delegate = self;
 bannerView.tag = 2;
 bannerView.backgroundColor = [UIColor colorWithWhite:0 alpha:0.1];
 [self.view addSubview:bannerView];
 }

 // The banner with images only.
 for (NSInteger i = 2; i < 3; i ++) {
 CGRect rect = CGRectMake(10, 10 + (height + spaceY) * i, self.view.width - 20,
height);
 NSMutableArray *images = [NSMutableArray array];
 for (NSInteger j = 0; j < 5; j ++) {
 UIImage *image = [UIImage imageNamed:[NSString stringWithFormat:@"%@.jpg",
@(j + 1)]];
 [images addObject:image];
 }
 AUBannerView *bannerView = [AUBannerView bannerViewWithFrame:rect
 bizType:@"demo"
 images:images
 placeholder:nil
 actionURLs:nil
 makeConfig:NULL];
 bannerView.backgroundColor = [UIColor colorWithWhite:0 alpha:0.1];
 [self.view addSubview:bannerView];
 }

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 294

#pragma mark - AUBannerViewDelegate

- (NSInteger)numberOfItemsInBannerView:(AUBannerView *)bannerView
{
 return bannerView.tag == 1 ? 2 : 4;
}

- (UIView *)bannerView:(AUBannerView *)bannerView itemViewAtPos:(NSInteger)pos
{
 NSArray *array = nil;
 // The deep color.
 if (bannerView.tag == 1) {
 array = @[RGB(0x108EE9), RGB_A(0x108EE9, 0.5), [UIColor blueColor], [UIColor ye
llowColor]];
 }
 // The light color.
 else {
 array = @[RGB(0xfFFFFF),RGB_A(0xeFFFFF, 0.7),RGB(0xcFFFFF),RGB_A(0xeFFFFF, 0.5)
,RGB_A(0xeFFFFF, 0.9)];
 }

 UIView *view = [[UIView alloc] init];
 view.backgroundColor = array[pos];
 return view;
}

- (void)bannerView:(AUBannerView *)bannerView didTapedItemAtPos:(NSInteger)pos
{
 NSLog(@"didTapedItemAtPos %@", @(pos));
}

//- (CGFloat)bannerView:(AUBannerView *)bannerView durationOfItemAtPos:(NSInteger)pos
//{
// return 1;
//}

AUSegment provides a switching bar style that supports scrolling.
AUSegment is provided based on the latest UED requirements. It cannot be used
interchangeably with APSegmentedControl in APCommonUI because APSegmentedControl
encapsulates the system component UISegmentedControl but does not provide any other
functions.

Dependency
The dependency of AUSegment is as follows:

import "AUSegmentedControlItem.h"

API description

1.3.14.2. Segment component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 295

@protocol AUSegmentedControlDelegate <UIScrollViewDelegate>
// The AUSegment clicking event callback.
@optional

- (void)didSegmentValueChanged:(AUSegment*)segmentControl;

- (void)didSelectSegmentItemModel:(AUSegmentItemModel*)selectedItemModel;//

@end

// The default segment height.
#define AUSegmentHeight AU_SPACE13

/**
 The AUSegment component.
 */
@interface AUSegment : UIScrollView

/**
 The initialization function.

 @param frame The frame.
 @param titles The array that contains all title strings.

 @return Return the AUSegment instance.
 */
- (instancetype)initWithFrame:(CGRect)frame titles:(NSArray<NSString*> *)titles;

/**
 Disable the init method.
 */
- (instancetype)init NS_UNAVAILABLE;

/**
 Disable the initWithFrame method.
 */
- (instancetype)initWithFrame:(CGRect)frame NS_UNAVAILABLE;

/**
 AUSegmentedControlDelegate
 */
@property (nonatomic, weak) id <AUSegmentedControlDelegate> delegate;

/**/

/**
 The title array.
 */
@property (nonatomic, strong) NSMutableArray *titles;

/**
 * The title font.
 */
@property (nonatomic, copy) UIFont *titleFont;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 296

/**
 The selected segment index.
 */
@property (nonatomic, assign) NSInteger selectedSegmentIndex;

/**
 The color of the selected item (including the text and slider).
 */
@property (nonatomic, copy) UIColor *selecedColor;

/**
 * The left and right margins of each text menu in the horizontal direction.
 * The default value is 21 px.
 * When a menu contains a red dot, the value of fixedItemWidth is invalid and the menu
width is not fixed.
 */
@property(nonatomic, assign) NSInteger textHorizontalPadding;

/**
 * Whether to use a fixed menu width.
 * The default value is YES, for compatibility with old menu styles.
 * When the value is YES, the value of textHorizontalPadding is invalid, and all menus
are in fixed width.
 */
@property (nonatomic, assign) BOOL fixedItemWidth;

/**
 * Whether to automatically scroll the selected menu to an appropriate position (middle
position preferred, and displayed to the side when the space is insufficient).
 * The default value is NO.
 */
@property (nonatomic, assign) BOOL autoScroll;

/**
 * Whether to automatically move the indicator bar below the index of the selected item
after clicked.
 * The default value is YES.
 */
@property (nonatomic, assign) BOOL autoChangeSelectedIndex;

/*
 * The model array.
 */
@property(nonatomic, strong) NSMutableArray<AUSegmentItemModel *> *itemModels;

/**
 Multiple items can be inserted in the middle.

