
Ant Technology

Social Sharing
User Guide

Document Version: 20250731

Ant Technology

Social Sharing
User Guide

Document Version: 20250731

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Social Sharing User Guide·Legal disclaimer

> Document Version: 20250731 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Social Sharing User Guide·Document convent
ions

> Document Version: 20250731 I

Table of Contents
1.Social Sharing

1.1. Overview
1.2. Integrate Android SDK

1.2.1. Quick start
1.2.2. Migrate to baseline 10.1.60
1.2.3. API_reference

1.2.3.1. ShareService interface
1.2.3.2. ShareType interface
1.2.3.3. ShareContent interface
1.2.3.4. ShareException interface

1.3. Integrate iOS SDK
1.3.1. Quick start
1.3.2. Use SDK

05

05

05

05

06

07

07

07

08

09

10

10

10

Social Sharing User Guide·Table of Contents

> Document Version: 20250731 I

MPShareKit provides the function of sharing information through Weibo, WeChat, Alipay Friends, QQ, SMS and other channels, and offers you a unified
interface, so you don’t have to deal with the interface difference among various SDKs.

About this task
The Social sharing component offers the feature of sharing to Weibo, WeChat, Alipay, QQ, DingTalk, text messages, and other channels. This
component provides a unified API to the developers so that they do not need to cope with the differences among various SDK APIs. To add a share
component to an Android client, you need to configure a project to determine the basic framework and add the SDK of the share component.

Before you begin
Before you add a sharing channel, make sure that you have registered an account on the official website of this channel. Some sample official sites of
sharing channels are listed as follows:

Weibo: http://open.weibo.com/
WeChat: https://open.weixin.qq.com/
QQ: http://open.qq.com/
Alipay: http://open.alipay.com/index.htm
DingTalk: https://www.dingtalk.com/

Social sharing is supported in the native AAR mode and the component-based mode.
If you want to connect the component to the mPaaS based on the native AAR mode, you need to first complete the prerequisites and the subsequent
steps. For more information, see Add mPaaS to your project
If you want to connect the component to the mPaaS based on components, you need to first complete the Component-based access procedure.

Add the SDK
Native AAR mode
You can use the AAR Component Management (AAR) function to install the share component in your project. For more information, see AAR
component management.

Component-based mode
In your Portal and Bundle projects, use the Component Management function to install the share component.
For more information, see Manage component dependencies.

Initialize mPaaS
In the native AAR mode, you must initialize the mPaaS.
Add the following code to the Application class:

public class MyApplication extends Application {

 @Override
 public void onCreate() {
 super.onCreate();
 // mPaaS initialization
 MP.init(this);
 }
}

For more details, see Initialize mPaaS.

Use the social sharing SDK on different platforms
This topic describes how to use the social sharing SDK in the baseline version 10.1.32 and later based on the official demo of Social sharing.

Share to WeChat
You need to manually create an Activity with a specific path and name to receive callback events for sharing to WeChat. This Activity inherits
from DefaultWXEntryActivity . The path is package_name.wxapi.WXEntryActivity , where package_name is the package name of the application.

Note
The path and the ‘Activity’ name must be correctly specified. Otherwise, the application will fail to receive any callback.

In the following example, the package name is com.mpaas.demo .

package com.mpaas.demo.wxapi;
import com.alipay.android.shareassist.DefaultWXEntryActivity;
public class WXEntryActivity extends DefaultWXEntryActivity {
}

Register for the Activity in AndroidManifest.xml :

1.Social Sharing
1.1. Overview

1.2. Integrate Android SDK
1.2.1. Quick start

Social Sharing User Guide·Social Sharing

> Document Version: 20250731 5

http://open.weibo.com/
https://open.weixin.qq.com/
http://open.qq.com/
http://open.alipay.com/index.htm
https://www.dingtalk.com/
https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/mpaas_android_app

<application>
 ···
 <activity android:name="com.mpaas.demo.wxapi.WXEntryActivity"
 android:exported="true"
 android:launchMode="singleTop">
 </activity>
 ···
</application>

Note
When you set the WeChat share icon, make sure that the icon size does not exceed 32 KB. Otherwise, the WeChat sharing may fail. The SDK for
Android needs to be validated. If the WeChat share icon exceeds 32 KB, then the default Alipay icon will be used instead.

Share to QQ and QZone
You need to register for the Activity required for sharing to QQ in AndroidManifest.xml . Otherwise, you will fail to use the features of sharing to
QQ and QZone and the callback feature.

