Ant Technology

Mobile Sync Service
User Guide

Document Version: 20250731

LB
ANT GROUP

@ 2858, Mobile Sync Service User Guide-Legal disclaimer

Legal disclaimer

Ant Group all rights reserved ©2022.

No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement

ﬂmrﬁwand other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer

The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

> Document Version: 20250731 |

Bu%d . Mobile Sync Service

User Guide:Document convent
ions

Document conventions

Style

& Danger

Warning

(]> Notice

@ Note

Bold

Courier font

[talic

[1or[alb]

{} or {a|b}

Description

A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

Italic formatting is used for parameters
and variables.

This format is used for an optional
value, where only one item can be
selected.

This format is used for a required
value, where only one item can be
selected.

Example

/\ Danger:

Resetting will result in the loss of
user configuration data.

Warning:
Restarting will cause business

interruption. About 10 minutes are
required to restart an instance.

[i]) Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all
files.

Click Settings> Network> Set
network type.

Click OK.
Run the cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20250731

REEB . Mobile Sync Service User Guide-Table of Contents

Table of Contents

1.Change history =2 tesima e o e e s 05
2.About Mobile Sync Service s m et s aaiin e 06
3.Terminology &5t - e e s s e s 09
4.Client-side development ss==ssaem ot s e e 11
4.1. Android S r s e e e s s e 11
4.2. i0S sS=EEsSrTaise e s R s e s e ina e 13
4.2.1. Add SDK St s 13
4.2.2. Use SDK = e o e s 14
5.Server-side development s—=srrm e wa o 19
5.1. Instructions on accessing Sserver s=f—ete s e aran 19
5.2. Integrate service with Java SDK =———r—wor - 19
5.3. Check user consistency st s s e 30
6.Console operations s et e 33
6.1. Console introduction = atmm st d o i 33
6.2. Add configuration sfsssse o atmm o arr s L s 33
6.3. Send business data = e e 34
6.4. View configuration details - 35
6.5. Change settings =ttt n e o m s mnm e 36
6.6. Disable configuration sf=—=s—=v——rm_——r———a - —u = 36
6.7. Query configuration pushes s==———r—rr———a—e—————o 36
6.8. Manage services st s e 37
1.APIl reference Bt ma e B o s ml a2 s 38
7.1, ANAroid API e 38
7.2, 108 AP| e 43

> Document Version: 20250731 |

(8858, Mobile Sync Service User Guide-Change history

ANT GROUP

1.Change history

Document version Revisions

Added the Query data synchronization history
V20210630 section, which provides instructions on how to
view synchronization records.

> Document Version: 20250731

file:///usr/app/173525967/~~257749%20~~

© 2852, Mobile Sync Service User Guide+About Mobile Sync
Service

2.About Mobile Sync Service

Mobile Sync Service (MSS) is a core basic business component of the mPaaS platform. MSS
originates from the E2E solution SYNC of Ant Financial Group, which is oriented to mobile
Apps and pushes massive data from the server to the client. This component provides a
secure data channel based on the Transmission Control Protocol (TCP) and Secure Sockets
Layer (SSL). This data channel can actively synchronize business data from the server to the
client App on a timely, accurate, and orderly manner.

Traditional RPC has been applied in the Internet industry for decades and can meet most
business scenarios and functional requirements. However, the popularization and
development of the mobile Internet have driven the App scale and users’ requirements for
Apps to a new stage. Traditional RPC requests have many drawbacks due to their own
characteristics.

¢ In certain scenarios, a client needs to call RPC requests to obtain the latest data, but
actually no or only little data on the server (cloud) changes.

e As different business modules and functions are designed to be independent of each other,
they need to call RPC requests respectively to obtain their business data when the client

starts.

e The client cannot be promptly aware of the data changes on the server but needs to call
RPC APIs in polling mode to update data.

e Traditional RPC performs data interactions mostly based on HTTP(S) short connections. This
type of connection cannot be persistent even if by using features such as keep-alive. In
other words, links cannot be reused continuously. Requests for connection creation,
certificate exchange, and encryption/decryption will increase the time consumption and
compromise the network performance.

MSS is introduced to improve or solve these problems.

Data synchronization

© Request(RPC:http/https)

Traditional e

mode
@ Response

@ Svnc(TCP:mmtp/http2)

@ Data(http/https/tcp/tr/MQ)
SYNC mode «

SYNC-Server

Features
The core features of MSS are described as follows:
e Reliable synchronization

For business scenarios where the quality of service (QoS) level is arrival guarantee, MSS
ensures that the data pushed from your server will be certainly synchronized to the client if
the user is active within the data validity period and meets the push requirements of your
server.

> Document Version: 20250731 6

User Guide-About Mobile Sync

© 2852, Mobile Sync Service Service

e Orderly and incremental synchronization

MSS ensures that messages transmitted in the same channel arrive at the client in the
same sequence as your server calls the MSS server, and all messages are synchronized to
the client on an incremental basis.

e Highly real-time performance

When the network connection of the client is good, MSS can ensure highly real-time push
performance. The time taken for message synchronization almost equals the time taken for
pure data transmission over the network (that is, messages can arrive within 1s).

Basic principles

Similar to the binlog mechanism in MySQL, the basic data unit transmitted between the MSS
server and the client SDK is oplog. To synchronize a piece of changed data to a specified user
or device, your server needs to call the MSS API. Then the MSS server packages the data as
an oplog and stores it in the database. When the client is online, the MSS server synchronizes
the oplog to the client. Each oplog has a unique ID. Oplog IDs are unique and monotonically
increments (based on the call sequence) among certain users and within a certain business
scope. The MSS server synchronizes all oplogs to the client in ascending order of oplog ID.
Both the MSS server and the client record the largest oplog ID received by the client, which is
called the synchronization point (or understood as the data version number).

SYNC core —— OpLog sync

persistent successfully successfully

(idempotent)

Biz-Server SYNC-Server Client
Incremental SYNC-SDK
data © syncdata
. incrementally in
@ synchronize data call sequence(retry) «P business
S—’
@ Generate data version -
and Implement data ~— @ Distribute data .
persistence ~— (retry) Business
moudule
© Return ACK receipt O Make data ‘ © Mark O Call back

Advantages
e Merged push

When the client is successfully initialized, the server can push multiple pieces of business
data at a time to reduce the number of requests.

e Incremental push

Only incremental data is synchronized, reducing the transmission of redundant data and
the network costs.

e Reduced requests

Data synchronization is not requested when there is no incremental data, reducing
redundant requests.

¢ Improved time efficiency

When the server encounters data changes, the changed data is instantly synchronized to
the client, without the need to wait for requests from the client.

e Improved experience

Data is synchronized imperceptibly and is present before the client Ul is rendered, reducing
the waiting time of users.

Applicable scenarios

> Document Version: 20250731 7

e

User Guide-About Mobile Sync

BukE . Mobile Sync Service .
ANTGROUP Yy Service

MSS can be applied in business scenarios where data needs to be synchronized in real time to
the client, such as transfer result synchronization, payment result synchronization, and
message center. You can learn more about MSS capabilities through the following scenarios:

In instant messaging Apps, MSS provides incremental and reliable message delivery
capabilities to synchronize chat messages to specified users based on the message sending
order of the sender.

In Apps requiring dynamic configuration updates, MSS dynamically synchronizes
configuration information to all devices. MSS synchronizes information including the app
function switch, dynamic parameters, and dynamic configurations to the specified client in
real time, or dynamically modifies the business parameters and configurations in batches
when the App is running.

For payment Apps, MSS provides a secure data channel for synchronizing transaction data
online, ensuring that the Apps can receive the data in real time when they are online. In
addition, MSS provides the data persistence capability. If data is synchronized when an App
is offline, the App can receive the data when going online.

> Document Version: 20250731

@ 8822, Mobile Sync Service User Guide-Terminology

3.Terminology

The terms are listed in ascending alphabetical order.