 @param array The inserted title array.
 @param indexes The inserted indexes.
 */
- (void)insertTitleArray:(NSArray<NSString*> *)array atIndexes:(NSIndexSet *)indexes;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 297

/**
 Multiple items can be added to the end.

 @param array The added title array.
 */
- (void)addTitleArray:(NSArray<NSString*>*)array;

/**
 * Set automatic scrolling to the specified subscript position. Note: Items are display
ed in scrolling mode, and the indicator bar stays in the same position.
 * The value is the same as that of selectedSegmentIndex (indicating the index of the s
elected segment) by default.
 */
- (void)autoScrollToIndex:(NSInteger)index;

- (BOOL)segmentItemIsInVisualAear:(NSInteger)index;

@end

@interface AUSegmentItemModel : NSObject

@property(nonatomic, copy) NSString *title;
@property(nonatomic, copy) UIImage *img;
@property(nonatomic, copy) NSString *imgId;
@property(nonatomic, copy) NSString *badgeNumber;
@property(nonatomic, copy) NSString *badgeWidgetId;
@property(nonatomic, assign) BOOL badgeReserved; // Whether to reserve a red dot
position for the current item. If no red dot position is reserved, the item may flicker
when containing a red dot.
@property(nonatomic, strong) NSDictionary *extendInfo; // The extended field.

@end

@interface AUSegment (ItemModel)

/**
 * The initialization function for version 2.
 * @param frame The frame.
 * @param menus The item array.
 */
- (instancetype) initWithFrame:(CGRect)frame menus:(NSArray<AUSegmentItemModel *>*)menu
s;

/**
 Control items can be updated.

 @param items The array of items that need to be updated, mainly for adding or deleti
ng model data or updating all existing model data.
 */

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 298

 */
- (void)updateItems:(NSArray<AUSegmentItemModel *>*)items;

/**
 Control items can be updated.

 @param items Delete existing item data and replace it with new item data.
 */
- (void)updateItemModel:(AUSegmentItemModel *)model
 atIndex:(NSInteger)index;

@end

// The action button, plus sign (+) by default, is displayed on the right.
@interface AUSegment (AUActionIcon)

- (void)showActionIcon:(BOOL)showIcon target:(id)target action:(SEL)action;

@end

Custom properties

Property Purpose Type

titles The segment title array. NSArray

selectedSegmentIndex The selected segment index. NSInteger

delegate Implement
AUSegmentedControlDelegate. ID

autoScroll

Whether to automatically scroll
the selected item to an
appropriate position (middle
position preferred, and
displayed the side when the
space is insufficient). BOOL

fixedItemWidth Whether to use a fixed menu
width. BOOL

textHorizontalPadding
The left and right margins of
each text menu in the
horizontal direction.’

BOOL

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 299

titleFont The custom title font. UIFont

Sample code
Segment controls without red dot:

 NSArray *testArray1 =
@[@"tab1",@"tab2",@"tab3",@"tab4",@"tab5",@"tab6",@"tab7",@"tab8"];
 AUSegment *segment = [[AUSegment alloc] initWithFrame:CGRectMake(0, 300, self.v
iew.width, 44) titles:testArray1];
 segment.delegate = self;
 [self.view addSubview:segment];

 // The callback.
 - (void)didSegmentValueChanged:(AUSegment*)segmentControl {
 NSLog(@"AUSegmented switched");
 }

Segment controls with red dot:

 NSMutableArray *array = [[NSMutableArray alloc] init];
 for (int i=0; i<7; i++)
 {
 AUSegmentItemModel *model = [[AUSegmentItemModel alloc] init];
 model.title = [NSString stringWithFormat:@"Option %d", i];
 if (i == 0)
 {
 model.badgeNumber = @".";
 }
 if (i == 1)
 {
 model.badgeNumber = @"new";
 }
 if (i == 6)
 {
 model.badgeNumber = @"6";
 }
 model.badgeReserved = YES;
 [array addObject:model];
 }
 AUSegment *segment2 = [[AUSegment alloc] initWithFrame:CGRectMake(0, topMargin, sel
f.view.width, 44) menus:array];
 [self.view addSubview:segment2];
 [segment2 autoScrollToIndex:6];
 segment2.backgroundColor = [UIColor whiteColor];
 [segment2 showActionIcon:YES target:self action:@selector(clickActionIcon:)];

AUIconView is an iconfont vector icon control. The usage is similar to that of UIImage.The
control, which can be used as an ImageView, is an image object drawn by using the drawRect
feature of the string.

