
Ant Technology

Mobile Sync Service
User Guide

Document Version: 20250731

Ant Technology

Mobile Sync Service
User Guide

Document Version: 20250731

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Mobile Sync Service User Guide·Legal disclaimer

> Document Version: 20250731 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Mobile Sync Service User Guide·Document convent
ions

> Document Version: 20250731 I

Table of Contents
1.Change history
2.About Mobile Sync Service
3.Terminology
4.Client-side development

4.1. Android
4.2. iOS

4.2.1. Add SDK
4.2.2. Use SDK

5.Server-side development
5.1. Instructions on accessing server
5.2. Integrate service with Java SDK
5.3. Check user consistency

6.Console operations
6.1. Console introduction
6.2. Add configuration
6.3. Send business data
6.4. View configuration details
6.5. Change settings
6.6. Disable configuration
6.7. Query configuration pushes
6.8. Manage services

7.API reference
7.1. Android API
7.2. iOS API

05

06

09

11

11

13

13

14

19

19

19

30

33

33

33

34

35

36

36

36

37

38

38

43

Mobile Sync Service User Guide·Table of Contents

> Document Version: 20250731 I

Document version Revisions

V20210630
Added the Query data synchronization history
section, which provides instructions on how to
view synchronization records.

1.Change history
Mobile Sync Service User Guide·Change history

> Document Version: 20250731 5

file:///usr/app/173525967/~~257749%20~~

Mobile Sync Service (MSS) is a core basic business component of the mPaaS platform. MSS
originates from the E2E solution SYNC of Ant Financial Group, which is oriented to mobile
Apps and pushes massive data from the server to the client. This component provides a
secure data channel based on the Transmission Control Protocol (TCP) and Secure Sockets
Layer (SSL). This data channel can actively synchronize business data from the server to the
client App on a timely, accurate, and orderly manner.
Traditional RPC has been applied in the Internet industry for decades and can meet most
business scenarios and functional requirements. However, the popularization and
development of the mobile Internet have driven the App scale and users’ requirements for
Apps to a new stage. Traditional RPC requests have many drawbacks due to their own
characteristics.

In certain scenarios, a client needs to call RPC requests to obtain the latest data, but
actually no or only little data on the server (cloud) changes.
As different business modules and functions are designed to be independent of each other,
they need to call RPC requests respectively to obtain their business data when the client
starts.
The client cannot be promptly aware of the data changes on the server but needs to call
RPC APIs in polling mode to update data.
Traditional RPC performs data interactions mostly based on HTTP(S) short connections. This
type of connection cannot be persistent even if by using features such as keep-alive. In
other words, links cannot be reused continuously. Requests for connection creation,
certificate exchange, and encryption/decryption will increase the time consumption and
compromise the network performance.

MSS is introduced to improve or solve these problems.

Features
The core features of MSS are described as follows:

Reliable synchronization
For business scenarios where the quality of service (QoS) level is arrival guarantee, MSS
ensures that the data pushed from your server will be certainly synchronized to the client if
the user is active within the data validity period and meets the push requirements of your
server.

2.About Mobile Sync Service
Mobile Sync Service User Guide·About Mobile Sync

Service

> Document Version: 20250731 6

Orderly and incremental synchronization
MSS ensures that messages transmitted in the same channel arrive at the client in the
same sequence as your server calls the MSS server, and all messages are synchronized to
the client on an incremental basis.
Highly real-time performance
When the network connection of the client is good, MSS can ensure highly real-time push
performance. The time taken for message synchronization almost equals the time taken for
pure data transmission over the network (that is, messages can arrive within 1s).

Basic principles
Similar to the binlog mechanism in MySQL, the basic data unit transmitted between the MSS
server and the client SDK is oplog. To synchronize a piece of changed data to a specified user
or device, your server needs to call the MSS API. Then the MSS server packages the data as
an oplog and stores it in the database. When the client is online, the MSS server synchronizes
the oplog to the client. Each oplog has a unique ID. Oplog IDs are unique and monotonically
increments (based on the call sequence) among certain users and within a certain business
scope. The MSS server synchronizes all oplogs to the client in ascending order of oplog ID.
Both the MSS server and the client record the largest oplog ID received by the client, which is
called the synchronization point (or understood as the data version number).

Advantages
Merged push
When the client is successfully initialized, the server can push multiple pieces of business
data at a time to reduce the number of requests.
Incremental push
Only incremental data is synchronized, reducing the transmission of redundant data and
the network costs.
Reduced requests
Data synchronization is not requested when there is no incremental data, reducing
redundant requests.
Improved time efficiency
When the server encounters data changes, the changed data is instantly synchronized to
the client, without the need to wait for requests from the client.
Improved experience
Data is synchronized imperceptibly and is present before the client UI is rendered, reducing
the waiting time of users.

Applicable scenarios

Mobile Sync Service User Guide·About Mobile Sync
Service

> Document Version: 20250731 7

MSS can be applied in business scenarios where data needs to be synchronized in real time to
the client, such as transfer result synchronization, payment result synchronization, and
message center. You can learn more about MSS capabilities through the following scenarios:

In instant messaging Apps, MSS provides incremental and reliable message delivery
capabilities to synchronize chat messages to specified users based on the message sending
order of the sender.
In Apps requiring dynamic configuration updates, MSS dynamically synchronizes
configuration information to all devices. MSS synchronizes information including the app
function switch, dynamic parameters, and dynamic configurations to the specified client in
real time, or dynamically modifies the business parameters and configurations in batches
when the App is running.
For payment Apps, MSS provides a secure data channel for synchronizing transaction data
online, ensuring that the Apps can receive the data in real time when they are online. In
addition, MSS provides the data persistence capability. If data is synchronized when an App
is offline, the App can receive the data when going online.

Mobile Sync Service User Guide·About Mobile Sync
Service

> Document Version: 20250731 8

The terms are listed in ascending alphabetical order.

B
Backend
A client App is running in the backend when the mobile phone displays the Home screen or in
the screen-saving state, or when the user is operating another App.
BizType
A business type, which is the unique identifier of a business scenario. After data is pushed,
the MSS SDK of the client distributes the data to the corresponding business module based on
BizType.
Business dimension
There are two business dimensions: user and device. The MSS server pushes data by user or
device.

F
Frontend
The client App is running.

I
Idempotence
Operations are applied multiple times based on the thirdMsgId field in the SyncOrder
parameter, and succeed only once with the unique combination of bizType, linkToken, and
thirdMsgId. New data will be discarded and not be added to the database. The API returns a
success message with the result code “DUPLICAT ED_BIZ _ID”.

