
Ant Technology

Mobile Security Armor
User Guide

Document Version: 20250731

Ant Technology

Mobile Security Armor
User Guide

Document Version: 20250731

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Mobile Security Armor User Guide·Legal disclaimer

> Document Version: 20250731 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Mobile Security Armor User Guide·Document convent
ions

> Document Version: 20250731 I

Table of Contents
1.About Mobile Security Armor
2.Terminology
3.Price introduction
4.New Tool Chain for Android Application Security Hardening

4.1. Getting started
4.2. user-guide
4.3. View security hardening logs

5.Security hardening for Android apps
5.1. Instructions for use
5.2. Quick start
5.3. User guide

5.3.1. Create a security hardening task
5.3.2. View the security hardening list
5.3.3. Download a hardened package
5.3.4. View security hardening details
5.3.5. View a hardening failure log
5.3.6. Search for and delete a task

5.4. OpenAPIs
5.4.1. Preparations for API calls
5.4.2. API references

5.5. Troubleshooting after Android hardening
5.6. FAQs

6.Security hardening for iOS apps

05

06

07

08

08

08

08

10

10

10

10

10

12

12

12

13

13

13

13

14

20

21

23

Mobile Security Armor User Guide·Table of Contents

> Document Version: 20250731 I

Mobile Security Armor(MSA) service provides stable, simple and effective security protection for mobile application (App), improves the overall security
level of applications, and protects applications from being cracked and attacked. MSA is powered by the mobile security reinforcement techniques of
Alibaba Cloud Group. It has been tested and tried by Taobao series Apps (the amount of users and data are over 100 millions). It guarantees high
reliability in terms of security. When you use the MSA service to reinforce mobile Apps of mPaaS, you can use the hotfix feature as usual. In other
words, you can use the hotfix feature to fix bugs in an online version without concerning about the security of Apps.
MSA can reinforce Android Apps, but does not support iOS Apps.

Background
The Android system is open source. Therefore, Android Apps are extremely vulnerable to attacks such as piracy and reverse engineering. This severely
affects the data and privacy security of the Apps. To resolve the preceding issues, MSA is developed to reinforce the APK or AAB packages and perform
compatibility testing and functional regression testing on the reinforced APK or AAB packages, which can protect the Apps from being cracked.

Benefits
Comprehensive reinforcement capabilities
MSA can integrate reinforcement techniques against various application security vulnerabilities in APK and AAB packages, without changing the
source code of Android Apps. The overall security of the Apps is reinforced, which ensures the Apps cannot be pirated and infringed.
Excellent reinforcement performance
The impact of reinforcement on the size of APK and AAB package and application performance is strictly controlled. Therefore, the size and
performance of the Apps are not significantly changed after reinforcement.

How it works
MSA enhances the anti-cracking capabilities of applications by using various techniques, such as recompiling Android Apps, adding shells for protection,
and modifying the sequence of command calls. Reinforcement intensity and compatibility are balanced, which can avoid the unavailable of Apps due to
the blind pursuit of reinforcement strength in general reinforcement product.

Features
MSA provides the following reinforcement capabilities:

APK or AAB reinforcement:
To protect the overall security of APK or AAB packages, MSA provides overall SSH and anti-tamper protection for DEX files and various techniques for
APK or AAB packages. These techniques include anti-decompilation, preventing white box attacks, shell encryption algorithms, anti-debugging, anti-
memory tampering, anti-hooking, anti-emulation, anti-repackaging, and anti-memory dump.
Class reinforcement:
MSA obfuscates Java code to hide the actual operational process. This prevents the code from being decompiled by using JADX-GUI and JEB tools. In
addition, this makes reinforced code difficult to be read manually.

1.About Mobile Security Armor

Mobile Security Armor User Guide·About Mobile Secu
rity Armor

> Document Version: 20250731 5

Terminology Interpretation

Security reinforcement package Refers to the reinforced APK or AAB package. The security reinforcement package
of a task refers to the APK or AAB package reinforced in the task.

Reinforcement
Improves the anti-cracking ability of the application by recompiling the application,
protecting the application based on shell technology, and modifying the command
calls sequence of the application.

2.Terminology

Mobile Security Armor User Guide·Terminology

> Document Version: 20250731 6

Android price introduction
The Mobile Security Armor (MSA) service is billed in subscription mode. You must purchase the service before you can use it. If you have activated
Mobile PaaS (mPaaS), you can enjoy a seven-day free trial of the MSA service since an APK or AAB package is uploaded. After the free trial period ends,
the system notifies that the service has expired. To continue to use the service, you must purchase the MSA service. For more pricing information of
the MSA service, see Prepaid.
An MSA service can harden only one application. The service is bound to the application based on the APK or AAB package name. When you upload the
APK or AAB, the MSA service verifies the package name of the uploaded APK or AAB.