1.3.14.3. Icon component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 300

Note
Currently, only square vector icons are supported.

You can consider that an iconfont loads a font. The font is associated with multiple images
and each image has a Unicode character. Therefore, you can set text to the corresponding
Unicode character and call the drawInRect method of the string to render the iconfont.
Each iconfont set is a .ttf font file. You can load multiple .ttf font files, each of which has a
name. The default iconfont is the ttf font of AntUI, named auiconfont.

Sample image

API description
// The default AntUI iconfont name.
#define kICONFONT_FONTNAME (@"auiconfont")
// The default AntUI iconfont path.
#define kICONFONT_FONTPATH (@"APCommonUI.bundle/iconfont/auiconfont")

/**
The iconfont control, which can be used as an ImageView.
Actually, the control is an image object drawn by using the drawRect feature of the str
ing.
Note: Currently, only square vector icons are supported.

You can consider that an iconfont loads a font. The font is associated with multiple im

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 301

You can consider that an iconfont loads a font. The font is associated with multiple im
ages and each image has a Unicode character.
Therefore, you can set text as the corresponding Unicode character and call the drawInR
ect method of the string to render the iconfont.

Each iconfont set is a .ttf font file. You can load multiple
.ttf font files, each of which has a name. The default iconfont is the ttf font of AntU
I,
named auiconfont.
*/
@interface AUIconView : UIImageView

@property (nonatomic, strong) UIColor *color; // The vector diagram color (ant bl
ue by default).
@property (nonatomic, strong) NSString *name; // The vector diagram name.
@property (nonatomic, strong) NSString *fontName; // The vector icon library name.

/**
The initialization method.

@param frame The view frame.
@param name The iconfont vector icon name.

@return Return an AUIconView instance.
*/
- (instancetype)initWithFrame:(CGRect)frame name:(NSString *)name;

/**
The initialization method.
(If the iconfont has been loaded, it can be rendered without fontPath.)

@param frame The view frame.
@param name The iconfont image name.
@param fontName The iconfont name.

@return Return an AUIconView instance.
*/
- (instancetype)initWithFrame:(CGRect)frame name:(NSString *)name fontName:(NSString *)
fontName;

/**
Get the iconView size.

@return If an iconfont is used, the iconfont size is returned. If an common ImageView i
s used, the image size is returned.
*/
- (CGSize)iconViewSize;

@end

@interface UIImage (AUIconFont)

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 302

/**
Register the iconfont. (This method needs to be called only once.)

@param fontName The iconfont name.
@param fontPath The iconfont path, such as @"AntUI.bundle/iconfont/auiconfont".
*/
+ (void)registerIconFont:(NSString *)fontName fontPath:(NSString *)fontPath;

/**
Get a square vector icon (with the same width and length).

@param name The image name.
@param width The image width.
@param color The image color. If the value is nil, the color is ant blue by default.

@return Return a square vector icon.
*/
+ (UIImage *)iconWithName:(NSString *)name
width:(CGFloat)width
color:(UIColor *)color;

/**
Get a square vector icon (with the same width and length).

@param name The name.
@param fontName The vector font name.
@param width The size.
@param color The image color. If nil is imported, the color is ant blut by
default.

@return Return a square vector icon.
*/
+ (UIImage *)iconWithName:(NSString *)name
fontName:(NSString *)fontName
width:(CGFloat)width
color:(UIColor *)color;

@end

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 303

// Use AUIconView.
AUIconView *view = [[AUIconView alloc] initWithFrame:CGRectZero
name:_array[indexPath.row]];
view.tag = 1;

view.size = CGSizeMake(30, 30);
view.origin = CGPointMake(100, 10);
view.color = RGB(0x2b91e2);
[cell.contentView addSubview:view];

// Use the image extension independently.
self.image = [UIImage iconWithName:self.name fontName:self.fontName width:width color:s
elf.color];

The AUBladeView provides alphabetical index function. clicking or sliding to the letter on the
alphabetical index on the left or right side of the page to trigger the event at the
corresponding region.