Note
If the QQ share ID that you write in the ‘AndroidManifest.xml’ file is different from the QQ share ID registered in the code, a callback error will
occur during the share. And the ‘onException’ callback is called even the share is successful. Therefore, you need to check the QQ share ID
carefully.
Enter the corresponding QQ share ID in data android:scheme . The ID format is ‘tencent’ immediately followed by a QQ ID, which is
 tencent+QQID . Note that + is not included in the QQ share ID. You need to register for this ID on Tencent Open Platform. In the following
example, the QQ ID is ‘1104122330’.

<application>
 ···
 <activity
 android:name="com.tencent.connect.common.AssistActivity"
 android:configChanges="orientation|keyboardHidden|screenSize"
 android:screenOrientation="portrait"
 android:theme="@android:style/Theme.Translucent.NoTitleBar"/>
 <activity
 android:name="com.tencent.tauth.AuthActivity"
 android:launchMode="singleTask"
 android:exported="true"
 android:noHistory="true">
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>
 <data android:scheme="tencent1104122330"/>
 </intent-filter>
 </activity>
 ···
</application>

Share to Weibo
Make sure that the application signature, the package name, and the share ID are the same as those registered on Weibo Open Platform. Otherwise, a
sharing failure will occur. If a sharing failure occurs due to this inconsistency issue, the share component triggers the sharing success callback
 onComplete rather than the sharing exception callback onException . This defect comes with the Weibo SDK. And the same issue occurs in the
official demo of the Weibo SDK.

Related topics
For how to obtain the code sample and the corresponding usage and notes, see Get code sample.
Related API documentation:

ShareService API
ShareType API
ShareContent API
ShareException API

This topic describes how to migrate the Social sharing component from a baseline earlier than version 10.1.60 to the baseline 10.1.60.

Procedure
1. Uninstall the Social sharing component.

If you have installed an earlier version of the Social sharing component according to Quick start, you need to uninstall it by deleting the following
contents in the build.gradle file.

provided "com.alipay.android.phone.mobilecommon:share-build:1.3.0.xxxx:api@jar"
bundle "com.alipay.android.phone.mobilecommon:share-build:1.3.0.xxxx@jar"
manifest "com.alipay.android.phone.mobilecommon:share-build:1.3.0.xxxx:AndroidManifest@xml"

2. Upgrade your baseline to version 10.1.60. Skip this step if you have upgraded the baseline.
In the Android Studio menu, choose mPaaS > Baseline Upgrade. After you select the baseline 10.1.60, click OK.

3. Install the Social sharing component of the baseline 10.1.60.

1.2.2. Migrate to baseline 10.1.60

Social Sharing User Guide·Social Sharing

> Document Version: 20250731 6

http://open.qq.com/
http://open.weibo.com/

In the Android Studio menu, choose mPaaS > Component Management to add the mPaaS Social sharing component.

Note
The API for Social sharing components of the baseline 10.1.60 and 10.1.32 has not changed.

 ShareService interface:

public abstract class ShareService extends ExternalService {

 /**
 * Silent share, only one share type can be used, share type selection will not appear.
 * @param content: The content to share
 * @param shareType: Share type
 * @param biz: biz
 */
 public abstract void silentShare(ShareContent content, final int shareType, final String biz);

 /**
 * Set the monitored target in sharing
 * @param listener: The monitored target
 */
 public abstract void setShareActionListener(ShareActionListener listener);

 /**
 * Obtain the monitored target in sharing
 * @return: The monitored target
 */
 public abstract ShareActionListener getShareActionListener();

 /**
 * Set the name of application
 * @param name: Application name
 */
 public abstract void setAppName(String name);

 /**
 * Initialize WeChat sharing
 * @param appId: WeChat appId, registered and obtained from WeChat channel
 * @param appSecret: WeChat appSecret, registered and obtained from WeChat channel
 */
 public abstract void initWeixin(String appId, String appSecret);

 /**
 * Initialize Weibo sharing
 * @param appId: Weibo appId, registered and obtained from Weibo channel
 * @param appSecret: Weibo appSecret, registered and obtained from Weibo channel
 * @param redirectUrl: The redirect URL for Weibo sharing
 */
 public abstract void initWeiBo(String appId, String appSecret, String redirectUrl);

 /**
 * Initialize Qzone sharing
 * @param appId: QZone appId, registered and obtained from QQ channel
 */
 public abstract void initQZone(String appId);