If the APK or AAB package name has not been bound to an MSA service, and an MSA service is available during uploading, the system will bind the
package name to the available MSA service. The binding process automatically occurs in the background without affecting the upload process.
If the APK or AAB package name has not been bound to an MSA service, but no MSA services are available during uploading, the system displays a
message to prompt you to purchase an MSA service.
If the APK or AAB package name has been bound to an MSA service that has not expired, the upload process proceeds without interruption. When the
service time is 30 days left, the system displays a message to indicate the remaining service time.
If the APK or AAB package name has been bound to an MSA service that has expired, the system displays a message to indicate that the service has
expired and a new MSA service needs to be purchased.

iOS price introduction
For iOS price issues, welcome to search group number 33417739 to join the DingTalk group for consultation.

H5 price introduction
For H5 price issues, welcome to search group number 33417739 to join the DingTalk group for consultation.

Note
The MSA service for applications is billed in subscription mode. Therefore, a purchased MSA service cannot be renewed. Ensure that a new MSA
service is purchased and assigned to the application before the previous service is about to expire.

3.Price introduction

Mobile Security Armor User Guide·Price introduction

> Document Version: 20250731 7

https://common-buy-intl.alibabacloud.com/?commodityCode=mpaas_ppmHK_public_intl

This topic describes how to use security hardening for Android to quickly harden an application and obtain a security hardening package.

Precondition
An APK to be protected has been prepared. The APK should be unhardened and the APK size should be ≤ 300 MB.
You have purchased the mobile security hardening service or are in the seven-day free trial period.

Procedure
The steps to use the new tool chain for security hardening are as follows:

1. Log on to the mPaaS console and select an application.
2. In the left-side navigation pane, choose Security > Mobile security armor > Android application security hardening.
3. Click Create security hardening go to the Upload an application page.
4. Click Upload an application to upload an APK file.
5. After the file is uploaded, you can confirm the application information and hardening information on the page of Confirm security hardening

information.
6. Turn on Do you want to select a new tool chain for reinforcement.
7. Select hardening capacity as required (there will be detection protection when it is running).
8. Optional. In the Add classes that require security protection section, select the classes that you want to reinforce and select important classes.
9. Optional. In the Select the So file to be protected section, select the so file that you want to protect.

10. Optional. In the Select the Assets file to be protected section, select the Assets file that you want to protect.
11. Click Confirm hardening.
12. Return to the Android application security hardening page. A card for the security hardening task will be on the page that appears. you can view

the hardening progress of the corresponding task in the card.
Hardening: indicates that the hardening task is in progress.
Hardened: The hardening task is completed.
hardening Failed: indicates that the hardening task failed.

13. When the Hardened is displayed in the card, click the download icon () to download the hardened APK or AAB file.

Note
The hardened installation package does not have signature information. You need to re-sign the downloaded hardened package and then release it
to the corresponding application market.

Next steps
After hardening, be sure to check whether the functions of key components are normal, such as upgrade components and hot repair components. If the
installation package fails to function after reinforcement, submit a ticket or contact the mPaaS technical helpdesk.

Note
If there are more access-related questions, please search group number 33417739 to join DingTalk group for consultation and exchange.

For more information about how to use the new tool chain for security hardening, see Security hardening for Android.

Note
It is not supported for AAB files to Add classes that require security protection or other files resource protection.

If the protection detects the corresponding risk while it is running, the app will exit after security hardening, and print a log as follows:

ashield process runtime info key ---> value

Key-value description

Feature key value

Signature verification a0 Values greater than 0

Anti-hook a1 Values greater than 0

Anti-debugging a2 Values greater than 0

4.New Tool Chain for Android Application
Security Hardening
4.1. Getting started

4.2. user-guide

4.3. View security hardening logs

Mobile Security Armor
User Guide·New Tool Chain for
Android Application Security H

ardening

> Document Version: 20250731 8

https://home.console.aliyun.com/
https://account.alibabacloud.com/login/login.htm?oauth_callback=https%253A//ticket-intl.console.aliyun.com/%2523/ticket/list

Anti-simulator a3 Values greater than 0

Anti-root a4 Values greater than 0

protection against SQL injection attacks a5 Values greater than 0

Anti-opening a6 Values greater than 0

Mobile Security Armor
User Guide·New Tool Chain for
Android Application Security H

ardening

> Document Version: 20250731 9

Before you use Mobile Security Armor (MSA) to harden an APK or AAB file, ensure that the following requirements are met. To improve experience, read
the following instructions before you use MSA.

Ensure that the content of the onCreate function for the provider can be executed multiple times. If the onCreate function contains related logic,
make sure the related logic can be executed at least twice. For example, if you want to initialize a single instance in the onCreate function for the
provider, you need to check whether the instance has been initialized.
The x86 and mips architectures are not supported. If there are related architectures configured, please remove them and repackage them for
hardening.
Currently minSdkVersion does not support 24 and above. Version 23 or earlier is recommended. If the value of the minSdkVersion is less than 23,
MSA compresses and stores nativeLibraries in the APK file by default. If you need to set the value of the minSdkVersion equal to 23, you can perform
one of the following operations:

In the application node, add android:extractNativeLibs="true" .
Repackage the hardened APK or AAB file and set whether compression is required based on your rules.

Important
If you want to harden the Assets file in the application, you must ensure that minSdkVersion ≥ 21, that is, the Android version is not lower than
5.0.