API description
AUBladeView.h

1.3.14.4. Index component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 304

//
// indexBar.h
//

#import <Foundation/Foundation.h>

#define kIndexSearchTitle @"Search"

@protocol AUBladeViewDelegate;
/*!
 @class AUBladeView
 @abstract UIView
 @discussion The alphabetical index view.
 */
@interface AUBladeView : UIView

- (id)init;
- (id)initWithFrame:(CGRect)frame;
- (void)clearIndex;

@property (nonatomic, weak) id<AUBladeViewDelegate> delegate;
@property (nonatomic, strong) UIColor *highlightedBackgroundColor;
@property (nonatomic, strong) UIColor *textColor;
@property (nonatomic, strong) UIFont *textFont;
@property (nonatomic, strong) NSArray * iconImageNames;
@property (nonatomic, strong) NSArray * iconTitles;
@property (nonatomic, assign) BOOL enableSearch;
@property (nonatomic, strong) NSArray * defaultIndexes;

- (void)updateIndexes;

@end

@protocol AUBladeViewDelegate<NSObject>
@optional
- (void)indexSelectionDidChange:(AUBladeView *)indexBar index:(NSInteger)index title:(N
SString*)title;
@end

Sample code
//
// bladeViewController.m
// AntUI
//

#import "bladeViewController.h"
#import "AUBladeView.h"

@interface bladeViewController ()
<AUBladeViewDelegate,UITableViewDelegate,UITableViewDataSource>
@property (nonatomic,strong) AUBladeView * bladeView;
@property (nonatomic,strong) NSArray * sectionArr;

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 305

@property (nonatomic,strong) NSArray * sectionArr;
@property (nonatomic,strong) NSArray * mainDataIndexChar;
@property (nonatomic,strong) UITableView * tableView;
@end

@implementation bladeViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 self.title = @"Select a city";
 // Do any additional setup after loading the view.
 self.tableView = [[UITableView alloc] initWithFrame:CGRectMake(0, 0,
self.view.frame.size.width, self.view.frame.size.height) style:UITableViewStylePlain];
 self.tableView.delegate = self;
 self.tableView.dataSource = self;
 [self.view addSubview:self.tableView];
 self.bladeView = [[AUBladeView alloc]
initWithFrame:CGRectMake(self.view.frame.size.width-16.0, 80, 16.0,
self.view.bounds.size.height-60)];
 self.bladeView.delegate = self;

 NSString * plistStr = [[NSBundle mainBundle]
pathForResource:@"APCommonUI_ForDemo.bundle/citydict" ofType:@"plist"];
 NSDictionary * srcPlistDic = [NSDictionary dictionaryWithContentsOfFile:plistStr];
 NSMutableArray * citysList = [[NSMutableArray alloc] initWithCapacity:27];
 [citysList
addObject:@{@"Popular":@[@"Shanghai",@"Hangzhou",@"Guangzhou",@"Beijing",@"Shenzhen"]}];

 NSMutableArray * indexArrList = [[NSMutableArray alloc] initWithCapacity:27];
 [indexArrList addObject:@"Popular"];
 NSArray * keyList = [srcPlistDic allKeys];
 NSArray * sortedList = [keyList sortedArrayUsingComparator:^NSComparisonResult(id
_Nonnull obj1, id _Nonnull obj2) {
 return [(NSString *)obj1 compare:obj2];

 }];
 [sortedList enumerateObjectsUsingBlock:^(id _Nonnull obj, NSUInteger idx, BOOL * _
Nonnull stop) {
 if (obj) {

 NSDictionary * tmpDic = [[NSDictionary alloc] initWithObjectsAndKeys:
[srcPlistDic objectForKey:obj],obj, nil];
 [citysList addObject:tmpDic];
 [indexArrList addObject:obj];
 }

 }];
 self.sectionArr = citysList;
 self.mainDataIndexChar = indexArrList;
// self.bladeView.iconTitles = secondaryIndexsTitles;
// self.bladeView.iconImageNames = secondaryIndexsIcons;
 self.bladeView.defaultIndexes = self.mainDataIndexChar;
 [self.bladeView updateIndexes];
 [self.view addSubview:self.bladeView];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 306

 [self.view addSubview:self.bladeView];
 self.tableView.showsVerticalScrollIndicator = NO;
 self.tableView.showsHorizontalScrollIndicator = NO ;
 [self.view bringSubviewToFront:self.bladeView];

}

#pragma mark -----UITableViewDelegate
// Display customization
// Variable height support

- (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:(NSIndexPath *)in
dexPath
{
 return 44;
}// Use the estimatedHeight methods to quickly calcuate guessed values which will allow
for fast load times of the table.