 /**
 * Initialize QQ sharing
 * @param appId: QQ appId, registered and obtained from QQ channel
 */
 public abstract void initQQ(String appId);

 /**
 * Initialize Alipay sharing
 * @param appId: Alipay appId, registered and obtained from Alipay channel
 */
 public abstract void initAlipayContact(String appId);

 /**
 * Initialize DingTalk sharing
 * @param appId: DingTalk appId, registered and obtained from DingTalk channel
 */
 public abstract void initDingDing(String appId);

}

 ShareType interface:

1.2.3. API_reference

1.2.3.1. ShareService interface

1.2.3.2. ShareType interface

Social Sharing User Guide·Social Sharing

> Document Version: 20250731 7

 ShareType interface:

public class ShareType {
 /**
 * SMS
 */
 public static final int SHARE_TYPE_SMS = 2;

 /**
 * Weibo
 */
 public static final int SHARE_TYPE_WEIBO = 4;

 /**
 * WeChat friends
 */
 public static final int SHARE_TYPE_WEIXIN = 8;

 /**
 * WeChat Moments
 */
 public static final int SHARE_TYPE_WEIXIN_TIMELINE = 16;

 /**
 * Copy link
 */
 public static final int SHARE_TYPE_LINKCOPY = 32;

 /**
 * Qzone
 */
 public static final int SHARE_TYPE_QZONE = 256;

 /**
 * QQ friends
 */
 public static final int SHARE_TYPE_QQ = 512;

 /**
 * Contacts
 */
 public static final int SHARE_TYPE_CONTACT = 1024;

 /**
 * My timeline
 */
 public static final int SHARE_TYPE_CONTACT_TIMELINE = 2048;

 /**
 * DingTalk
 */
 public static final int SHARE_TYPE_DINGDING = 4096;

 /**
 * Group
 */
 public static final int SHARE_TYPE_GROUP = 8192;

 /**
 * All
 */
 public static final int SHARE_TYPE_ALL = 65535;
}

Important
Call get and set method to access ShareContent variable.
Since there is no uniform standard for sharing, imgUrl is used to internally “smooth” the differences. Therefore imgUrl is the first choice
for sharing, use image only if imgUrl is unavailable.

1.2.3.3. ShareContent interface

Social Sharing User Guide·Social Sharing

> Document Version: 20250731 8

public class ShareContent implements Serializable {

 /*
 * Content to share
 */
 private String content;

 /*
 * Share image
 */
 private byte[] image;

 /*
 * Share URL
 */
 private String url;

 /*
 * Share title
 */
 private String title;

 /*
 * Share image URL
 */
 private String imgUrl;

 /*
 * Extended parameter: Used for passing the business parameters of generating short link and SMS sending success
 */
 private String extData;

 /*
 * Sharing type: "url" is used to share the link, "image" is used to share the picture
 */
 private String contentType;

 /*
 * Share to contact: Share the URL of the small icon in the preview box
 */
 private String iconUrl;

 /**
 * Local image URL
 */
 private String localImageUrl;

 /*
 * Mini program type, default is official version
 * Official version: MiniProgramType.MINIPTOGRAM_TYPE_RELEASE
 * Test version: MiniProgramType.MINIPROGRAM_TYPE_TEST
 * Preview version: MiniProgramType.MINIPROGRAM_TYPE_PREVIEW
 */
 private MiniProgramType miniprogramType;
}

 ShareException interface:

1.2.3.4. ShareException interface

Social Sharing User Guide·Social Sharing

> Document Version: 20250731 9

public class ShareException extends RuntimeException {

 /**
 * Status code: User cancelled
 */
 public static final int USER_CANCEL = 1001;

 /**
 * Status code: Authentication failed
 */
 public static final int AUTH_ERROR = 1002;

 /**
 * Status code: Unknown error
 */
 public static final int UNKNOWN_ERROR = 1003;

 /**
 * Status code: Application not installed
 */
 public static final int APP_UNINSTALL = 40501;

 /**
 * Obtain status code
 * @return
 */
 public int getStatusCode() {
 return this.statusCode;
 }
}

The Social sharing component MPShareKit offers the feature of sharing to Weibo, WeChat, Alipay, QQ, DingTalk, text messages and other channels. It
provides a unified interface for developers so that they do not need to cope with the differences among various SDK interfaces.

Prerequisites
You have connected your project to mPaaS. For more information, see Access based on native framework and using Cocoapods.