B
Backend

A client App is running in the backend when the mobile phone displays the Home screen or in
the screen-saving state, or when the user is operating another App.

BizType

A business type, which is the unique identifier of a business scenario. After data is pushed,
the MSS SDK of the client distributes the data to the corresponding business module based on
BizType.

Business dimension

There are two business dimensions: user and device. The MSS server pushes data by user or
device.

F

Frontend

The client App is running.

Idempotence

Operations are applied multiple times based on the thirdMsgld field in the SyncOrder
parameter, and succeed only once with the unique combination of bizType, linkToken, and
thirdMsgld. New data will be discarded and not be added to the database. The API returns a
success message with the result code “DUPLICAT ED BIZ _ID".

M

Multi-device Sync

A message is synchronized to all client-installed devices of a user. After the user logs in to the
client that is installed on two or more devices, all the devices can receive the message. If the
user uninstalls the client, re-installs it, and goes online again, the message will be pushed
again.

MSS data
MSS data needs to be pushed through the MSS server.
MSS push

The MSS server proactively pushes one copy of data to the client. If the client that calls the
business is online, data push is triggered immediately. Otherwise, the MSS server will push
the data after the client goes online.

o

Online

The client App is connected to the network and maintains a stable TCP connection. When
running in the backend, the client App is still online on most Android mobile phones but online
for only 3 minutes on iPhones due to the iOS restrictions.

P

Persistence

> Document Version: 20250731 9

@ 2858, Mobile Sync Service User Guide-Terminology

A mechanism that converts program data between the persistent and transient states. In
MSS, the persistence mechanism produces persistent data and non-persistent data.

e Persistent data: If a user is offline, the data will be stored in the database permanently.
After the user goes online, the MSS SDK triggers data synchronization to the user.

¢ Non-persistent data: If a user is online, the data is pushed to the user immediately. If the
user is offline, the data is discarded directly and will not be sent to the user after the user
goes online.

Push type
There are two push types: desighated push and global push.
e Designated push: pushes a piece of data to a designated user or device.

¢ Global push: pushes a piece of data to all online users or devices. Global push uses multi-
device synchronization.

S

Single-device push

A message is pushed only to the device which a user uses for the latest login to the client.
The message is pushed only once. If the user uninstalls the client, re-installs it, and goes
online again, the message will not be pushed again. If the user logs in to the client from
another device, the message will not be pushed to the device.

Sync

Sync refers to the MSS data synchronization service that the MSS server synchronizes data to
the client App.

T
Threshold

If a user is offline for a long time and the server keeps on generating data, it may lead to a
data backlog in MSS. The threshold specifies the upper limit of the amount of backlog data.
When a data backlog occurs, only the latest data within the threshold is retained. Earlier data
beyond the threshold will be discarded.

> Document Version: 20250731 10

© 2852, Mobile Sync Service User Guide-Client-side ‘;‘:T:’gr']‘é

4.Client-side development
4.1. Android

This topic briefly describes how to fast integrate MSS to the Android client. You can access
MAS through Native AAR or Portal & Bundle.

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or 10.1.60,
see mPaa$S 10.1.68 upgrade guideor mPaa$S 10.1.60 upgrade guide.

The complete access process mainly includes the following 2 steps:
1. Add SDK
2. Use SDK

Prerequisites
You have integrated mPaaS to your project.
e |f you access MSS through Native AAR, ensure that you have added mPaaSs to project.

e If you access MSS in componentized access mode (through Portal & Bundle projects),
ensure that you have completed the componentized access process.

Add SDK
Native AAR mode

Follow the instructions in AAR component management to install the SYNC component in the
project through Component management (AAR).

Componentized access mode

Install the SYNC component in the Portal and Bundle projects through Component
management (AAR).

For more information, see Manage component dependencies > Add/delete component
dependencies.

Use SDK

In baseline 10.1.32 or later version, the wmpsync class at the mPaaS middle layer

encapsulates all APIs of MSS. You can have a quick glance of these APIs in the following table.
For more information about the APIs, see Android API reference.

API Description

Initializes basic services on which MSS depends.
Call this API before you call the initialize

setup(Application application) method. This APl is available only in baseline
10.1.60 and later versions.

initialize(Context context) Initializes APIs and MSS.

> Document Version: 20250731 11

User Guide:Client-side develo

© 2852, Mobile Sync Service et

Notifies the client SDK that the App has been
switched to the foreground and it needs to

appToForeground() connect to the server. Call this APl every time the
App is switched to the foreground.
Notifies the client SDK that the 128344 has been
switched to the background and it needs to
appToBackground() disconnect from the server. Call this API every
time the App is switched to the background.
Call this APl when the login information (userld or
updateUserinfo(String sessionld) sessionld) is changed. This API is called at least
once.
clearUserinfo() Clears user information when a user logs out.
You can call this APl to registera callback to
registerBiz(String bizType, ISyncCallback receive business data. If this APl is called, the
syncCallback) client SDK will call the syncCallback class

after receiving synchronized data.

Unregisters a specified synchronization
configuration. If this API is called, the client SDK
will not call the syncCallback class when

receiving synchronized data.

unregisterBiz(String bizType)

After the data is received in the

syncCallback implementation class, this API
is called to notify MSS that the sync data has
been received. Before receiving the

reportMsgReceived message, MSS attempts
to resend the data for a maximum of six times. If
all resending attempts fail, the data will be
permanently deleted.

reportMsgReceived(SyncMessage syncMessag)

isConnected() Checks whether MSS is running properly.

Code sample

This sample is based on the mPaaS SDK 10.1.32 baseline. The example App provides a
button. When a user taps this button, MSS obtains the device ID, and pushes the sync data to
the target device specified in the console based on the device ID. In this sample, the sync ID
is bizType

Note: This sample is only intended for demonstrating how to call MSS APIs, and is not the
best practice of MSS. You can get the best practice code of MSS from Obtain code samples.

> Document Version: 20250731 12

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/mpaas_android_app

User Guide:Client-side develo

© 2852, Mobile Sync Service et

public void buttonlClicked (View view)

{
// Obtain the device ID using the getUtdid method.
String utdid =UTDevice.getUtdid(MainActivity.this);

// Print mobile sync data in Logcat.

// Initialize the API and MSS.

MPSync.initialize (MainActivity.this);

// Register a callback for receiving service data. If this API is called, the c
lient SDK will call the syncCallback class after receiving synchronized data.

MPSync.registerBiz ("bizType",new SyncCallBackImpl());

// Set up a network connection with the server.

MPSync.appToForeground() ;

public class SyncCallBackImpl implements ISyncCallback

{

@Override

public void onReceiveMessage (SyncMessage syncMessage) {
//Print mobile sync data in Logcat.

Log.e ("=========", syncMessage.msgData) ;

// Notify the MSS server that the sync data has been received.
MPSync.reportMsgReceived (syncMessage) ;

}

}

Follow-up steps

e Access the server

4.2.10S
4.2.1. Add SDK

This guide introduces how to integrate Mobile Sync Service (MSS) to iOS client. You can
integrate MSS to iOS client based on native project with CocoaPods.

Prerequisites

You have connected your project to mPaaS. For more information, see Access based on
native framework and using Cocoapods.

Add SDK
Use CocoaPods plugin to add the MSS SDK. Complete the following steps:

1. In the Podfile file, use mPaas pod "mpaas_sync" to add the MSS dependencies.

> Document Version: 20250731 13

é Te el
ANT GROUP

User Guide:Client-side develo

Mobile Sync Service

pment

2. Run

4.2.

Important: Since June 28, 2020, mPaa$S has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or

B Podfile — Edited

B Podfile) No Selection

plugin "cocoapods-mPaaS"

source "https://code.aliyun.com/mpaas-public/podspecs.git"

#source "https://github.com/CocoaPods/Specs.git’

mPaaS_baseline '10.1.68'

mPaaS_version_code 16 # This line is maintained by MPaaS plugin automatically.
Please don't modify.

platform :ios, '9.8'
target 'mPaaSDemo_pod' do

mPaaS_pod "mPaaS_Sync"

end

pod install to complete integrating the SDK.