M
Multi-device Sync
A message is synchronized to all client-installed devices of a user. After the user logs in to the
client that is installed on two or more devices, all the devices can receive the message. If the
user uninstalls the client, re-installs it, and goes online again, the message will be pushed
again.
MSS data
MSS data needs to be pushed through the MSS server.
MSS push
The MSS server proactively pushes one copy of data to the client. If the client that calls the
business is online, data push is triggered immediately. Otherwise, the MSS server will push
the data after the client goes online.

O
Online
The client App is connected to the network and maintains a stable TCP connection. When
running in the backend, the client App is still online on most Android mobile phones but online
for only 3 minutes on iPhones due to the iOS restrictions.

P
Persistence

3.Terminology
Mobile Sync Service User Guide·Terminology

> Document Version: 20250731 9

A mechanism that converts program data between the persistent and transient states. In
MSS, the persistence mechanism produces persistent data and non-persistent data.

Persistent data: If a user is offline, the data will be stored in the database permanently.
After the user goes online, the MSS SDK triggers data synchronization to the user.
Non-persistent data: If a user is online, the data is pushed to the user immediately. If the
user is offline, the data is discarded directly and will not be sent to the user after the user
goes online.

Push type
There are two push types: designated push and global push.

Designated push: pushes a piece of data to a designated user or device.
Global push: pushes a piece of data to all online users or devices. Global push uses multi-
device synchronization.

S
Single-device push
A message is pushed only to the device which a user uses for the latest login to the client.
The message is pushed only once. If the user uninstalls the client, re-installs it, and goes
online again, the message will not be pushed again. If the user logs in to the client from
another device, the message will not be pushed to the device.
Sync
Sync refers to the MSS data synchronization service that the MSS server synchronizes data to
the client App.

T
Threshold
If a user is offline for a long time and the server keeps on generating data, it may lead to a
data backlog in MSS. The threshold specifies the upper limit of the amount of backlog data.
When a data backlog occurs, only the latest data within the threshold is retained. Earlier data
beyond the threshold will be discarded.

Mobile Sync Service User Guide·Terminology

> Document Version: 20250731 10

This topic briefly describes how to fast integrate MSS to the Android client. You can access
MAS through Native AAR or Portal & Bundle.

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or 10.1.60,
see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

The complete access process mainly includes the following 2 steps:
1. Add SDK
2. Use SDK

Prerequisites
You have integrated mPaaS to your project.

If you access MSS through Native AAR, ensure that you have added mPaaS to project.
If you access MSS in componentized access mode (through Portal & Bundle projects),
ensure that you have completed the componentized access process.

Add SDK
Native AAR mode
Follow the instructions in AAR component management to install the SYNC component in the
project through Component management (AAR) .

Componentized access mode
Install the SYNC component in the Portal and Bundle projects through Component
management (AAR).
For more information, see Manage component dependencies > Add/delete component
dependencies.

Use SDK
In baseline 10.1.32 or later version, the MPSync class at the mPaaS middle layer
encapsulates all APIs of MSS. You can have a quick glance of these APIs in the following table.
For more information about the APIs, see Android API reference.

API Description

setup(Application application)

Initializes basic services on which MSS depends.
Call this API before you call the initialize
method. This API is available only in baseline
10.1.60 and later versions.

initialize(Context context) Initializes APIs and MSS.

4.Client-side development
4.1. Android

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20250731 11

appToForeground()
Notifies the client SDK that the App has been
switched to the foreground and it needs to
connect to the server. Call this API every time the
App is switched to the foreground.

appToBackground()
Notifies the client SDK that the 128344 has been
switched to the background and it needs to
disconnect from the server. Call this API every
time the App is switched to the background.

updateUserInfo(String sessionId)
Call this API when the login information (userId or
sessionId) is changed. This API is called at least
once.

clearUserInfo() Clears user information when a user logs out.

registerBiz(String bizType, ISyncCallback
syncCallback)

You can call this API to register a callback to
receive business data. If this API is called, the
client SDK will call the syncCallback class
after receiving synchronized data.

unregisterBiz(String bizType)
Unregisters a specified synchronization
configuration. If this API is called, the client SDK
will not call the syncCallback class when
receiving synchronized data.

reportMsgReceived(SyncMessage syncMessag)

After the data is received in the
 syncCallback implementation class, this API

is called to notify MSS that the sync data has
been received. Before receiving the
 reportMsgReceived message, MSS attempts

to resend the data for a maximum of six times. If
all resending attempts fail, the data will be
permanently deleted.

isConnected() Checks whether MSS is running properly.

Code sample
This sample is based on the mPaaS SDK 10.1.32 baseline. The example App provides a
button. When a user taps this button, MSS obtains the device ID, and pushes the sync data to
the target device specified in the console based on the device ID. In this sample, the sync ID
is bizType .
Note: This sample is only intended for demonstrating how to call MSS APIs, and is not the
best practice of MSS. You can get the best practice code of MSS from Obtain code samples.

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20250731 12

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/mpaas_android_app

 public void button1Clicked(View view)
 {
 // Obtain the device ID using the getUtdid method.
 String utdid =UTDevice.getUtdid(MainActivity.this);
 // Print mobile sync data in Logcat.
 Log.e("=========",utdid);
 // Initialize the API and MSS.
 MPSync.initialize(MainActivity.this);
 // Register a callback for receiving service data. If this API is called, the c
lient SDK will call the syncCallback class after receiving synchronized data.
 MPSync.registerBiz("bizType",new SyncCallBackImpl());
 // Set up a network connection with the server.
 MPSync.appToForeground();

 }

 public class SyncCallBackImpl implements ISyncCallback
 {
 @Override
 public void onReceiveMessage(SyncMessage syncMessage) {
 //Print mobile sync data in Logcat.
 Log.e("=========",syncMessage.msgData);
 // Notify the MSS server that the sync data has been received.
 MPSync.reportMsgReceived(syncMessage);
 }
 }

Follow-up steps
Access the server

This guide introduces how to integrate Mobile Sync Service (MSS) to iOS client. You can
integrate MSS to iOS client based on native project with CocoaPods.

Prerequisites
You have connected your project to mPaaS. For more information, see Access based on
native framework and using Cocoapods.