Add the SDK
Use CocoaPods plugin to add the SDK. Complete the following steps:

1. In the Podfile file, add mPaaS_pod "mPaaS_Share" to add the dependencies of the sharing component.

2. Run pod install to connect the component to the mPaaS.

What to do next
Use the SDK (Version 10.1.60 and later)

After you add the SDK for the Social sharing component, you need to configure the project. You can start to use this component after it has been initialized. This topic describes how to use the Social sharing SDK of the baseline version 10.1.60 and later based on the

Configure the project
Configure the allowlist of third-party applications
In iOS 9 and later, configure the Scheme list to support application operations such as social sharing and authorization. The system will automatically check whether the Scheme of the application is set in the
file of the project. If the Scheme of the target application is not configured, the current application will be unable to jump to the target application.

1.3. Integrate iOS SDK
1.3.1. Quick start

1.3.2. Use SDK

Social Sharing User Guide·Social Sharing

> Document Version: 20250731 10

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas

The Value corresponding to each channel is as follows:
Wechat: weixinULAPI, wechat, weixin.
weibo: sinaweibohd, sinaweibo, weibosdk, weibosdk2.5.
Alipay: alipay, alipayShare.
QQ: mqq, mqqapi, mqqwpa, mqqOpensdkSSoLogin.
Ding Talk: dingtalk, dingtalk-open.

Configure URL Scheme
To ensure that you can jump back to the current application from other channel applications, you need to add the urlScheme value in the Info.plist file of the current project. The value is obtained from the corresponding social sharing channel.

The scheme for WeChat is the assigned key .
The scheme for Weibo is "wb" + key .
The scheme for QQ is "tencent" + APPID .
The Identifier for Alipay is alipayShare, and the scheme for it is 'ap' + APPID .

Initialization
When using the Social sharing component, you first need to create the application information in the corresponding third-
party platform, then use this information for registration. The information includes appId, appSecret, and universalLink. The methods used for registration are as follows.

When using mPaaS framework
Implement the following method in the classification of DTFrameworkInterface , and return the values of key and secret in the form of a dictionary in this method.

Note
In version 10.1.60 and later of the mPaaS SDK, the WeChat SDK has been updated to version 1.8.6.1, which required Universal Link verification. Therefore, you need to configure the corresponding Universal Link at the same time when configuring the key.

- (void)application:(UIApplication *)application beforeDidFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSDictionary *configDic = @{
 @"weixin" : @{@"key":@"xxxxxxxxxxxxxx", @"secret":@"xxxxxxxxxxxxxxx", @"universalLink":@"https://mpaas.example.com/"},
 @"weibo" : @{@"key":@"xxxxxxxxxx", @"secret":@"xxxxxxxxxxxxxxxxx"},
 @"qq" : @{@"key":@"xxxxxxxxx", @"secret":@"xxxxxxxxxx"},
 @"alipay": @{@"key":@"xxxxxxxxxxxxx"},/*The bundleID corresponding to this key is "com.alipay.share.demo". If you need to use it for te
sting, please modify it to the key you applied for or modify the bundleID to "com.alipay.share.demo"*/
 @"dingTalk": @{@"key":@"xxxxxxxxxxxxxxxx"}};
 [APSKClient registerAPPConfig:configDic];
}

When not using mPaaS framework
Register the key in the initialization method of the accessed application.

Note
In version 10.1.60 and later of the mPaaS SDK, the WeChat SDK has been updated to version 1.8.6.1, which requires Universal Link verification. Therefore, you need to configure the corresponding Universal Link at the same time when configuring the key.

Social Sharing User Guide·Social Sharing

> Document Version: 20250731 11

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSDictionary *dic = @{
 @"weixin" : @{@"key":@"xxxxxxxxxxxxxx", @"secret":@"xxxxxxxxxxxxxxx",@"universalLink":@"https://mpaas.example.com/"},
 @"weibo" : @{@"key":@"xxxxxxxxxx", @"secret":@"xxxxxxxxxxxxxxx"},
 @"qq" : @{@"key":@"xxxxxxxxxx", @"secret":@"xxxxxxxxxxxxxx"},
 @"alipay" : @{@"key":@"xxxxxxxxxxxxxxxx"},/*The bundleID corresponding to this key is "com.alipay.share.demo". If you need to use it fo
r testing, please modify it to the key you applied for or modify the bundleID to "com.alipay.share.demo"*/
 @"dingTalk": @{@"key":@"xxxxxxxxxxxxxxxxxxx"}};
 [APSKClient registerAPPConfig:dic];
}

Basic functions
Social sharing
Trigger the Social sharing panel
You can specify the channel to be displayed while triggering the Social sharing panel.