2. Use SDK

10.1.60, see mPaaS 10.1.68 upgrade guideor mPaaS 10.1.60 upgrade guide.

After you add the MSS SDK, you must configure the project before using the SDK.

Prerequisites
The SDK version is 10.1.32 or later.

Note: You can view the current SDK version in the

mpaas_sdk.config file.

> Document Version: 20250731

14

User Guide:Client-side develo

© 2852, Mobile Sync Service et

B MPSyncDemo_plugin [Jill MPaasS } §j mpaas_sdk.config } No Selection

"APLongLinkService": {
"APLongLinkService": "1.6.0.190114154233",
"APLog": "3.8.2.198226185327",
"APProtocolBuffers™: "1.8.1.198226124537",
"mPaas": "1.8.0.198321168089",
"MPDataCenter": "1.8.8.198312145215",
"SecurityGuardSDK": "2.2.3.198326118928",
"UTDID": "1.8.2.198226138141",
"MPMssAdapter”: "1.9.0.198226284564B"
|
"MPBaseTest": {
"MPBaseTest": "1.8.8.19862256113B58"
}
"APCommonUI": {
"APCommonUI"™: "1.08.8.1982262862548",
"AntUI": "1.8.98.198320123641",
"AntUIShellForMpass": "1.8.8.198226282548",
"MPBadgeService": "1.8.0.181824211448"
}
]'.‘
"baseline": "18.1.32",
"frameworks": [
"APLongLinkService.framework",
"APLog.framework",
"APProtocolBuffers.framework",
"mPaas.framework",
"MPDataCenter.framework",

Configure a project

Ensure that the meta.config file containing the MSS address and port number has been
added to the project.

e If you have used the latest plug-in to add the MSS SDK, the file will be generated
automatically.

e |f your project does not contain the meta.config file, log in to the mPaaS console, choose
Overview > Code configuration, download the .config file, rename it
to meta.config , and add the file to your project.

> Document Version: 20250731 15

User Guide:Client-side develo

© 2852, Mobile Sync Service et

= Q E B mPsyncDemo_plugin) [lll MPaas) Ml Targets) [ll MP..gin) i meta.config) No Selec

v E MPSyncDemao_plugin
» [l MPSyncDemo_plugin "appld”: "570DA89281533",
» I Products "appKey": "57@8DAB9281533_10S",
"baseé4Code” :
AR " /95 /4AAQSkZIRgGABAQEAYABGAAD/ 2wBDAAMCAgMCAgMDAWMEAWMEBQg FBOQEBQoHBWY IDAOM
v [l Targets DASKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDABXGBYUGBIUFRT/2wBDAQMEBAUEBQKFBQKUDQSNF
v [l MPSyncDemo_plugin BQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT /WAARCA
R meta.config M ADAAMDASIAAhEBAXEB/BQAHWAAAQUBAQEBAQEAAAAAAAAAAAECAWQFBgcICQoL /8QALRAAAGE
B yw_1222,jpg DAWIEAWUFBAQAAAFSAQIDAAQRBRINMUEGELFhBy JxFDKBkaEII@KxwRVSOTAKM2IyggkKFheY
[MPSyncDemo._plugin-mPaas-Headers.h GR01JicoKSoBNTY30Dk6QBRFRkdISUpTVFVWV1hZWmNkZWZnaGlgc3R1dnd4eXqDhIWGhaidi
5 i PKT1IWW15iZmqKjpKWmpéipqrKztLW2t7i5usLDxMXGx8] JytLTINXW19jZ2uHi4+T15ufobe
[h MPSyncDemo_plugin-Prefix.pch rx8vP@9Th3+Pné/BAAHWEAAWEBAQEBAQEBADAAAARAAAECAWQFBgcICOoL /BQAtREAAGECBAQ
» [l mPaas DBACFBAQAAQJ3AAECAXEEBSExBhJBUQdhcRMiMoE IFEKRobHBCSMzUvAVYNLRChYkKNOE18RcY
» [Frameworks GRomJygpKjU2Nzg50kNERUZHSE LKULRVV1dYWVpj ZGVmZ2hpanNedXZ3eH16go0EhYaHiImKk
B mpaas_sdk.config pOU1ZaXmImaoqOkpaanqkmgsrO@tba3uLméwsPEXcbHyMnK@tPULdbX2Nna4uPk5ebné0ng8v
PB9Tb3+Pné/90ADAMBAAIRAXFobXF3Yc7en4l+6uESvuZ6G9al/ WkFAgABAQAABAMAABLAAAC
WAAAADQAAAIMAAAABAAAAAAAAAAAAAAAAAAAAAAAAABUAAAABAAAAAAAAARAAAAAYMDESLTAY
LTAXIDE10jQwOj I2dwAAAACIt/ IBUSVSUdwQeDv7mXtUIm/By5wV0oQ+7p51BMIviH1ijcwH3
x73814f6yeaPB@JABm1FVMgUBHIyUV1cmdjbngBAWF 4dWZ 3AWECE
gEAEQEBCAFxdHNqb3b1as53b18WPgFVbikE7+i7yvR7WdpOTloKHsul3dNC6/ +H5qm96Gghyz
Brg+Je0qG/Rg6ibLagbfIXIH4jMrerg fdSFADKNThiZ51faVmFTBepY1ftnu+MsNI2iyRMDsIU
2n29d1XvPmO8ykb+nh6dILZ?/2F+WUISYhCrQjPvFVb9Y3jJ/02ko8n4P08VizLor 1ITMD2ZkKH
vbUOWIFCzNwO9F JYA/NUKemSxx fip43PbWmEHV+dEKmXvN3U/wAA"
"bundleId": "com.mpaas.demo",
"rootPath": "mpaas/ios/576DA89281533-default”,
"workspaceld": "default",
"rpcGW": "https://cn—-hangzhou-mgs—-gw.cloud.alipay.com/mgw.htm",
"mpaasapi": "https://cn-hangzhou-component-gw.cloud.alipay.com/mgw.htm",
"pushPort": "443",
"pushGW": "en-hangzhou-mps-link.cloud.alipay.com",
"logGW": "https://cn-hangzhou-mas-log.cloud.alipay.com",
"syncport": "443",
"syncserver”: "cn-hangzhou-mss-link.cloud.alipay.com"

» Il Resources
» [l Frameworks

Upgrade precautions

The category file of the bDrsyncinterface class does not need to be added since version
10.1.32. The middle tier implements package reading from meta.config . After an upgrade,

check whether there is any configuration of the earlier version in the project. If yes, remove
it. The following figure shows the category file of the bprsyncinterface class to be

removed from an upgraded version.

2 Q A © E o @ & MPPortal MPaas Targets MPPortal MPSyneService | o DT f .m) @ -sy t

25
~

v 55 MPPortal
» |3 APCrashReporter.xcodepro] M
> MPPortal
P 7 Products
P i Frameworks -’)platform
v MPaas
x| mpaas_sdk.config
¥ [Targets
o MPPortal
h MPPortal-mPaaS-Headers.h
h MPPortal-Prefix.pch I r -*)workspace!d
> mPaas
» [APRemoteLogging
» [MPAnalysis
¥ [MPSyncService
T
h DTSyncinterface+MPPortal.h
MPDiagnosis
APMobileFramewark
MPHotpatchSDK
APMobileNetwork
i meta.config IS *)syncServer
s yw_1222jpg
» [Resources

Y vYVYY

> Frameworks

Code sample

> Document Version: 20250731 16

© 2852, Mobile Sync Service User Guide-Client-side g(:r:lgrlﬁ

To realize the logic for listening on the Sync service, you need to create a class, preferably a
memory-resident service, to listen on Sync messages. The following code sample creates the
MySyncService class to listen on the Sync service.