Add SDK
Use CocoaPods plugin to add the MSS SDK. Complete the following steps:

1. In the Podfile file, use mPaaS_pod "mPaaS_Sync" to add the MSS dependencies.

4.2. iOS
4.2.1. Add SDK

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20250731 13

2. Run pod install to complete integrating the SDK.

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or
10.1.60, see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

After you add the MSS SDK, you must configure the project before using the SDK.

Prerequisites
The SDK version is 10.1.32 or later.
Note: You can view the current SDK version in the mpaas_sdk.config file.

4.2.2. Use SDK

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20250731 14

Configure a project
Ensure that the meta.config file containing the MSS address and port number has been
added to the project.

If you have used the latest plug-in to add the MSS SDK, the file will be generated
automatically.
If your project does not contain the meta.config file, log in to the mPaaS console, choose
Overview > Code configuration, download the .config file, rename it
to meta.config , and add the file to your project.

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20250731 15

Upgrade precautions
The Category file of the DTSyncInterface class does not need to be added since version
10.1.32. The middle tier implements package reading from meta.config . After an upgrade,
check whether there is any configuration of the earlier version in the project. If yes, remove
it. The following figure shows the Category file of the DTSyncInterface class to be
removed from an upgraded version.

Code sample

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20250731 16

To realize the logic for listening on the Sync service, you need to create a class, preferably a
memory-resident service, to listen on Sync messages. The following code sample creates the
 MySyncService class to listen on the Sync service.
Before listening on the Sync service, you need define a Sync ID for the sync service (the sync
ID will also be used when you create a push configuration on the mPaaS console). This sync
ID is the link between you as the user and the service provider. The sync ID in the following
example is SYNC-TRADE-DATA .

#import <MPMssAdapter/MPSyncInterface.h>
#define SYNC_BIZ_NAME @"SYNC-TRADE-DATA";

@implementation MySyncService
+ (instancetype)sharedInstance
{
 static MySyncService *bizService;

 static dispatch_once_t llSOnceToken;

 dispatch_once(&llSOnceToken, ^{

 bizService = [[self alloc] init];
 });
 return bizService;
}

-(instancetype)init
{
 self = [super init];
 if (self) {
 [MPSyncInterface initSync];
 BOOL registerSingleDeviceSync = [MPSyncInterface
registerSyncBizWithName:SYNC_BIZ_NAME syncObserver:self
selector:@selector(revSyncBizNotification:)];
 [MPSyncInterface bindUserWithSessionId:@"SESSION_DEMO"]; // In this function, *
*User** corresponds to userId that you specify in the console. It specifies the target
to which the console delivers commands, and the value must be the same as that set in t
he userId function of MPaaSInterface. **SessionId** specifies the authorization token c
arried by the client. The user login system returns both userId and sessionId. If eithe
r changes, this function needs to be called again to ensure that a persistent connectio
n is set up correctly.
 }
 return self;
}

-(void)revSyncBizNotification:(NSNotification*)notify
{
 NSDictionary *userInfo = notify.userInfo;
 dispatch_async(dispatch_get_main_queue(), ^{
 // Process business data.
 [MySyncService handleSyncData:userInfo];
 // Call back SyncSDK, indicating that business data has been processed.
 [MPSyncInterface responseMessageNotify:userInfo];
 });
}

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20250731 17

+(void)handleSyncData:(NSDictionary *)userInfo
{
 NSString * stringOp = userInfo[@"op"];
 NSArray *op = [NSJSONSerialization JSONObjectWithData:[stringOp
dataUsingEncoding:NSUTF8StringEncoding] options:NSJSONReadingMutableContainers error:ni
l];
 if([op isKindOfClass:[NSArray class]]){
 [op enumerateObjectsUsingBlock:^(NSDictionary * item, NSUInteger idx, BOOL
*stop) {
 if([item isKindOfClass:[NSDictionary class]]){
 NSString * plString = item[@"pl"]; // Payload of the business data
 if(item[@"isB"]){
 NSData *dataPl = [[NSData alloc]
initWithBase64EncodedString:plString options:kNilOptions];
 NSString *pl = [[NSString alloc] initWithData:dataPl encoding:NSUTF8
StringEncoding];
 NSLog(@"biz payload data:%@,string:%@",dataPl,pl);
 }else{
 NSLog(@"biz payload:%@",plString);
 }
 }
 }];
 }
}

-(void)dealloc
{
 BOOL unRegisterSingleDeviceSync = [MPSyncInterface
unRegisterSyncBizWithName:SYNC_BIZ_NAME syncObserver:[MySyncService sharedInstance]];
 [MPSyncInterface removeSyncNotificationObserver:self];
}
@end

Follow-up steps
Access the server

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20250731 18

To access your business system to Mobile Sync Service (MSS) server, you must complete the
following two steps:
To access your business system to Mobile Sync Service (MSS) server, you must complete the
following two steps:

1. Integrate service with Java SDK and compile calling codes: Use Java SDK for access.
According to different requirements, the calling codes can be written in two modes: single
data synchronization API and global data synchronization API .

2. Verify user consistency: This verification is generally used in scenarios with high user
security requirements for data synchronization.

Prerequisites
You should complete the following preparations before accessing the MSS server:

You have completed the following operations: Activate mPaaS and Obtain AccessKey ID and
Secret from the tenant administrator.
You have created an App and obtained the appId and workspaceId of the App.
You have a server-side application.
You have completed the Maven configuration.

This topic describes how to access the data synchronization service on the server by using
Java SDK.

Import JAR package
After completing the Maven configuration, introduce the following dependencies in the master
 pom.xml file.

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-mpaas</artifactId>
 <version>3.0.10</version>
</dependency>
<dependency>
<groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-core</artifactId>
 <optional>true</optional>
 <version>[4.3.2,5.0.0)</version>
</dependency>

Environment Variable Configuration

5.Server-side development
5.1. Instructions on accessing
server

5.2. Integrate service with Java
SDK

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 19

https://www.alibabacloud.com/product/mpaas?_p_lc=1

Configure environment variable MPAAS_AK_ENV and MPAAS_SK_ENV.
Linux and macOS system configuration methods execute the following commands:

export MPAAS_AK_ENV=<access_key_id>
export MPAAS_SK_ENV=<access_key_secret>

Note
 access_key_id is replaced with the prepared AccessKey ID, and access_key_secret
is replaced with the AccessKey Secret.

Windows system configuration method
i. Create a new environment variable, add environment variables MPAAS_AK_ENV and

MPAAS_SK_ENV, and write the prepared AccessKey ID and AccessKey Secret.
ii. Restart Windows system.