NSArray *channelArr = @[kAPSKChannelQQ, kAPSKChannelLaiwangContacts, kAPSKChannelLaiwangTimeline, kAPSKChannelWeibo, kAPSKChannelWeixin,
kAPSKChannelCopyLink,kAPSKChannelDingTalkSession];

self.launchPad = [[APSKLaunchpad alloc] initWithChannels:channelArr sort:NO];
self.launchPad.delegate = self;
[self.launchPad showForView:[[UIApplication sharedApplication] keyWindow] animated:YES];

Complete social sharing
Execute the social sharing operation in the callback of the sharingLaunchpad method in @protocol APSKLaunchpadDelegate .

- (void)sharingLaunchpad:(APSKLaunchpad *)launchpad didSelectChannel:(NSString *)channelName
{
 [self shareUrl:channelName];
 [self.launchPad dismissAnimated:YES];
}

- (void)shareUrl:(NSString*)channelName
{
 // Generate data and call the corresponding channel for social sharing.
 APSKMessage *message = [[APSKMessage alloc] init];
 message.contentType = @"url";//The types are "text", "image", and "url".
 message.content = [NSURL URLWithString:@"www.example.com.cn"];
 message.icon = [UIImage imageNamed:@"1"];
 message.title = @"Title";
 message.desc = @"Description";

 APSKClient *client = [[APSKClient alloc] init];

 [client shareMessage:message toChannel:channelName completionBlock:^(NSError *error, NSDictionary *userInfo) {
 // userInfo is the extension information.
 if(!error)
 {
 //your logistic
 }
 NSLog(@"error = %@", error);
 }];
}

Jump back from the channel application
When using the mPaaS framework, you do not need to manually handle it.
When not using the mPaaS framework, refer to the following code snippet.

- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url sourceApplication:(NSString *)sourceApplication annotation:(id)annotation
{
 // After the social sharing is complete, return from the channel application to the source application.
 BOOL ret;
 ret = [APSKClient handleOpenURL:url];
 return ret;
}

Open service
Through open interfaces of third-party services, you can call other open services provided by the Social sharing SDK of the third-
party channel. The open services that are currently supported are One-time subscription information and Launch Mini Program
services provided by WeChat.

Operating procedure for requesting open services
The following code snippet shows the operating procedure for requesting open services:

Social Sharing User Guide·Social Sharing

> Document Version: 20250731 12

// 1. Create the request object.
APSKOpenServiceRequest *req = [APSKOpenServiceRequest new];
// 2. Set the request type.
req.requestType = APSKOpenServiceRequestTypeLaunchMini;
// 3. Set the required parameters.
MPSKLaunchMiniProgramParam *param = [[MPSKLaunchMiniProgramParam alloc] init];
param.userName = @"xxxxxxxx";
param.path = @"/index.html";
param.miniProgramType = MPSKWXMiniProgramTypeTest;

req.param = param;

// 4. Create the client object
APSKClient *client = [APSKClient new];
// 5. Request service
[client requestOpenService:req toChannel:kAPSKChannelWeixin completionBlock:^(NSError *error, NSDictionary *userInfo) {
 // 6. Callback.
 if (error) {
 NSLog(@"%@", error);
 }
}];

Jump back from the channel application
After you jump back from the channel application, the handling depends on whether the mPaaS framework is used on the client.

If the mPaaS framework is used on the client, the framework will handle it after the jump back.
If the mPaaS framework is not used on the client, refer to the following code snippet to handle it after the jump back.

 - (BOOL)application:(UIApplication *)application openURL:(NSURL *)url sourceApplication:(NSString *)sourceApplication annotation:
(id)annotation
 {
 // Return from the channel application to the source application.
 BOOL ret;
 ret = [APSKClient handleOpenURL:url];
 return ret;
 }

Social Sharing User Guide·Social Sharing

> Document Version: 20250731 13

	1.Social Sharing
	1.1. Overview
	1.2. Integrate Android SDK
	1.2.1. Quick start
	1.2.2. Migrate to baseline 10.1.60
	1.2.3. API_reference
	1.2.3.1. ShareService interface
	1.2.3.2. ShareType interface
	1.2.3.3. ShareContent interface
	1.2.3.4. ShareException interface

	1.3. Integrate iOS SDK
	1.3.1. Quick start
	1.3.2. Use SDK