- (CGFloat)tableView:(UITableView *)tableView heightForHeaderInSection:
(NSInteger)section
{
 return 35;
}
#pragma mark -----UITableViewDataSource
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
(NSInteger)section
{
 NSDictionary * test = [self.sectionArr objectAtIndex:section] ;
 NSArray * valueArr = [test objectForKey:([[test allKeys] firstObject])];

 return [valueArr count];

}

- (nullable NSString *)tableView:(UITableView *)tableView titleForHeaderInSection:(NSIn
teger)section
{
 NSDictionary * test = [self.sectionArr objectAtIndex:section] ;

 return [[test allKeys] firstObject];
}

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexP
ath *)indexPath
{
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:@"BladeTableViewCell"];
 if (!cell) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:@"BladeTableViewCell"];
 }
 NSInteger section = [indexPath section];
 NSInteger row = [indexPath row];

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 307

 NSInteger row = [indexPath row];
 NSDictionary * test = [self.sectionArr objectAtIndex:section] ;
 NSArray * valueArr = [test objectForKey:([[test allKeys] firstObject])];
 NSString * text = [valueArr objectAtIndex:row];
 cell.textLabel.text =text ;
 return cell;

}
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return [self.sectionArr count];
}// Default is 1 if not implemented

- (void)dealloc
{
 self.tableView.delegate = nil;
 self.tableView.dataSource = nil;
 self.bladeView.delegate = nil;
 self.bladeView = nil;

}
- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

/*
#pragma mark - Navigation

// In a storyboard-based application, you will often want to do a little preparation be
fore navigation
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
 // Get the new view controller using [segue destinationViewController].
 // Pass the selected object to the new view controller.
}
*/

#pragma mark ---- AUBladeViewDelegate
- (void)indexSelectionDidChange:(AUBladeView *)indexBar index:(NSInteger)index title:(N
SString*)title
{
 if (self.tableView){
 NSInteger ret = 0;
 if ([title isEqualToString:kIndexSearchTitle]){
 [self.tableView scrollToRowAtIndexPath:[NSIndexPath indexPathForRow:0
inSection:ret]
 atScrollPosition:UITableViewScrollPositionBottom
 animated:NO];
 return;
 }
 else {
 ret = [self findIndexSection:title];
 if (ret != NSNotFound) {
 [self.tableView scrollToRowAtIndexPath:[NSIndexPath indexPathForRow:0 in
Section:ret]

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 308

Section:ret]
 atScrollPosition:UITableViewScrollPositionTop
 animated:NO];
 }
 }
 }

}

- (NSInteger)findIndexSection:(NSString *)title {
 NSInteger ret = NSNotFound;
 int beginIndex = 0;
 /*
 The following shows a custom section calculation rule.
 beginIndex += self.customSectionCount;
 if (self.secondarySectionCount > 0){
 for (NSInteger i = 0 ; i < [self.secondarySectionTitles count]; i++) {
 NSString * secondaryTitle = [self.secondarySectionTitles
objectOrNilAtIndex:i];
 if ([secondaryTitle isEqualToString:title]) {
 ret = beginIndex + i;
 return ret;
 }
 }
 beginIndex += self.secondarySectionCount;
 }
 */
 if ([self.mainDataIndexChar count] > 0){
 for(NSInteger i = 0; i < [self.mainDataIndexChar count]; i++) {
 NSString * indexChar = [self.mainDataIndexChar objectAtIndex:i];
 if ([indexChar isEqualToString:title]) {
 ret = i;
 break;
 }
 }
 }
 if (ret != NSNotFound) {
 ret = ret + beginIndex;
 }
 return ret;
}

@end

AUTitleBarSegment is a segmented control used at the top of the navigation bar.
AUTitleBarSegment encapsulates UISegmentedControl, simply modifies the UI style of
UISegmentedControl, and provides default width and height of each segment.

API description

1.3.14.5. Title bar segment component

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 309

 /*
 mPaaS standard: The segment controls can be used only at the top of the navigation
bar.
 The default color value is used, and the default height of the navigation bar is 2
6 px.
 */

 #define AUTitleBarSegment_DefaultHeight 26 // The default height of
each segment is 26 px.
 #define AUTitleBarSegment_DefaultSegmentWidth 90 // The default width of
each segment is 90 px.

 @interface AUTitleBarSegment : UISegmentedControl

 @end

Sample code
AUTitleBarSegment *titleBatSegment = [[AUTitleBarSegment alloc]
initWithItems:@[@"Label", @"Label"]];
 self.navigationItem.titleView = titleBatSegment;

AUBarButtonItem in mPaaS is equivalent to UIBarButtonItem. It contains predefined items
such as the color and font. To facilitate subsequent extension, AUBarButtonItem instead of
UIBarButtonItem must be used in all mPaaS apps.
Currently, AUBarButtonItem completely is completely inherited from AUSwitch without any
new properties or methods.

API description

1.3.14.6. Navigation button

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 310

/**
*/
@interface AUBarButtonItem : UIBarButtonItem

@property(nonatomic, strong) NSString *backButtonTitle; // The title of the Back button
.
@property(nonatomic, strong) UIImage *backButtonImage; // The icon of the Back button.
@property(nonatomic, strong) UIColor *titleColor; // The text color of the Back b
utton.