API description
Single data synchronization interface
The single data synchronization interface is used to synchronize data to a specified user or
device.

Parameters
Business parameters are as follows:

Parameter Data type Required Example Description

appId String Required ONEX570DA8921
17

Get App ID from
the mPaaS
console.

workspaceId String Required PROD
Get Workspace
ID from the
mPaaS console.

bizType String Required UCHAT

The
synchronization
identifier
configured in the
mPaaS console.
See Console
introduction for
more details.

linkToken String Required

Push target ID.
Enter the user ID
if the push is
based on users.
Enter the device
ID if the push is
based on
devices.

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 20

payload String Required testpayload

Actual business
message body in
custom format,
no more than
4,096 characters
in length.

thirdMsgId String Required 1760339273

Request ID for
one data
synchronization.
Unique for one
synchronization
configuration.
Requests of
duplicate IDs will
be ignored. The
ID must be no
more than 100
bytes.

osType String No iOS/Android

Specifies the
operating system
of the mobile
phone to which
the data is to be
pushed. By
default, no
parameters will
be passed, that
is, no
specifications,
and data will be
pushed to both
iOS and Android
platforms.

appMinVersion String No 0.0.0.0

Specify the client
version to which
the data is
pushed. Data is
sent only to
clients of the
specified or later
versions.

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 21

appMaxVersion String No 100.100.100.100

Specify the client
version to which
the data is
pushed. Data is
sent only to
clients of the
specified or
earlier versions.

validTimeStart String No 1584448493913

Data will be
pushed only
when the current
time is later than
or equal to
validTimeStart.

validTimeEnd String No 1584452093913

Data will be
pushed only
when the current
time is earlier
than or equal to
validTimeEnd.

Result codes

Result code Description Solution

Success Synchronization succeeded. Synchronization succeeded.

ARGS_IS_NULL Required parameters are empty
Check if the parameters have
been completely passed
according to the non-empty
logical operation.

PAYLOAD_LONG PAYLOAD message body is too
long

Check if the length of the
playload property parameter
exceeds the limit.

THIRD_MSG_ID_LONG Third-party service ID is too
long.

Check if the third-party service
ID exceeds the limit.

BIZ_NOT_ONLINE
The synchronization identifier
of the service scenario is not
submitted.

Go to mPaaS Console >
Mobile Sync Service to check
if the bizType synchronization
identifier has been configured
and submitted.

THIRD_MSG_ID_IS_NULL Third-party service ID is empty Check if the third-party service
ID is empty.

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 22

SYSTEM_ERROR System error
Contact technical support to
confirm the cause of system
errors.

INVALID_TENANT_ID Invalid tenant ID
Check if the App ID is correct
and If you have the permission
to use the App ID.

Sample code
import com.aliyuncs.DefaultAcsClient;
import com.aliyuncs.IAcsClient;
import com.aliyuncs.mpaas.model.v20201028.CreateOpenSingleDataRequest;
import com.aliyuncs.mpaas.model.v20201028.CreateOpenSingleDataResponse;
import com.aliyuncs.profile.DefaultProfile;
import org.apache.commons.lang3.builder.ToStringBuilder;
import org.apache.commons.lang3.builder.ToStringStyle;

public class MsyncPopDemo {

 public static void main(String[] args) {
 //Request information, except AccessKey ID AccessKey Secret can be fixed
 DefaultProfile.addEndpoint("cn-hangzhou", "mpaas", "mpaas.cn-
hangzhou.aliyuncs.com");

 // Alibaba Cloud account AccessKey has access rights to all APIs. It is
recommended that you use RAM users for API access or daily operation and maintenance.
 // It is strongly recommended not to save the AccessKey ID and AccessKey Secret
in the project code, otherwise the AccessKey may be leaked, threatening the security of
all resources under your account.
 // This example uses saving the AccessKey ID and AccessKey Secret in
environment variables as an example. You can also save it to the configuration file acc
ording to business needs.
 String accessKeyId = System.getenv("MPAAS_AK_ENV");
 String accessKeySecret = System.getenv("MPAAS_SK_ENV");

 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 accessKeyId, // AccessKey ID of RAM account
 accessKeySecret); // AccessKey Secret of RAM account
 IAcsClient client = new DefaultAcsClient(profile);

 CreateOpenSingleDataRequest singleRequest = constructSingleRequest();

 CreateOpenSingleDataResponse singleDataResponse;
 try {
 singleDataResponse = client.getAcsResponse(singleRequest);
 System.out.println("singleDataResponse:" +
 ToStringBuilder
 .reflectionToString(singleDataResponse,
ToStringStyle.SHORT_PREFIX_STYLE));

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 23

 } catch (Throwable throwable) {
 throwable.printStackTrace();
 }
 }

 private static CreateOpenSingleDataRequest constructSingleRequest() {

 CreateOpenSingleDataRequest singleRequest
 = new CreateOpenSingleDataRequest();
 //*************Required properties*************/

 //App ID obtained from the mPaaS console
 singleRequest.setAppId("xxxxxxx");
 //WorkspaceId obtained from the mPaaS console
 singleRequest.setWorkspaceId("xxxxxxxx");
 //The synchronization identifier configured during mobile synchronization in
the mPaaS console
 singleRequest.setBizType("TEST-SYNC");
 //User ID or device ID to be pushed (UTDID)
 singleRequest.setLinkToken("testUserId");
 //Actual service message body, custom format with not more than 4096 characters
in length.
 singleRequest.setPayload("testPayload");
 //Service ID, unique, not more than 100 characters in length.
 singleRequest.setThirdMsgId("test_third_msg_id_" + System.currentTimeMillis());

 //************Non-required properties*************/

 //No restriction on the operating system when the operating system of the targe
t device, iOS or Android, is empty.
 singleRequest.setOsType("IOS");
 //Minimum client version supported, such as 8.6.0.0.9999. If the version
specified here is empty, there will be no limit on the minimum client version.
 singleRequest.setAppMinVersion("0.0.0.0");
 //Maximum client version supported, such as 9.0.0.0.9999. If the version
specified here is empty, there will be no limit on the maximum client version.
 singleRequest.setAppMaxVersion("100.100.100.100");
 //Start of the validity period. If it is empty, there will be no limit on the s
tart of the validity period.
 singleRequest.setValidTimeStart(System.currentTimeMillis());
 //End of the validity period. If it is empty, there will be no limit on the end
of the validity period. The longest validity period is 30 days.
 singleRequest.setValidTimeEnd(System.currentTimeMillis() + (1000 * 3600));

 return singleRequest;

 }

Important
Please make sure that your AccessKey has AliyunMPAASFullAccess permission. For
details, please refer to Application-level access control for RAM users.