Before listening on the Sync service, you need define a Sync ID for the sync service (the sync
ID will also be used when you create a push configuration on the mPaaS console). This sync
ID is the link between you as the user and the service provider. The sync ID in the following
example is SYNC-TRADE-DATA

#import <MPMssAdapter/MPSyncInterface.h>
#define SYNC BIZ NAME @"SYNC-TRADE-DATA";

@implementation MySyncService
+ (instancetype)sharedInstance
{

static MySyncService *bizService;
static dispatch once t 11SOnceToken;
dispatch once (&11SOnceToken, *{

bizService = [[self alloc] init];

}) i

return bizService;

- (instancetype) init
{
self = [super init];
if (self) {
[MPSyncInterface initSync];
BOOL registerSingleDeviceSync = [MPSyncInterface
registerSyncBizWithName:SYNC BIZ NAME syncObserver:self
selector:@selector (revSyncBizNotification:)];
[MPSyncInterface bindUserWithSessionId:@"SESSION DEMO"]; // In this function, *
*User** corresponds to userId that you specify in the console. It specifies the target
to which the console delivers commands, and the value must be the same as that set in t
he userId function of MPaaSInterface. **SessionId** specifies the authorization token c
arried by the client. The user login system returns both userId and sessionId. If eithe
r changes, this function needs to be called again to ensure that a persistent connectio
n is set up correctly.
}

return self;

- (void) revSyncBizNotification: (NSNotification*)notify
{
NSDictionary *userInfo = notify.userInfo;
dispatch async(dispatch get main queue(), "{
// Process business data.
[MySyncService handleSyncData:userInfo];
// Call back SyncSDK, indicating that business data has been processed.
[MPSyncInterface responseMessageNotify:userInfo];

}) i

> Document Version: 20250731 17

© 2852, Mobile Sync Service User Guide-Client-side gﬁ:’g’rﬁ

+(void) handleSyncData: (NSDictionary *)userInfo

NSString * stringOp = userInfo[@"op"];

NSArray *op = [NSJSONSerialization JSONObjectWithData:[stringOp
dataUsingEncoding:NSUTF8StringEncoding] options:NSJSONReadingMutableContainers error:ni
15

if ([op isKindOfClass: [NSArray class]]) {

[op enumerateObjectsUsingBlock:” (NSDictionary * item, NSUInteger idx, BOOL
*stop) {
if ([item isKindOfClass: [NSDictionary class]]) {
NSString * plString = item[@"pl"]; // Payload of the business data
if (item[@"isB"]) {
NSData *dataPl = [[NSData alloc]
initWithBase64EncodedString:plString options:kNilOptions];
NSString *pl = [[NSString alloc] initWithData:dataPl encoding:NSUTF8
StringEncoding] ;
NSLog (@"biz payload data:%@,string:%@",dataPl,pl);
telse{
NSLog (@"biz payload:%@",plString);

- (void)dealloc
{
BOOL unRegisterSingleDeviceSync = [MPSyncInterface
unRegisterSyncBizWithName:SYNC BIZ NAME syncObserver: [MySyncService sharedInstance]];
[MPSyncInterface removeSyncNotificationObserver:self];
}
@end

Follow-up steps

e Access the server

> Document Version: 20250731 18

User Guide+Server-side develo

© 2852, Mobile Sync Service et

5.Server-side development

5.1. Instructions on accessing
server

To access your business system to Mobile Sync Service (MSS) server, you must complete the
following two steps:

To access your business system to Mobile Sync Service (MSS) server, you must complete the
following two steps:

1. Integrate service with Java SDK and compile calling codes: Use Java SDK for access.
According to different requirements, the calling codes can be written in two modes: single
data synchronization API and global data synchronization API.

2. Verify user consistency: This verification is generally used in scenarios with high user
security requirements for data synchronization.

Prerequisites
You should complete the following preparations before accessing the MSS server:

e You have completed the following operations: Activate mPaaS and Obtain AccessKey ID and
Secret from the tenant administrator.

e You have created an App and obtained the appld and workspaceld of the App.
¢ You have a server-side application.

e You have completed the Maven configuration.
5.2. Integrate service with Java
SDK

This topic describes how to access the data synchronization service on the server by using
Java SDK.

Import JAR package

After completing the Maven configuration, introduce the following dependencies in the master
pom.xml file.

<dependency>
<groupId>com.aliyun</groupId>
<artifactId>aliyun-java-sdk-mpaas</artifactId>

<version>3.0.10</version>

</dependency>

<dependency>

<groupId>com.aliyun</groupId>
<artifactId>aliyun-java-sdk-core</artifactId>
<optional>true</optional>
<version>[4.3.2,5.0.0)</version>

</dependency>

Environment Variable Configuration

> Document Version: 20250731 19

https://www.alibabacloud.com/product/mpaas?_p_lc=1

User Guide+Server-side develo

© 2852, Mobile Sync Service et

Configure environment variable MPAAS_AK ENV and MPAAS_SK ENV.

e Linux and macOS system configuration methods execute the following commands:

export MPAAS AK ENV=<access key id>
export MPAAS SK ENV=<access_ key secret>

® Note

access_key id is replaced with the prepared AccessKey ID, and access key secret
is replaced with the AccessKey Secret.

¢ Windows system configuration method

i. Create a new environment variable, add environment variables MPAAS_AK _ENV and
MPAAS_SK_ENV, and write the prepared AccessKey ID and AccessKey Secret.

ii. Restart Windows system.
API description
Single data synchronization interface

The single data synchronization interface is used to synchronize data to a specified user or
device.

Parameters

Business parameters are as follows:

Parameter

appld

workspaceld

bizType

linkToken

Data type

String

String

String

String

Required

Required

Required

Required

Required

Example

ONEX570DA8921

17

PROD

UCHAT

Description

Get App ID from
the mPaa$S
console.

Get Workspace
ID from the
mPaa$S console.

The
synchronization
identifier
configured in the
mPaa$S console.
See Console
introduction for
more details.

Push target ID.
Enter the user ID
if the push is
based on users.
Enter the device
ID if the push is
based on
devices.

> Document Version: 20250731

20

User Guide+Server-side develo

Bu%d . Mobile Sync Service et

Actual business
message body in
custom format,
no more than
4,096 characters
in length.

payload String Required testpayload

Request ID for
one data
synchronization.
Unique for one
synchronization
configuration.
Requests of
duplicate IDs will
be ignored. The
ID must be no
more than 100
bytes.

thirdMsgld String Required 1760339273

Specifies the
operating system
of the mobile
phone to which
the data is to be
pushed. By
default, no
parameters will
be passed, that
is, no
specifications,
and data will be
pushed to both
iOS and Android
platforms.

osType String No iOS/Android

Specify the client
version to which
the data is
pushed. Data is
sent only to
clients of the
specified or later
versions.

appMinVersion String No 0.0.0.0

> Document Version: 20250731 21

Bu%d . Mobile Sync Service

User Guide+Server-side develo
pment

appMaxVersion String
validTimeStart String
validTimeEnd String

Result codes

Result code

Success

ARGS_IS_NULL

PAYLOAD_LONG

THIRD_MSG_ID_LONG

BIZ_NOT_ONLINE

THIRD_MSG_ID_IS_NULL

No 100.100.100.100

No 1584448493913

No 1584452093913

Description

Synchronization succeeded.

Required parameters are empty

PAYLOAD message body is too
long

Third-party service ID is too
long.

The synchronization identifier
of the service scenario is not
submitted.

Third-party service ID is empty

Specify the client
version to which
the data is
pushed. Data is
sent only to
clients of the
specified or
earlier versions.

Data will be
pushed only
when the current
time is later than
or equal to
validTimeStart.

Data will be
pushed only
when the current
time is earlier
than or equal to
validTimeEnd.

Solution

Synchronization succeeded.

Check if the parameters have
been completely passed
according to the non-empty
logical operation.

Check if the length of the
playload property parameter
exceeds the limit.