/**
* Set the spacing between buttons.
*
* @return Return an empty button of the UIBarButtonSystemItemFlexibleSpace style.
*/
+ (AUBarButtonItem *)flexibleSpaceItem;

/**
* Create a default Back button style.
*
* @param title The title to be displayed.
* @param target The tapping target.
* @param action The action to be executed upon tapping.
*
* @return APBarButtonItem
*/
+ (AUBarButtonItem *)backBarButtonItemWithTitle:(NSString *)title target:(id)target act
ion:(SEL)action;

/**
* Create a default Back button style.
*
* @param title The title to be displayed.
* @param count The maximum number of characters to be displayed.
* @param target The tapping target.
* @param action The action to be executed upon tapping.
*
* @return APBarButtonItem
*/
+ (AUBarButtonItem *)backBarButtonItemWithTitle:(NSString *)title maxWordsCount:(NSInte
ger)count target:(id)target action:(SEL)action;

@end

Code sample

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 311

// Define a backBarItem.
// The backBarItem contains a back icon by default.
AUBarButtonItem *cancelItem = [AUBarButtonItem backBarButtonItemWithTitle:@"Back" targe
t:self action:@selector(cancel)];
cancelItem.backButtonTitle = @"Cancel";
self.navigationItem.leftBarButtonItem = cancelItem;

AUBarButtonItem *rightItem1 = [[AUBarButtonItem alloc] initWithImage:image1 style:UIBar
ButtonItemStylePlain target:self action:@selector(rightBarItemPressed)];

As the shell of AntUI, AntUIShell is mainly used to implement third-party protocols in AntUI. It
can be embedded to an mPaaS app and reduce external dependencies of AntUI.

API description
AntUIShellObject.h

//
// AntUIShellObject.h
// AntUIShell
//

#import <Foundation/Foundation.h>
#import <AntUI/AntUI.h>

@interface AntUIShellObject : NSObject<AUThirdPartyAdapter>

@end

Code sample
//
// AntUIShellObject.m
// AntUIShell
//

#import "AntUIShellObject.h"
#import <APMonitor/APMonitor.h>
#import <APMultimedia/APMultimedia.h>
#import <MPBadgeService/MPBadgeService.h>

@implementation AntUIShellObject

#pragma mark ----AUThirdPartyAdapter
/***/
// The image protocol APMultimedia.
/*
 API adaptation for third-party to download image.
 It wraps mulimedia APIs and is implemented by a third party.
 */

1.3.14.7. Adaptation and dependency

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 312

- (NSString *)thirdPartyGetImage:(NSString *)identifier
 business:(NSString *)business
 zoom:(CGSize)size
 originalSize:(CGSize)originSize
 progress:(void (^)(double percentage,long long partialBytes,long
long totalBytes))progress
 completion:(void (^)(UIImage *image, NSError *error))complete
{
 return [[APImageManager manager] getImage:identifier business:business zoom:size o
riginalSize:originSize progress:progress completion:complete];

}

/*
API adaptation for third-party to download UIImageView image.
 It is implemented by a third party.
 */
- (void)thirdPartypFromImageView:(UIImageView *)fromImgView
 setImageWithKey:(NSString *)key
 business:(NSString *)business
 placeholderImage:(UIImage *)placeholder
 zoom:(CGSize)zoom
 originalSize:(CGSize)originalSize
 progress:(void (^)(double percentage,long long partialBytes,long
long totalBytes))progress
 completion:(void (^)(UIImage *image, NSError *error))complete
{
 if(fromImgView && [fromImgView isKindOfClass:[UIImageView class]]) {
 [fromImgView setImageWithKey:key business:business placeholderImage:placeholder
zoom:zoom originalSize:originalSize progress:progress completion:complete];
 }
}
/***/
// The badge protocol MPBadgeService.
/*
 Initialize the badge view.
 */
- (UIView *) thirdPartyBadgeViewWithFrame:(CGRect)frame
{
 return [[MPBadgeView alloc] initWithFrame:frame];
}

/*
 Set widgetId for the badge.