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 24

Global data synchronization interface
Global data synchronization interface is used to synchronize data to all devices.

Parameters
Business parameters are as follows:

Parameter Data type Required Example Description

appId String Required ONEX570DA8921
17

Get App ID from
the mPaaS
console.

workspaceId String Required PROD
Get Workspace
ID from the
mPaaS console.

bizType String Required UCHAT

The
synchronization
identifier
configured in the
mPaaS console.
See Console
introduction for
more details.

payload String Required testtestatapalayd

Actual service
message body,
custom format
with not more
than 4096
characters in
length.

thirdMsgId String Required 1760339273

One data
synchronization
request ID.
Unique for one
synchronization
identifier.
Requests from
duplicate IDs will
be ignored. The
ID must be no
more than 100
bytes.

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 25

osType String No IOS/ANDROID

Specifies the
operating system
of the mobile
phone to which
the data is to be
pushed. By
default no
parameters will
be passed, that
is, no
specifications,
and data will be
pushed to both
iOS and Android
platforms.

appMinVersion String No 0.0.0.0

Specify the client
version to which
the data is
pushed. Data is
sent only to
clients of the
specified or later
versions.

appMaxVersion String No 100.100.100.100

Specify the client
version to which
the data is
pushed. Data is
sent only to
clients of the
specified or
earlier versions.

validTimeStart String No 1584448493913

Data will be
pushed only
when the current
time is later than
or equal to
validTimeStart.

validTimeEnd String No 1584452093913

Data will be
pushed only
when the current
time is earlier
than or equal to
validTimeEnd.

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 26

maxUid Long No 99

The maximum
Uid in the
synchronization
range. Uid is the
second last
character and
the third last
character of the
user ID or device
ID. If the Uid is
not alphabetic,
you need to
convert the Uid
to ASCII.

minUid Long No 00

The minimum Uid
in the
synchronization
range. Uid is the
second last
character and
the third last
character of the
user ID or device
ID. If the Uid is
not alphabetic,
you need to
convert the Uid
to ASCII.

uids String No 01,02,99

The priority is
higher than
maxUid and
minUid.
The discrete Uid
segment. Uid is
the second last
character and
the third last
character of the
user ID or device
ID. If the Uid is
not alphabetic,
you need to
convert the Uid
to ASCII.

Result codes

Result code Description Solution

Success The task is successful. The task is successful.

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 27

ARGS_IS_NULL Required parameters are empty
Check if the parameters have
been completely passed
according to the non-empty
logical operation.

PAYLOAD_LONG PAYLOAD message body is too
long

Check if the length of the
playload property parameter
exceeds the limit.

THIRD_MSG_ID_LONG Third-party service ID is too
long.

Check if the third-party service
ID exceeds the limit.

BIZ_NOT_ONLINE
The synchronization identifier
of the service scenario is not
submitted.

Go to mPaaS Console >
Mobile Sync Service to check
if the bizType synchronization
identifier has been configured
and submitted.

THIRD_MSG_ID_IS_NULL Third-party service ID is empty Check if the third-party service
ID is empty.

SYSTEM_ERROR System error
Contact technical support to
confirm the cause of system
errors.

NOT_SUPPORT_GLOBAL
Does not support calls with
global service synchronization
identifier

According to BizType, go to
mPaaS Console > Mobile
Sync Service to check if the
synchronization identifier is
user-based or device-based.

INVALID_TENANT_ID Invalid tenant ID
Check if the App ID is correct
and If you have the permission
to use the App ID.

Sample code
public static void main(String[] args) {

 //Request information, fixed except AccessKey ID and AccessKey secret
 DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-
hongkong.aliyuncs.com");
 // Create and initialize a DefaultAcsClient instance.
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hongkong", // Region ID
 "xxxxxx", // AccessKey ID of the RAM account
 "xxxxxx"); // AccessKey secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);

 CreateOpenGlobalDataRequest globalDataRequest = constuctGlobelRequest();

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 28

 CreateOpenGlobalDataResponse globalDataResponse;
 try {
 globalDataResponse = client.getAcsResponse(globalDataRequest);
 System.out.println("globalDataResponse:" +
 ToStringBuilder
 .reflectionToString(globalDataResponse,
ToStringStyle.SHORT_PREFIX_STYLE));

 } catch (ServerException e) {
 e.printStackTrace();
 } catch (ClientException e) {
 e.printStackTrace();
 } catch (com.aliyuncs.exceptions.ClientException e) {
 e.printStackTrace();
 } catch (Throwable throwable) {
 throwable.printStackTrace();
 }
 }

 private static CreateOpenGlobalDataRequest constuctGlobelRequest() {

 CreateOpenGlobalDataRequest globalRequest
 = new CreateOpenGlobalDataRequest();

 //************Required properties*************/
 //App ID obtained from the mPaaS console
 globalRequest.setAppId("BE9C457161429");
 //WorkspaceId obtained from the mPaaS console
 globalRequest.setWorkspaceId("sit");
 //The synchronization identifier configured during mobile synchronization in
the mPaaS console
 globalRequest.setBizType("test-global");
 //Actual service message body, custom format with not more than 4096 characters
in length.
 globalRequest.setPayload("testtestata");
 //Service ID, unique, not more than 100 characters in length.
 globalRequest.setThirdMsgId("test_third_msg_id_" + System.currentTimeMillis());

 //************Non-required properties*************/

 //No restriction on the operating system when the operating system of the targe
t device, iOS or Android, is empty.
 globalRequest.setOsType("IOS");
 //Minimum client version supported, such as 8.6.0.0.9999. If the version
specified here is empty, there will be no limit on the minimum client version.
 globalRequest.setAppMinVersion("0.0.0.0");
 //Maximum client version supported, such as 9.0.0.0.9999. If the version
specified here is empty, there will be no limit on the maximum client version.

 globalRequest.setAppMaxVersion("100.100.100.100");
 //Maximum Uid
 globalRequest.setMaxUid(Long.valueOf(99));
 //Minimum Uid
 globalRequest.setMinUid(Long.valueOf(1));

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 29

 //Uid 00-99 to be pushed for the phased-release, which is a string array.
 globalRequest.setUids("01,02,99");

 globalRequest.setValidTimeStart(System.currentTimeMillis());
 globalRequest.setValidTimeEnd(System.currentTimeMillis() + (1000 * 3600));

 return globalRequest;

 }

Important
Please make sure that your AccessKey has AliyunMPAASFullAccess permission. For
details, please refer to Application-level access control for RAM users.