Check if the third-party service
ID exceeds the limit.

Go to mPaaS Console >
Mobile Sync Service to check
if the bizType synchronization
identifier has been configured
and submitted.

Check if the third-party service
ID is empty.

> Document Version: 20250731

22

© 2852, Mobile Sync Service User Guide-Server-side g(rer:/:rlmct’

Contact technical support to
SYSTEM_ERROR System error confirm the cause of system
errors.

Check if the App ID is correct
INVALID_TENANT_ID Invalid tenant ID and If you have the permission
to use the App ID.

Sample code

import com.aliyuncs.DefaultAcsClient;

import com.aliyuncs.IAcsClient;

import com.aliyuncs.mpaas.model.v20201028.CreateOpenSingleDataRequest;
import com.aliyuncs.mpaas.model.v20201028.CreateOpenSingleDataResponse;
import com.aliyuncs.profile.DefaultProfile;

import org.apache.commons.lang3.builder.ToStringBuilder;

import org.apache.commons.lang3.builder.ToStringStyle;
public class MsyncPopDemo {

public static void main(String[] args) {
//Request information, except AccessKey ID AccessKey Secret can be fixed
DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-

hangzhou.aliyuncs.com") ;

// Alibaba Cloud account AccessKey has access rights to all APIs. It is
recommended that you use RAM users for API access or daily operation and maintenance.

// It is strongly recommended not to save the AccessKey ID and AccessKey Secret
in the project code, otherwise the AccessKey may be leaked, threatening the security of
all resources under your account.

// This example uses saving the AccessKey ID and AccessKey Secret in
environment variables as an example. You can also save it to the configuration file acc
ording to business needs.

String accessKeyId = System.getenv ("MPAAS AK ENV");

String accessKeySecret = System.getenv ("MPAAS SK ENV");

// Create a DefaultAcsClient instance and initialize it
DefaultProfile profile = DefaultProfile.getProfile (
"cn-hangzhou", // Region ID
accessKeyId, // AccessKey ID of RAM account
accessKeySecret); // AccessKey Secret of RAM account

IAcsClient client = new DefaultAcsClient (profile);
CreateOpenSingleDataRequest singleRequest = constructSingleRequest () ;

CreateOpenSingleDataResponse singleDataResponse;
try {
singleDataResponse = client.getAcsResponse (singleRequest) ;
System.out.println ("singleDataResponse:" +
ToStringBuilder
.reflectionToString (singleDataResponse,
ToStringStyle.SHORT PREFIX STYLE));

> Document Version: 20250731 23

© 2852, Mobile Sync Service User Guide-Server-side gfr:/:rlmct’

} catch (Throwable throwable) {
throwable.printStackTrace () ;

private static CreateOpenSingleDataRequest constructSingleRequest () {

CreateOpenSingleDataRequest singleRequest
= new CreateOpenSingleDataRequest () ;

//*************Required properties*************/

//Bpp ID obtained from the mPaaS console

singleRequest.setAppld ("xxxxxxx") ;

//Workspaceld obtained from the mPaaS console

singleRequest.setWorkspaceld ("xxxxxxxx") ;

//The synchronization identifier configured during mobile synchronization in
the mPaaS console

singleRequest.setBizType ("TEST-SYNC") ;

//User ID or device ID to be pushed (UTDID)

singleRequest.setLinkToken ("testUserId") ;

//Actual service message body, custom format with not more than 4096 characters
in length.

singleRequest.setPayload ("testPayload") ;

//Service ID, unique, not more than 100 characters in length.

singleRequest.setThirdMsgId("test third msg id " + System.currentTimeMillis());
//************Non_required properties*************/

//No restriction on the operating system when the operating system of the targe
t device, 10S or Android, is empty.

singleRequest.setOsType ("IOS") ;

//Minimum client version supported, such as 8.6.0.0.9999. If the version
specified here is empty, there will be no limit on the minimum client version.

singleRequest.setAppMinVersion ("0.0.0.0") ;

//Maximum client version supported, such as 9.0.0.0.9999. If the version
specified here is empty, there will be no limit on the maximum client version.

singleRequest.setAppMaxVersion ("100.100.100.100") ;

//Start of the validity period. If it is empty, there will be no limit on the s
tart of the validity period.

singleRequest.setValidTimeStart (System.currentTimeMillis ()) ;

//End of the validity period. If it is empty, there will be no limit on the end
of the validity period. The longest validity period is 30 days.

singleRequest.setValidTimeEnd (System.currentTimeMillis () + (1000 * 3600));

return singleRequest;

Important

Please make sure that your AccessKey has AliyunMPAASFullAccess permission. For
details, please refer to Application-level access control for RAM users.

> Document Version: 20250731 24

User Guide+Server-side develo

© 2852, Mobile Sync Service et

Global data synchronization interface

Global data synchronization interface is used to synchronize data to all devices.

Parameters

Business parameters are as follows:

Parameter

appld

workspaceld

bizType

payload

thirdMsgld

Data type

String

String

String

String

String

Required

Required

Required

Required

Required

Required

Example

ONEX570DA8921
17

PROD

UCHAT

testtestatapalayd

1760339273

Description

Get App ID from
the mPaa$S
console.

Get Workspace
ID from the
mPaaSs console.

The
synchronization
identifier
configured in the
mPaa$S console.
See Console
introduction for
more details.

Actual service
message body,
custom format
with not more
than 4096
characters in
length.

One data
synchronization
request ID.
Unique for one
synchronization
identifier.
Requests from
duplicate IDs will
be ignored. The
ID must be no
more than 100
bytes.

> Document Version: 20250731

25

Bu%d . Mobile Sync Service

User Guide+Server-side develo
pment

osType

appMinVersion

appMaxVersion

validTimeStart

validTimeEnd

String

String

String

String

String

No

No

No

No

No

I0S/ANDROID

0.0.0.0

100.100.100.100

1584448493913

1584452093913

Specifies the
operating system
of the mobile
phone to which
the data is to be
pushed. By
default no
parameters will
be passed, that
is, no
specifications,
and data will be
pushed to both
iOS and Android
platforms.

Specify the client
version to which
the data is
pushed. Data is
sent only to
clients of the
specified or later
versions.

Specify the client
version to which
the data is
pushed. Data is
sent only to
clients of the
specified or
earlier versions.

Data will be
pushed only
when the current
time is later than
or equal to
validTimeStart.

Data will be
pushed only
when the current
time is earlier
than or equal to
validTimeEnd.

> Document Version: 20250731

26

Bu%d . Mobile Sync Service

User Guide+Server-side develo

pment

maxUid Long
minUid Long
uids String

Result codes

Result code

Success

No

No

No

Description

The task is successful.

99

00

01,02,99

Solution

The maximum
Uid in the
synchronization
range. Uid is the
second last
character and
the third last
character of the
user ID or device
ID. If the Uid is
not alphabetic,
you need to
convert the Uid
to ASCII.

The minimum Uid
in the
synchronization
range. Uid is the
second last
character and
the third last
character of the
user ID or device
ID. If the Uid is
not alphabetic,
you need to
convert the Uid
to ASCII.

The priority is
higher than
maxUid and
minUid.

The discrete Uid
segment. Uid is
the second last
character and
the third last
character of the
user ID or device
ID. If the Uid is
not alphabetic,
you need to
convert the Uid
to ASCII.

The task is successful.

> Document Version: 20250731

27

© 2852, Mobile Sync Service

User Guide+Server-side develo
pment

ARGS_IS_NULL

PAYLOAD_LONG

THIRD_MSG_ID_LONG

BIZ_NOT_ONLINE

THIRD_MSG_ID_IS_NULL

SYSTEM_ERROR

NOT SUPPORT_GLOBAL

INVALID_TENANT_ID

Sample code

Required parameters are empty

PAYLOAD message body is too
long

Third-party service ID is too
long.

The synchronization identifier
of the service scenario is not
submitted.