 */
- (void) thirdPartyBadgeViewWith:(UIView *)badgeView
 widgetId:(NSString *) widgetId
{
 if(badgeView && [badgeView isKindOfClass:[MPBadgeView class]]) {
 MPBadgeView * tmpBadgeView =(MPBadgeView *)badgeView;
 tmpBadgeView.widgetId = widgetId;
 }

}

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 313

}
/*
 Register the badge view to MPBadgeManager.
 */
- (void) thirdPartyBadgeViewReg:(UIView *)badgeView
{
 if(badgeView && [badgeView isKindOfClass:[MPBadgeView class]]) {
 MPBadgeView * tmpBadgeView =(MPBadgeView *)badgeView;
 [[MPBadgeManager sharedInstance] registerBadgeView:tmpBadgeView];
 }

}

/**
 * Update the badge style.
 * @param badgeView The badge view.
 * @param badgeValue: @"." Display a red dot.
 * @"new" Display "new".
 * @"Number" Display a number. For a number greater than 99, display
the more icon (...).
 * @"hui" Display "hui".
 * @"xin" Display "xin".
 * nil Clear the currently displayed content.
 *
 * @return There is no return value.
 */
- (void) thirdPartyBadgeViewWith:(UIView *)badgeView
 updateValue:(NSString *)badgeValue
{
 if(badgeView && [badgeView isKindOfClass:[MPBadgeView class]]) {
 MPBadgeView * tmpBadgeView =(MPBadgeView *)badgeView;
 [tmpBadgeView updateBadgeValue:badgeValue];
 }
}

/*
 Provide business personnel with an API for monitoring badge control updates.
 The type of widgetInfo is MPWidgetInfo.
 */
- (void) thirdPartyBadgeViewWith:(UIView *)badgeView
 updateBlock:(void(^)(id widgetInfo, BOOL isShow)) updateBlock
{
 if(badgeView && [badgeView isKindOfClass:[MPBadgeView class]]) {
 MPBadgeView * tmpBadgeView =(MPBadgeView *)badgeView;
 if(updateBlock) {
 tmpBadgeView.updateBlock = updateBlock;
 }
 }

}

/*
 The tracking protocol APMonitor.
 */
// The tracking protocol of actionName of the button.

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 314

// The tracking protocol of actionName of the button.
- (void) thirdPartySetButtonActionLog:(UIButton *)button
 actionNameLog:(NSString *)actionName
{
 if(button && [button isKindOfClass:[UIButton class]]) {
 button.actionName = actionName;
 }
}

/*
 The notification protocol AUCardMenu/AUFloatMenu.
 */

/*
 AUCardMenu registers the logout notification, ensuring that AUCardMenu is destroyed up
on logout in a timely manner.
 */
- (NSString *) thirdPartyCardMenuDismissNotiName
{
 return @"SAAccountDidExitNotification";
}

/*
 AUFloatMenu registers alerView kShareTokenAlertViewShownNotification.
 */
- (NSString *) thirdPartyFloatMenuDismissFromAlertNotiName
{
 return @"kShareTokenAlertViewShownNotification";
}

/*
 AUFloatMenu registers alerView SALoginAppWillStartNotification.
 */
- (NSString *) thirdPartyFloatMenuDismissFromLoginNotiName
{
 return @"SALoginAppWillStartNotification";
}

@end

AUImagePickerSkeleton is an image selection component that encapsulates the vision and
interaction functions. It does not support album calling, browsing, or uploading. Currently, the
image selection functions are incomplete. The component that inherits functions will be
added to BEEViews.

Sample image

1.3.14.8. Image picker encapsulation

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 315

Dependency
Currently, this component is not added to the AntUI baseline.

API description
@protocol AUImagePickerDataProtocol <NSObject>

- (UIImage *)image;

@end

@interface AUImagePickerSkeleton : UIView

- (AUImagePickerSkeleton *)initWithTitle:(NSString *)title
 maxNumberOfImages:(NSUInteger)maxNumberOfImages;

@property(nonatomic, assign, readonly) NSUInteger maxNumberOfImages;
@property(nonatomic, weak) id<AUImagePickerDelegate> delegate;
@property(nonatomic, strong, readonly) NSArray<id<AUImagePickerDataProtocol>> *imagePic
kerDatas;

- (void)updateImagePickerDatas:(NSArray <id<AUImagePickerDataProtocol>>*) datas;

@end

@protocol AUImagePickerDelegate <NSObject>

@required
- (void)imagePickerAddButtonClick:(AUImagePickerSkeleton *)imagePicker;

@optional
- (void)imagePickerImageClick:(AUImagePickerSkeleton *)imagePicker
 clickData:(id<AUImagePickerDataProtocol>)clickData;
@end

Sample code

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 316

- (void)viewDidLoad {
 [super viewDidLoad];
 self.datas = [[NSMutableArray alloc] init];
 self.picker = [[AUImagePickerSkeleton alloc] initWithTitle:@"Image(optional, upload
screenshots as an evidence)"maxNumberOfImages:4];
 self.picker.top = 100;
 self.picker.delegate = self;
 [self.view addSubview:self.picker];
 [self.view addSubview:self.button];
 self.view.backgroundColor = RGB(0xEBEBEB);
}

- (void)imagePickerAddButtonClick:(AUImagePickerSkeleton *)imagePicker
{
 AUImagePickerData *data = [AUImagePickerData new];
 data.originalImage = [self getImageWithCount:[self.datas count]];
 [self.datas addObject:data];
 [self updatePickerAndResize];
}