In some cases, the business system has high-security requirements on data synchronization,
namely, the target users of the push must be the current logon users and not fake. For that,
the MSS provides user consistency verification, which can be turned on by the user when
needed. The general principle of this function is:
In some cases, the business system has high-security requirements on data synchronization,
namely, the target users of the push must be the current logon users and not fake. For that,
the MSS provides user consistency verification, which can be turned on by the user when
needed. The general principle of this function is:

The client reports user ID (userId) and authorization token (sessionId) when the client
connects to the server. Both userId and sessionId are the data returned after the user logs
on to the system. When userId and sessionId change, the relevant APIs need to be called to
ensure that the persistent connection is established correctly.
The server calls a consistency verification interface implemented by the tenant, and the
tenant checks the consistency through this interface. The data synchronization service
records an identifier indicating whether the consistency requirement is met.
For synchronization configuration with high security requirements, the tenant can enable
user consistency verification, and data is pushed only to devices of users who have passed
the consistency verification. If user consistency verification is not enabled, the consistency
verification results are ignored.

Configure user consistency verification interface
The following section describes how to configure the consistency validation interface
 com.antcloud.session.validate and explains the interface usage.
Note that after configuring the consistency verification interface in the mPaaS console, you
need to disable the signature verification feature of this RPC. Otherwise, the logic of
consistency verification for mobile synchronization will not work properly.

Operation path
After you log on to the mPaaS console, select the target App and choose Mobile Gateway
Service > Manage API to add the API. For more information, see Mobile Gateway > Manage
APIs.

API description

The operationType of the API to be added must be com.antcloud.session.validate . The

5.3. Check user consistency

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 30

The operationType of the API to be added must be com.antcloud.session.validate . The
request parameters are as follows:

Parameter Type and length Required Example Description

InstanceId String Required instancedemo
String of
workspaceId_app
Id

userId String Required 20880939 User ID.

sessionId String Required kkdddd
Authorization
token carried by
the client.

Returned parameters
The data returned after implementing the consistency verification logic is in JSON format, as
shown in the following example:

{
 "resultCode": "OK",
 "resultMsg": "Operation is done successfully",
 "success": true,
 "result": {
 "sid": "kkdddd",
 "valid":true/false
 }
}

Attribute description:

Parameter Data type Example Description

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 31

success boolean true/false

The business call
result. Valid values:
 true and
 false , where
 true indicates a

successful call and
 false indicates a

failed call. If the call
fails, check the value
of returnCode to
locate the cause. For
more information, see
Result codes as follows
.

returnCode String ERROR The result code.

resultMsg String SYSTEM-ERROR Result information.

sid String kkdddd The authorization
token or sessionId.

valid boolean true/false Verification result.

Result codes

Result Result code Description

true OK Business call succeeded.

false OPERATION_ERROR
The operation fails. Only the
 com.antcloud.session.valid
ate API is called.

Mobile Sync Service User Guide·Server-side develo
pment

> Document Version: 20250731 32

The Mobile Sync console allows you to manage push configurations and perform data push
actions. A push configuration defines the basic application scnenario of the push service. And
the actual data push actions can be realized based on the push configuration.
You can perform the following actions in the Mobile Sync console:

Add cnfigurations
Send business data
View configuration details
Modify configurations
Disable configurations
Query statistics on configuration pushes
Service management

A synchronization configuration defines the basic application scenario of data push. And the
actual data push actions can be realized based on the synchronization configuration.
Therefore, you need to add synchronization configuration before sending data.
Log in to mPaaS console, click the mPaaS App for which you want to add configuration, and
complete the following steps.

Procedure
1. On the left navigation pane, choose Mobile Sync Service under Backend connection.
2. Click the Configuration management tab, and then click + New sync configuration.

The New sync configuration page appears.
3. Set parameters.

The following table describes the parameters.

Parameter Description

Sync ID
Identifies a specific data push business scenario.
The format of uppercase letters with a hyphen (-
), such as DEVICE-LOCK, is recommended.

Description Describes the business scenario corresponding
to the configuration.

6.Console operations
6.1. Console introduction

6.2. Add configuration

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20250731 33

Push scope

Indicates the range of users or devices receiving
data in the data push process. The value Global
indicates that all users or devices can receive
data, and the value Appointed indicates that
only the appointed user or device can receive
data.

Target Indicates whether data is pushed by user or by
device.

Multi-device sync

This parameter is required only when Target is
set to User. If you select Yes, data will be
synchronized between multiple devices of a
single user. That is, when the user uses a device
to log in to the client, the user can receive the
data that the user has received on another
device.

Data persistence
Pushed data will be saved to the database for a
maximum of 30 days by default. If a user is
offline when data is pushed, the user will
receive the data when going online.

Re-push mode

Specifies the policy for processing the backlog
data on the server. This parameter is available
only when Data persistence is set to Yes.
When All is selected, all the backlog data on the
server will be pushed to the client. When
Threshold is selected, only the latest backlog
data within the threshold will be pushed to the
client.

Re-push threshold
This parameter is available only when Data
persistence is set to Yes and Re-push mode
is set to Threshold.

User consistency check

This parameter is available only when Target is
set to User. If you set this parameter to Yes,
MSS will verify user consistency when pushing
data and push data only when user consistency
check is successful. For more information, see
Verify user consistency.

4. After setting the above information, click OK to complete adding the synchronization
configuration. The newly added synchronization configuration becomes online by default.
Once a configuration is taken online, you can push data by calling APIs or performing
actions in the console.

6.3. Send business data

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20250731 34

This topic describes how to send business data in the mPaaS console. Enter your target App
and complete the following steps.

Prerequisites
One push configuration record exists in the console and is online.

Procedure
1. On the left-side navigation pane, choose Mobile Sync Service.
2. Under the Configuration management tab, click Operate of a configuration record in

the configuration list. The Create synchronization window appears.
3. Set parameters, and click OK.

The following table describes the parameters.

Parameter Description

User ID/Device ID Indicates the user or device to which the
business applies.

Content Indicates the text content of the data, in String
format.