Third-party service ID is empty

System error

Does not support calls with
global service synchronization
identifier

Invalid tenant ID

public static void main(String[] args) {

//Request information,
DefaultProfile.addEndpoint ("cn-hongkong",

hongkong.aliyuncs.com") ;

Check if the parameters have
been completely passed
according to the non-empty
logical operation.

Check if the length of the
playload property parameter
exceeds the limit.

Check if the third-party service
ID exceeds the limit.

Go to mPaaS Console >
Mobile Sync Service to check
if the bizType synchronization
identifier has been configured
and submitted.

Check if the third-party service
ID is empty.

Contact technical support to
confirm the cause of system
errors.

According to BizType, go to
mPaaS Console > Mobile
Sync Service to check if the
synchronization identifier is
user-based or device-based.

Check if the App ID is correct
and If you have the permission
to use the App ID.

fixed except AccessKey ID and AccessKey secret

"mpaas" ,

"mpaas.cn-

// Create and initialize a DefaultAcsClient instance.

DefaultProfile profile

"cn-hongkong",

= DefaultProfile.getProfile(
// Region ID

"xxxxxx", // AccessKey ID of the RAM account

"xxxxxx"); // AccessKey secret of the RAM account

IAcsClient client =

new DefaultAcsClient (profile);

CreateOpenGlobalDataRequest globalDataRequest = constuctGlobelRequest();

> Document Version: 20250731

User Guide+Server-side develo

© 2852, Mobile Sync Service et

CreateOpenGlobalDataResponse globalDataResponse;
try f
globalDataResponse = client.getAcsResponse (globalDataRequest) ;
System.out.println ("globalDataResponse:" +
ToStringBuilder
.reflectionToString (globalDataResponse,
ToStringStyle.SHORT PREFIX STYLE));

} catch (ServerException e) ({
e.printStackTrace () ;

} catch (ClientException e) ({
e.printStackTrace () ;

} catch (com.aliyuncs.exceptions.ClientException e) {
e.printStackTrace () ;

} catch (Throwable throwable) {
throwable.printStackTrace () ;

private static CreateOpenGlobalDataRequest constuctGlobelRequest () {

CreateOpenGlobalDataRequest globalRequest
= new CreateOpenGlobalDataRequest () ;

[/ xxxxxxxxxxx*Required properties**xxxxxxxxxxx /

//RApp ID obtained from the mPaaS console

globalRequest.setAppId ("BE9C457161429") ;

//WorkspaceId obtained from the mPaaS console

globalRequest.setWorkspaceId("sit") ;

//The synchronization identifier configured during mobile synchronization in
the mPaaS console

globalRequest.setBizType ("test-global") ;

//Actual service message body, custom format with not more than 4096 characters
in length.

globalRequest.setPayload("testtestata");

//Service ID, unique, not more than 100 characters in length.

globalRequest.setThirdMsgId("test third msg id " + System.currentTimeMillis());

//************Non_required properties*************/

//No restriction on the operating system when the operating system of the targe
t device, i0S or Android, is empty.

globalRequest.setOsType ("IOS") ;

//Minimum client version supported, such as 8.6.0.0.9999. If the version
specified here is empty, there will be no limit on the minimum client version.

globalRequest.setAppMinVersion ("0.0.0.0") ;

//Maximum client version supported, such as 9.0.0.0.9999. If the version

specified here is empty, there will be no limit on the maximum client version.

globalRequest.setAppMaxVersion ("100.100.100.100") ;
//Maximum Uid

globalRequest.setMaxUid (Long.valueOf (99)) ;
//Minimum Uid

globalRequest.setMinUid (Long.valueOf (1)) ;

> Document Version: 20250731 29

© 2852, Mobile Sync Service User Guide-Server-side ?)?r:/eerlmcé

//Uid 00-99 to be pushed for the phased-release, which is a string array.
globalRequest.setUids ("01,02,99");

globalRequest.setValidTimeStart (System.currentTimeMillis ()) ;
globalRequest.setValidTimeEnd (System.currentTimeMillis () + (1000 * 3600));

return globalRequest;

Important

Please make sure that your AccessKey has AliyunMPAASFullAccess permission. For
details, please refer to Application-level access control for RAM users.

5.3. Check user consistency

In some cases, the business system has high-security requirements on data synchronization,
namely, the target users of the push must be the current logon users and not fake. For that,
the MSS provides user consistency verification, which can be turned on by the user when
needed. The general principle of this function is:

In some cases, the business system has high-security requirements on data synchronization,
namely, the target users of the push must be the current logon users and not fake. For that,
the MSS provides user consistency verification, which can be turned on by the user when
needed. The general principle of this function is:

e The client reports user ID (userld) and authorization token (sessionld) when the client
connects to the server. Both userld and sessionld are the data returned after the user logs
on to the system. When userld and sessionld change, the relevant APIs need to be called to
ensure that the persistent connection is established correctly.

e The server calls a consistency verification interface implemented by the tenant, and the
tenant checks the consistency through this interface. The data synchronization service
records an identifier indicating whether the consistency requirement is met.

e For synchronization configuration with high security requirements, the tenant can enable
user consistency verification, and data is pushed only to devices of users who have passed
the consistency verification. If user consistency verification is not enabled, the consistency
verification results are ignored.

Configure user consistency verification interface

The following section describes how to configure the consistency validation interface
com.antcloud.session.validate and explains the interface usage.

Note that after configuring the consistency verification interface in the mPaaS console, you
need to disable the signature verification feature of this RPC. Otherwise, the logic of
consistency verification for mobile synchronization will not work properly.

Operation path

After you log on to the mPaaS console, select the target App and choose Mobile Gateway
Service > Manage API to add the API. For more information, see Mobile Gateway > Manage
APIs.

API description

> Document Version: 20250731 30

User Guide+Server-side develo

© 2852, Mobile Sync Service et

The operationType Of the APl to be added must be com.antcloud.session.validate . The
request parameters are as follows:

Parameter Type and length Required Example Description
String of

Instanceld String Required instancedemo workspaceld_app
Id

userld String Required 20880939 User ID.

Authorization
sessionld String Required kkdddd token carried by
the client.

Returned parameters

The data returned after implementing the consistency verification logic is in JSON format, as
shown in the following example:

{

"resultCode": "OK",

"resultMsg": "Operation is done successfully",
"success": true,

"result": {

"sid": "kkdddd",

"valid":true/false

Attribute description:

Parameter Data type Example Description

> Document Version: 20250731 31

Bu%d . Mobile Sync Service

User Guide+Server-side develo
pment

success

returnCode

resultMsg

sid

valid

Result codes

Result

true

false

boolean

String

String

String

boolean

true/false
ERROR
SYSTEM-ERROR
kkdddd
true/false
Result code
OK

OPERATION_ERROR

The business call
result. Valid values:
true and
false , where
true indicates a
successful call and
false indicates a

failed call. If the call
fails, check the value
of returnCode to

locate the cause. For
more information, see
Result codes as follows

The result code.

Result information.

The authorization
token or sessionld.

Verification result.

Description

Business call succeeded.

The operation fails. Only the
com.antcloud.session.valid

ate APl is called.

> Document Version: 20250731

32

e

#%3 Mobile Sync Service

User Guide-Console operation

S

6.Console operations
6.1. Console introduction

The Mobile Sync console allows you to manage push configurations and perform data push
actions. A push configuration defines the basic application scnenario of the push service. And
the actual data push actions can be realized based on the push configuration.

You can perform the following actions in the Mobile Sync console:

Add cnfigurations

Send business data

View configuration details

Modify configurations

Disable configurations

Query statistics on configuration pushes

Service management

6.2. Add configuration

A synchronization configuration defines the basic application scenario of data push. And the
actual data push actions can be realized based on the synchronization configuration.
Therefore, you need to add synchronization configuration before sending data.

Log in to mPaaS console, click the mPaaS App for which you want to add configuration, and
complete the following steps.