-(void)imagePickerImageClick:(AUImagePickerSkeleton *)imagePicker
 clickData:(id<AUImagePickerDataProtocol>)clickData
{
 NSString *msg = @"";
 if ([self.datas containsObject:clickData]) {
 msg = [NSString stringWithFormat:@"Tap image %d",(int)[self.datas
indexOfObject:clickData]+1];
 }else{
 msg = @"The image tapped is abnormal";
 }
 [AUToast presentModalToastWithin:self.view
 withIcon:AUToastIconNone
 text:msg
 duration:1
 logTag:@"demo"
 completion:NULL];

}

Client UI Components User Guide·Client UI Compone
nts

> Document Version: 20250731 317

	1.Client UI Components
	1.1. Introduction to Native framework
	1.2. Native based - Android component library
	1.2.1. Quick start
	1.2.2. Dialog component
	1.2.2.1. Card menu
	1.2.2.2. Cascade picker
	1.2.2.3. Date picker
	1.2.2.4. Float menu
	1.2.2.5. Image dialog
	1.2.2.6. Input dialog
	1.2.2.7. List dialog
	1.2.2.8. Notice dialog
	1.2.2.9. Operation result dialog
	1.2.2.10. Pop up menu
	1.2.2.11. Recording float tip
	1.2.2.12. Toast

	1.2.3. Input components
	1.2.3.1. Amount input box
	1.2.3.2. Input box
	1.2.3.3. Numerical keyboard
	1.2.3.4. Search bar
	1.2.3.5. Search input box

	1.2.4. Item component
	1.2.4.1. Auxiliary description component
	1.2.4.2. Bank card item component
	1.2.4.3. Coupons item component
	1.2.4.4. List item component

	1.2.5. Result page components
	1.2.5.1. Progress page
	1.2.5.2. Net error page
	1.2.5.3. QR code page
	1.2.5.4. Result page

	1.2.6. Loading component
	1.2.7. Navigation component
	1.2.7.1. Carousel component
	1.2.7.2. List component
	1.2.7.3. Title bar component

	1.2.8. Other component
	1.2.8.1. Index component
	1.2.8.2. Button component
	1.2.8.3. Operation bar component
	1.2.8.4. Check icon component
	1.2.8.5. Icon component
	1.2.8.6. Refresh component
	1.2.8.7. Switch tab component
	1.2.8.8. TabBar item component

	1.3. Native based - iOS component library
	1.3.1. Quick start
	1.3.2. Basic components
	1.3.2.1. Activity Indicator base class
	1.3.2.2. Switch base class
	1.3.2.3. Check box control
	1.3.2.4. Image base class
	1.3.2.5. Label base class
	1.3.2.6. Footer base class
	1.3.2.7. mPaaS customized loading control
	1.3.2.8. Button base class

	1.3.3. Input components
	1.3.3.1. Image input box
	1.3.3.2. Paragraph input box
	1.3.3.3. Simplified amount input box
	1.3.3.4. Amount input box
	1.3.3.5. Normal input box
	1.3.3.6. Search input box
	1.3.3.7. Search bar component
	1.3.3.8. Verification code input box

	1.3.4. Item component
	1.3.5. Pop-up window component
	1.3.5.1. Action sheet
	1.3.5.2. Date picker component
	1.3.5.3. Menu component
	1.3.5.4. Recording status layer
	1.3.5.5. Image dialog
	1.3.5.6. Input dialog
	1.3.5.7. Toast component
	1.3.5.8. Card menu
	1.3.5.9. Operation result dialog
	1.3.5.10. Cascade picker
	1.3.5.11. Notification dialog
	1.3.5.12. Custom date picker

	1.3.6. Loading components
	1.3.6.1. Pull-up refresh control
	1.3.6.2. Pull-down refresh component
	1.3.6.3. Loading component

	1.3.7. Result page component
	1.3.7.1. Result page component
	1.3.7.2. Exception page component

	1.3.8. Numeric keypad component
	1.3.9. Guidance component
	1.3.9.1. Prompt component
	1.3.9.2. Floating layer bar component

	1.3.10. Pop menu component
	1.3.11. Navigation components
	1.3.11.1. Vertical tab
	1.3.11.2. Double title
	1.3.11.3. Navigation bar
	1.3.11.4. Custom navigation bar

	1.3.12. QR code component
	1.3.13. Refresh component
	1.3.14. Other components
	1.3.14.1. Carousel component
	1.3.14.2. Segment component
	1.3.14.3. Icon component
	1.3.14.4. Index component
	1.3.14.5. Title bar segment component
	1.3.14.6. Navigation button
	1.3.14.7. Adaptation and dependency
	1.3.14.8. Image picker encapsulation