Unique data ID

Uniquely identifies the data content. This
parameter is required only for the data
persistence business. When two data records
with the same unique data ID are pushed, the
second record will be ignored.

OS
Indicates the operating system type of the data
receiving client. The options are Android and
iOS.

Version range Indicates the range of data receiving client app
versions. This parameter is optional.

Validity period
Indicates the maximum validity period of the
pushed data. The default value is 30, in days.

This topic describes how to view configuration details in the mPaaS console.
Enter your target App and complete the following steps to view the configuration details:

1. In the left navigation pane, click Mobile Sync.
2. Under the Configuration management tab, click the ID of a configuration record in the

configuration list to view the details.

6.4. View configuration details

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20250731 35

This topic describes how to modify push configurations in the mPaaS console.
Enter your target App, and complete the following steps to modify a piece of push
configuration:

1. In the left navigation pane, click Mobile Sync.
2. Under the Configuration management tab, click the ID of a configuration record in the

configuration list.
3. On the displayed configuration details page, click Modify in the upper right corner. Modify

parameters as required, and click Save.
Note: Sync ID and Target cannot be modified.

In case data synchronization needs to be suspended due to data problems or other reasons,
you can do it by disabling the synchronization configuration in the mPaaS console.
In case data synchronization needs to be suspended due to data problems or other reasons,
you can do it by disabling the synchronization configuration in the mPaaS console.
In the mPaaS console, select your App, and complete the following steps to disable the
synchronization configuration:

1. On the left navigation pane, click Mobile Sync Service, and then go to the Configuration
management tab page.

2. In the synchronization configuration list, click Offline right to the target configuration, and
confirm to take the configuration offline.
Once the synchronization configuration is disabled, all the corresponding synchronization
business will be disabled accordingly. To use the configuration again, you just need to click
Online to take the configuration online.

MSS displays pushed statistical data by user and device status.
MSS displays pushed statistical data by user and device status.
This topic describes how to view pushed statistical data in the mPaaS console. Enter your
target App and complete the following steps.

Procedure
1. On the left navigation pane, click Mobile Sync Service.
2. Click the Data query tab to view user or device status.
3. Select User or Device in the upper right of the User/device status area, and enter a user

name or device name in the search box accordingly to view the status of the user or device.
MSS provides the following user or device data on this page:

User/device name
Status of whether the user connects to MSS
Pushes in the last 30 days
Arrivals in the last 30 days
Push list

6.5. Change settings

6.6. Disable configuration

6.7. Query configuration pushes

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20250731 36

On the Service Management tab page, a switch is available for enabling or disabling
signature. The setting is effective globally. You can temporarily enable or disable all signature
verification related functions as needed.

6.8. Manage services

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20250731 37

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or
10.1.60, see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

In baseline 10.1.32 or later versions, the MPSync class in the mPaaS middle layer
encapsulates all APIs of the Mobile Sync Service (MSS). You can use the MPSync object to
implement all functions of MSS.

java.lang.Object
 - com.mpaas.mss.adapter.api.MPSync

Related public functions are shown as follows:
setup(Application application)
appToBackground()
appToForeground()
clearUserInfo()
initialize(Context context)
isConnected()
registerBiz(String bizType, ISyncCallback syncCallback)
reportMsgReceived(SyncMessage syncMessag)
unregisterBiz(String bizType)
updateUserInfo(String sessionId)

Return value type Methods and description

void

setup(Application application)
Initializes basic services on which MSS depends. Call this API before
you call the initialize method. This function is available only
in baseline 10.1.60 and later versions.

void

appToBackground()
Notifies the client SDK that the App has been switched to the
background and it needs to disconnect from the server. Call this
function every time the App is switched to the background.

void

appToForeground()
Notifies the client SDK that the App has been switched to the
foreground and it needs to connect to the server. Call this function
every time the App is switched to the foreground.

7.API reference
7.1. Android API

Mobile Sync Service User Guide·API reference

> Document Version: 20250731 38

void
clearUserInfo()
Clears user information when a user logs out.

void
initialize(Context context)
Initializes MSS.

boolean
isConnected()
Checks whether MSS is running properly.

void

registerBiz(String bizType, ISyncCallback syncCallback)
Registers a callback to receive business data. If this API is called,
the client SDK will call the syncCallback class after receiving
synchronized data.

void

reportMsgReceived(SyncMessage syncMessag)
Notifies MSS of the data synchronization success after data is
received in the syncCallback class. Before receiving
reportMsgReceived, MSS attempts to resend the data for a
maximum of six times. If all resending attempts fail, the data is
permanently deleted.

void

unregisterBiz(String bizType)
Unregisters a specified synchronization configuration. If this API is
called, the client SDK will not call the syncCallback class when
receiving synchronized data.

boolean
updateUserInfo(String sessionId)
Call this API at least once when the login information (userId or
sessionId) is modified.

Return value type Methods and description

setup(Application application)
Declaration
 public static void setup(Application application)

Description
Used to initialize the base service that MSS depends on. This function needs to be called
before the initialize method is called. This function is available only in baseline 10.1.60 and
later versions.

Parameters

Mobile Sync Service User Guide·API reference

> Document Version: 20250731 39

Parameter Type Description

application Application An application instance.

Returned value
None.

appToBackground()
Declaration
 public static void appToBackground()

Description
Notifies the client SDK that the App has been switched to the background and it needs to
disconnect from the server. Call this function every time the App is switched to the
background.
We recommend that you call this API inside the onStop() method of the home page. If this
API is not called when the App is switched to the background, the network connection
between the App and the server cannot be released in a timely manner, increasing power
consumption and traffic usage.

Parameters
None.

Returned value
None.

appToForeground()
Declaration
 public static void appToForeground()

Description
Notifies the client SDK that the App has been switched to the foreground and it needs to
connect to the server. Call this function every time the App is switched to the foreground.
We recommend that you call this API inside the onResume() method of the home page.

Parameters
None.

Returned value
None.

clearUserInfo()
Declaration
 public static void clearUserInfo()

Description
Clears user information when a user logs off.

Mobile Sync Service User Guide·API reference

> Document Version: 20250731 40

Parameters
None.

Returned value
None.

initialize(Context context)
Declaration
 public static void initialize(Context ctx)

Description
You can call this API to initialize MSS. Your App can use MSS only after you call this API.
During the life cycle of the App (from the time the App is started to the time the App is
stopped), this API needs to be called only once.

Parameters

Parameter Type Description

ctx Context A non-empty Context .