Procedure
1. On the left navigation pane, choose Mobile Sync Service under Backend connection.
2. Click the Configuration management tab, and then click + New sync configuration.
The New sync configuration page appears.
3. Set parameters.
The following table describes the parameters.
Parameter Description
Identifies a specific data push business scenario.
Sync ID The format of uppercase letters with a hyphen (-
), such as DEVICE-LOCK, is recommended.
Description Describes t_he bu_siness scenario corresponding
to the configuration.
> Document Version: 20250731 33

© 2852, Mobile Sync Service

User Guide-Console operation

S

Push scope

Target

Multi-device sync

Data persistence

Re-push mode

Re-push threshold

User consistency check

Indicates the range of users or devices receiving
data in the data push process. The value Global
indicates that all users or devices can receive
data, and the value Appointed indicates that
only the appointed user or device can receive
data.

Indicates whether data is pushed by user or by
device.

This parameter is required only when Target is
set to User. If you select Yes, data will be
synchronized between multiple devices of a
single user. That is, when the user uses a device
to log in to the client, the user can receive the
data that the user has received on another
device.

Pushed data will be saved to the database for a
maximum of 30 days by default. If a user is
offline when data is pushed, the user will
receive the data when going online.

Specifies the policy for processing the backlog
data on the server. This parameter is available
only when Data persistence is set to Yes.
When All is selected, all the backlog data on the
server will be pushed to the client. When
Threshold is selected, only the latest backlog
data within the threshold will be pushed to the
client.

This parameter is available only when Data
persistence is set toYes and Re-push mode
is set to Threshold.

This parameter is available only when Target is
set to User. If you set this parameter toYes,
MSS will verify user consistency when pushing
data and push data only when user consistency
check is successful. For more information, see
Verify user consistency.

4. After setting the above information, click OK to complete adding the synchronization
configuration. The newly added synchronization configuration becomes online by default.

Once a configuration is taken online, you can push data by calling APIs or performing

actions in the console.

6.3. Send business data

> Document Version: 20250731

34

© 2852, Mobile Sync Service

User Guide-Console operation

s
This topic describes how to send business data in the mPaa$S console. Enter your target App
and complete the following steps.

Prerequisites
One push configuration record exists in the console and is online.
Procedure

1. On the left-side navigation pane, choose Mobile Sync Service.

2. Under the Configuration management tab, click Operate of a configuration record in

the configuration list. The Create synchronization window appears.

3. Set parameters, and click OK.

The following table describes the parameters.
Parameter Description
User ID/Device ID Indi;ates the user or device to which the
business applies.
Content Indicates the text content of the data, in String
format.
Uniquely identifies the data content. This
parameter is required only for the data
. persistence business. When two data records
Unique data ID with the same unique data ID are pushed, the
second record will be ignored.
Indicates the operating system type of the data
oS receiving client. The options are Android and
iOS.
Version range Indigates thg range of dat.a recgiving client app
versions. This parameter is optional.
Indicates the maximum validity period of the
Validity period pushed data. The default value is 30, in days.
-] - -
6.4. View configuration details
This topic describes how to view configuration details in the mPaa$S console.
Enter your target App and complete the following steps to view the configuration details:

1. In the left navigation pane, click Mobile Sync.

2. Under the Configuration management tab, click the ID of a configuration record in the

configuration list to view the details.

> Document Version: 20250731 35

' ; : User Guide:Console operation
© 2852, Mobile Sync Service P :

6.5. Change settings

This topic describes how to modify push configurations in the mPaa$S console.

Enter your target App, and complete the following steps to modify a piece of push
configuration:

1. In the left navigation pane, click Mobile Sync.

2. Under the Configuration management tab, click the ID of a configuration record in the
configuration list.

3. On the displayed configuration details page, click Modify in the upper right corner. Modify
parameters as required, and click Save.

Note: Sync ID and Target cannot be modified.

6.6. Disable configuration

In case data synchronization needs to be suspended due to data problems or other reasons,
you can do it by disabling the synchronization configuration in the mPaaS console.

In case data synchronization needs to be suspended due to data problems or other reasons,
you can do it by disabling the synchronization configuration in the mPaaS console.

In the mPaaS console, select your App, and complete the following steps to disable the
synchronization configuration:

1. On the left navigation pane, click Mobile Sync Service, and then go to the Configuration
management tab page.

2. In the synchronization configuration list, click Offline right to the target configuration, and
confirm to take the configuration offline.

Once the synchronization configuration is disabled, all the corresponding synchronization
business will be disabled accordingly. To use the configuration again, you just need to click
Online to take the configuration online.

6.7. Query configuration pushes

MSS displays pushed statistical data by user and device status.
MSS displays pushed statistical data by user and device status.

This topic describes how to view pushed statistical data in the mPaaS console. Enter your
target App and complete the following steps.

Procedure
1. On the left navigation pane, click Mobile Sync Service.
2. Click the Data query tab to view user or device status.

3. Select User or Device in the upper right of the User/device status area, and enter a user
name or device name in the search box accordingly to view the status of the user or device.

MSS provides the following user or device data on this page:

User/device name
Status of whether the user connects to MSS

Pushes in the last 30 days

Arrivals in the last 30 days
Push list

Document Version: 20250731 36

\Y

' ; : User Guide:Console operation
© 2852, Mobile Sync Service P :

6.8. Manage services

On the Service Management tab page, a switch is available for enabling or disabling
signature. The setting is effective globally. You can temporarily enable or disable all signature
verification related functions as needed.

> Document Version: 20250731

37

é

ek Mobile Sync Service User Guide+API reference

7.APIl reference
7.1. Android API

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or
10.1.60, see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

In baseline 10.1.32 or later versions, the wmpsync class in the mPaaS middle layer
encapsulates all APIs of the Mobile Sync Service (MSS). You can use the wmpsync object to
implement all functions of MSS.

java.lang.Object

- com.mpaas.mss.adapter.api.MPSync

Related public functions are shown as follows:

setup(Application application)

appToBackground()

appToForeground()

clearUserinfo()

initialize(Context context)

isConnected()

registerBiz(String bizType, ISyncCallback syncCallback)
reportMsgReceived(SyncMessage syncMessag)
unregisterBiz(String bizType)

updateUserinfo(String sessionld)

Return value type Methods and description

setup(Application application)

Initializes basic services on which MSS depends. Call this APl before
you call the initialize method. This function is available only
in baseline 10.1.60 and later versions.

void

appToBackground()

void Notifies the client SDK that the App has been switched to the
background and it needs to disconnect from the server. Call this
function every time the App is switched to the background.

appToForeground()

void Notifies the client SDK that the App has been switched to the
foreground and it needs to connect to the server. Call this function
every time the App is switched to the foreground.

>

Document Version: 20250731 38

© 2852, Mobile Sync Service

User Guide*API reference

Return value type

void

void

boolean

void

void

void

boolean

Methods and description

clearUserlInfo()

Clears user information when a user logs out.

initialize(Context context)

Initializes MSS.

isConnected()

Checks whether MSS is running properly.

registerBiz(String bizType, ISyncCallback syncCallback)

Registers a callback to receive business data. If this APl is called,
the client SDK will call the syncCallback class after receiving
synchronized data.

reportMsgReceived(SyncMessage syncMessag)

Notifies MSS of the data synchronization success after data is
received in the syncCallback class. Before receiving
reportMsgReceived, MSS attempts to resend the data for a
maximum of six times. If all resending attempts fail, the data is
permanently deleted.

unregisterBiz(String bizType)

Unregisters a specified synchronization configuration. If this API is
called, the client SDK will not call the syncCallback class when
receiving synchronized data.

updateUserinfo(String sessionld)

Call this API at least once when the login information (userld or
sessionld) is modified.

setup(Application application)

Declaration

public static void setup (Application application)

Description

Used to initialize the base service that MSS depends on. This function needs to be called
before the initialize method is called. This function is available only in baseline 10.1.60 and

later versions.