Returned value
None.

isConnected()
Declaration
 public static boolean isConnected()

Description
Checks whether MSS is running properly.

Parameters
None.

Returned value
Returns true if the service is normal, and returns false if the service is abnormal.

registerBiz(String bizType, ISyncCallback syncCallback)
Declaration
 public static void registerBiz(String biz, ISyncCallback callback)

Description
Used to register a callback for receiving service data. If this API is called, the client SDK will
call the syncCallback class after receiving synchronized data.
This API needs to be called once for each synchronization configuration.

Parameters

Mobile Sync Service User Guide·API reference

> Document Version: 20250731 41

Parameter Type Description

bizType String Synchronization identifier

syncCallback ISyncCallback Callback implementation class

Returned value
None.

reportMsgReceived(SyncMessage syncMessag)
Declaration
 public static void reportMsgReceived(SyncMessage msg)

Description
After the synchronously pushed data is received in syncCallback , call this API to notify MSS
that the synchronized data has been received successfully. Before receiving the
 reportMsgReceived , MSS attempts to resend the data for a maximum of six times. If all
resending attempts fail, the data will be permanently deleted.

Parameters

Parameter Type Description

syncMessag SyncMessage Message synchronization

Returned value
None.

unregisterBiz(String bizType)
Declaration
 public static void unregisterBiz(String biz)

Description
Unregisters a specified synchronization configuration. MSS will not call syncCallback after
MSS receives the synchronization configuration data.

Parameters

Parameter Type Description

biz String Synchronization identifier

Returned value
None.

Mobile Sync Service User Guide·API reference

> Document Version: 20250731 42

updateUserInfo(String sessionId)
Declaration
 public static boolean updateUserInfo(String sessionId)

Description
Calling inside the method is based on the
 LongLinkSyncService.getInstance().updateUserInfo(String userId, String sessionId) API,
in which userId indicates the user ID specified in MPLogger .This API is called when
 userId or sessionId changes and will update user login information.
Both parameters are required for logon. If userId is not specified, this method returns
 false , indicating a calling failure.
This method must be called upon session expiration or each successful automatic logon. Note
that the automatic logon function is enabled after a user logs on to the client once. The
general calling principle is that this method must be called when userId or sessionId
changes.
Parameters

Parameter Type Description

sessionId String Session ID.

Returned value
Returns true if the user information is updated successfully, and returns false if userId is not
set at logon.

The MPSyncInterface class in MPMssAdapter.framework provides all MSS APIs. All methods
in the class are class methods that can be called by the class name.

+(void)initSync;
Initializes MSS. An app can use MSS only after calling this API.
During the life cycle of the app (from the time the app is started to the time the app is
stopped), this API needs to be called only once.

+(MPSyncNetConnectType)connectStatus;
Checks the connection status of MSS.
Return value: connection status specified by MPSyncNetConnectType .

+(BOOL)registerSyncBizWithName:(NSString *)bizName
syncObserver:(id)observer selector:(SEL)selector;
Registers the notification listener which works on the business name bizName , and calls
 [[NSNotificationCenter defaultCenter] addObserver:observer selector:selector
name:bizName object:nil]; to listen on notifications.

7.2. iOS API

Mobile Sync Service User Guide·API reference

> Document Version: 20250731 43

The value of bizName is the same as that in the server console. If this API is not called, the
specified biz messages will not be distributed but stacked in the database of the client SDK.
We recommend that you start listening on specified sync messages sent to the server upon
server startup.
Return value: registration result YES or NO .

+(BOOL)unRegisterSyncBizWithName:(NSString *)bizName
syncObserver:(id)observer;
Notifies the MSS client SDK that message listening on a synchronization configuration has
been disabled and that sync messages related to the synchronization configuration will no
longer be received.
The internal [[NSNotificationCenter defaultCenter] removeObserver:observer name:bizName
object:nil]; API is called to remove the listener.
After this API is called, messages of the biz will not be distributed but stacked in the SyncSDK
database. This API matches the registerSyncBizWithName API.
Return value: result YES or NO .

+(void)removeSyncNotificationObserver:(id)observer;
Disables listening on the synchronization notification. This API is usually called in the
 dealloc function of a listening class. The internal [[NSNotificationCenter defaultCenter]
removeObserver:observer]; API is called to remove the listener.
Return value: none.

+(void)responseMessageNotify:(NSDictionary *)userInfo;
Notify a callback after a message has been processed. The parameter is
 userInfo(notify.userInfo) in the notification.
Calls back SyncSDK , indicating that the business data has been processed in the notification
processing function registered using the registerSyncBizWithName API, when data
processing is completed.
Return value: none.

+(void)bindUserWithSessionId:(NSString *)sessionId;
This method is called when the value of the login parameter userId or sessionId
changes.
This API is called during login. The value of userId is the -(NSString*)userId function of
 MPaaSInterface .
This method must be called upon sessionId expiration or each successful automatic login,
which is enabled after a user logs in to the client once.
The overall calling principle is that this method must be called when the value of userId or
 sessionId changes.
When the value of userId changes, unBindUser is called to unbind the user account and
then bindUserWithSessionId: is called to rebuild a connection.
sessionId is used with the server to verify the validity of a session. If this parameter is set to
nil on the server, the default value @”SESSION_DEMO” is used.
Return value: none.

+(void)unBindUser;

Mobile Sync Service User Guide·API reference

> Document Version: 20250731 44

Called to unbind the currently connected user when the user logs out.
Return value: none.

+(NSString *)getSyncDeviceId;
Obtains the device ID, which is used when pushing device-based sync data.
Return value: device ID.
Important: If the value of sessionId in the API is invalid, the user consistency option in the
console must be disabled, or sync messages will fail to be pushed due to verification failure.
Enable or disable signature verification by referring to Service management.

Mobile Sync Service User Guide·API reference

> Document Version: 20250731 45

	1.Change history
	2.About Mobile Sync Service
	3.Terminology
	4.Client-side development
	4.1. Android
	4.2. iOS
	4.2.1. Add SDK
	4.2.2. Use SDK

	5.Server-side development
	5.1. Instructions on accessing server
	5.2. Integrate service with Java SDK
	5.3. Check user consistency

	6.Console operations
	6.1. Console introduction
	6.2. Add configuration
	6.3. Send business data
	6.4. View configuration details
	6.5. Change settings
	6.6. Disable configuration
	6.7. Query configuration pushes
	6.8. Manage services

	7.API reference
	7.1. Android API
	7.2. iOS API