Parameters

> Document Version: 20250731

39

© 2852, Mobile Sync Service User Guide-API reference

Parameter Type Description

application Application An application instance.

Returned value

None.
appToBackground()
Declaration

public static void appToBackground ()

Description

Notifies the client SDK that the App has been switched to the background and it needs to
disconnect from the server. Call this function every time the App is switched to the
background.

We recommend that you call this API inside the onstop() method of the home page. If this

API is not called when the App is switched to the background, the network connection
between the App and the server cannot be released in a timely manner, increasing power
consumption and traffic usage.

Parameters

None.

Returned value
None.
appToForeground()
Declaration

public static void appToForeground ()

Description

Notifies the client SDK that the App has been switched to the foreground and it needs to
connect to the server. Call this function every time the App is switched to the foreground.

We recommend that you call this API inside the onRresume () method of the home page.
Parameters
None.

Returned value
None.
clearUserinfo()
Declaration

public static void clearUserInfo ()

Description

Clears user information when a user logs off.

> Document Version: 20250731 40

© 2852, Mobile Sync Service User Guide+API reference

Parameters

None.

Returned value

None.

initialize(Context context)
Declaration

public static void initialize (Context ctx)

Description
You can call this API to initialize MSS. Your App can use MSS only after you call this API.

During the life cycle of the App (from the time the App is started to the time the App is
stopped), this APl needs to be called only once.

Parameters
Parameter Type Description
ctx Context A non-empty Context

Returned value

None.
isConnected()
Declaration

public static boolean isConnected ()
Description
Checks whether MSS is running properly.
Parameters
None.
Returned value
Returns true if the service is normal, and returns false if the service is abnormal.
registerBiz(String bizType, ISyncCallback syncCallback)
Declaration

public static void registerBiz (String biz, ISyncCallback callback)

Description

Used to register a callback for receiving service data. If this API is called, the client SDK will
call the syncCallback class after receiving synchronized data.

This API needs to be called once for each synchronization configuration.

Parameters

> Document Version: 20250731 41

© 2852, Mobile Sync Service User Guide-API reference

Parameter Type Description
bizType String Synchronization identifier
syncCallback ISyncCallback Callback implementation class

Returned value

None.
reportMsgReceived(SyncMessage syncMessag)
Declaration

public static void reportMsgReceived (SyncMessage msg)
Description

After the synchronously pushed data is received in synccallback , call this API to notify MSS

that the synchronized data has been received successfully. Before receiving the
reportMsgReceived , MSS attempts to resend the data for a maximum of six times. If all

resending attempts fail, the data will be permanently deleted.

Parameters
Parameter Type Description
syncMessag SyncMessage Message synchronization

Returned value

None.
unregisterBiz(String bizType)
Declaration

public static void unregisterBiz (String biz)

Description

Unregisters a specified synchronization configuration. MSS will not call synccaliback after
MSS receives the synchronization configuration data.

Parameters
Parameter Type Description
biz String Synchronization identifier

Returned value

None.

> Document Version: 20250731 42

© 2852, Mobile Sync Service User Guide+API reference

updateUserinfo(String sessionlid)
Declaration

public static boolean updateUserInfo (String sessionId)

Description

Calling inside the method is based on the
LongLinkSyncService.getInstance () .updateUserInfo (String userId, String sessionId) API

in which userzd indicates the user ID specified in MpLogger .This APl is called when
userId Or sessionIid changes and will update user login information.

Both parameters are required for logon. If userzd is not specified, this method returns
false , indicating a calling failure.

This method must be called upon session expiration or each successful automatic logon. Note
that the automatic logon function is enabled after a user logs on to the client once. The
general calling principle is that this method must be called when userid Or sessionId

changes.

Parameters
Parameter Type Description
sessionld String Session ID.

Returned value

Returns true if the user information is updated successfully, and returns false if userld is not
set at logon.

7.2.10S API

The MPSyncInterface class in MPMssAdapter.framework provides all MSS APIs. All methods
in the class are class methods that can be called by the class name.

+(void)initSync;
Initializes MSS. An app can use MSS only after calling this API.

During the life cycle of the app (from the time the app is started to the time the app is
stopped), this APl needs to be called only once.

+(MPSyncNetConnectType)connectStatus;

Checks the connection status of MSS.

Return value: connection status specified by MPSyncNetConnectType
+(BOOL)registerSyncBizWithName:(NSString *)bizName
syncObserver:(id)observer selector:(SEL)selector;

Registers the notification listener which works on the business name bizname , and calls
[[NSNotificationCenter defaultCenter] addObserver:observer selector:selector
name:bizName object:nil]; to listen on notifications.

> Document Version: 20250731 43

© 2852, Mobile Sync Service User Guide+API reference

The value of bizName is the same as that in the server console. If this APl is not called, the
specified biz messages will not be distributed but stacked in the database of the client SDK.
We recommend that you start listening on specified sync messages sent to the server upon
server startup.

Return value: registration result ves or wo

+(BOOL)unRegisterSyncBizWithName:(NSString *)bizName
syncObserver:(id)observer;

Notifies the MSS client SDK that message listening on a synchronization configuration has
been disabled and that sync messages related to the synchronization configuration will no
longer be received.

The internal [[NSNotificationCenter defaultCenter] removeObserver:observer name:bizName
object:nil]l; APl is called to remove the listener.

After this APl is called, messages of the biz will not be distributed but stacked in the SyncSDK
database. This APl matches the registerSyncBizwithName API.

Return value: result yYeEs or o

+(void)removeSyncNotificationObserver:(id)observer;

Disables listening on the synchronization notification. This API is usually called in the
dealloc function of a listening class. The internal [[NSNotificationCenter defaultCenter]

removeObserver:observer]; APl is called to remove the listener.

Return value: none.

+(void)responseMessageNotify:(NSDictionary *)userinfo;

Notify a caliback after a message has been processed. The parameter is
userInfo (notify.userInfo) in the notification.

Calls back syncspk , indicating that the business data has been processed in the notification
processing function registered using the registersyncBizwithName API, when data
processing is completed.

Return value: none.

+(void)bindUserWithSessionld:(NSString *)sessionld;

This method is called when the value of the login parameter userid O0r sessionId
changes.

This APl is called during login. The value of userid isthe - (Nsstring*)userid function of

MPaaSInterface

This method must be called upon sessionid expiration or each successful automatic login,
which is enabled after a user logs in to the client once.

The overall calling principle is that this method must be called when the value of userid or
sessionId cChanges.

When the value of userid changes, unBindUser is called to unbind the user account and
then binduserwithSessionId: is called to rebuild a connection.

sessionld is used with the server to verify the validity of a session. If this parameter is set to
nil on the server, the default value e~sesston DEMO” IS used.

Return value: none.

+(void)unBindUser;

> Document Version: 20250731 44

© 2852, Mobile Sync Service User Guide+API reference

Called to unbind the currently connected user when the user logs out.

Return value: none.

+(NSString *)getSyncDeviceld;
Obtains the device ID, which is used when pushing device-based sync data.
Return value: device ID.

Important: If the value of sessionid in the APl is invalid, the user consistency option in the

console must be disabled, or sync messages will fail to be pushed due to verification failure.
Enable or disable signature verification by referring to Service management.

> Document Version: 20250731 45

	1.Change history
	2.About Mobile Sync Service
	3.Terminology
	4.Client-side development
	4.1. Android
	4.2. iOS
	4.2.1. Add SDK
	4.2.2. Use SDK

	5.Server-side development
	5.1. Instructions on accessing server
	5.2. Integrate service with Java SDK
	5.3. Check user consistency

	6.Console operations
	6.1. Console introduction
	6.2. Add configuration
	6.3. Send business data
	6.4. View configuration details
	6.5. Change settings
	6.6. Disable configuration
	6.7. Query configuration pushes
	6.8. Manage services

	7.API reference
	7.1. Android API
	7.2. iOS API