This topic provides guidance on how to use Mobile Security Armor (MSA) to harden Android apps with few steps and obtain hardened packages.

Prerequisites
An APK or AAB that you want to harden is available. The APK or AAB must be not hardened and must be less than or equal to 300 MB.
An MSA instance is purchased or within the seven-day free trial period.

Procedure
To use MSA to harden an Android app, perform the following steps:

1. Log on to the mPaaS console and select the target app.
2. In the left-

side navigation pane, choose Mobile application security > Application security hardening. The Application security hardening page appears.
3. Click Create security hardening. The Upload applications to be hardened page appears.
4. Click Upload an application to upload an APK or AAB file.
5. After the file is uploaded, the page automatically jumps to the Confirm security hardening information page. You can confirm the app information and hardening information.
6. (Optional) In the Add classes that require security protection column, select the classes that you need to harden.
7. Click Confirm hardening to harden the app.
8. Return to the Application security hardening page. The card for the hardening task is added. You can view the hardening progress of the task on the card.

Hardening: indicates that the hardening task is in progress.
Hardened: indicates that the hardening task is complete.
Hardening failed: indicates that the hardening task failed.

9. When the Hardened state is displayed on the card, click Download to download the hardened package, that is, the hardened APK or AAB file.

Note
The hardened installation package does not contain signature information. You need to re-
sign the downloaded hardened package and then release the re-signed hardened package in the app market.

Subsequent steps
After hardening is complete, make sure to check whether the key components such as the upgrade component and the hotfix component are properly functioning. If the installation package works abnormally after hardening, please search for the group number 31591197 with DingTalk to join DingTalk group for further communication.

App security hardening is to harden the entire app and the core classes. This topic provides guidance on the complete process of creating a security
hardening task.
Mobile Security Armor (MSA) supports hardening of the following objects:

Overall APK or AAB file : To protect the overall security of APK and AAB packages, MSA provides anti-decompilation protection for APK and AAB
packages, overall SSH protection and anti-tamper protection for DEX files, defense against white-box attacks, SSH encryption algorithms, anti-
debugging, anti-memory tampering, anti-hooking, anti-emulator, anti-repackaging for APK and AAB packages, and anti-memory dump.
Core classes: obfuscates the Java code, hides the actual running process, and protects the code from decompilers such as jadx-gui and JEB, making
the hardened code difficult to be read by humans.
So files: Encrypt and protect So files to increase the difficulty and cost of cracking So files.
Assets files: Encrypt and protect Assets resource files to meet regulatory requirements.

Note
The hardening of the overall APK or AAB file is required. The hardening of the core classes, So files or Assets files is optional. The APK can be
reinforced according to requirements.

5.Security hardening for Android apps
5.1. Instructions for use

5.2. Quick start

5.3. User guide
5.3.1. Create a security hardening task

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 10

Prerequisites
Before you start this task, you need to prepare the app that you need to harden. The following requirements must be met:

The file name extension must be .apk or .aab .
The app must not be hardened, because MSA does not support repeated hardening of hardened installation packages.
The APK or AAB package has been signed. In the hardening process, anti-repackaging is performed on the APK or AAB file. Therefore, the uploaded
app package needs to be signed.
If you want to harden the Assets file in the application, you must ensure that minSdkVersion ≥ 21, that is, the Android version is not lower than 5.0.
The size of the APK or AAB file must be less than 300 MB.

Procedure
To create a hardening task, perform the following steps:

1. Log on to the mPaaS console and select the target app from the app list.
2. In the left-side navigation pane, choose Mobile application security > Application security hardening. The Application security hardening

page appears.
3. Click Create security hardening. The Upload applications to be hardened page appears.
4. Click Upload an application to upload the installation package that you need to harden. In the upload process, you can click Cancel upload on the

page to cancel the upload. The Upload applications to be hardened page returns to the initial state, that is, the state when the upload operation
is not performed.

Note
When the uploaded APK or AAB file does not meet the requirements, the upload fails. After you click Re-upload, the Upload applications to be
hardened page returns to the initial state.

5. After the file is uploaded, the page jumps to the Confirm security hardening information page. On this page, you need to perform the following
operations:

Confirm application information: In the Application information column, view the app information.
App name
App package name
App version
App size

Confirm hardening information: In the Hardening information column, view the hardening services provided for the overall APK or AAB file.
Shell protection
AndroidManifest file tamper protection
Signed file protection
Anti-debugging protection
Anti-native application debugging
Anti-memory dump protection
Anti-simulator run protection
Anti-Root Device Operation Protection
Anti-memory data read protection
Anti-memory data modification protection
Anti-hook attack protection
Anti-memory code injection protection

Select Shell Mode: Quick Mode is selected by default.
Quick mode: Apps packed in this mode start faster than apps hardened in compatibility mode, but crashes may occur on some Android models.
Compatibility mode: The startup speed of the application packed in this mode is slower than that of the application hardened in the fast mode,
but the compatibility is higher, and the packed application generally does not appear abnormal during operation.

Note
It is recommended to use compatibility mode to pack the application.

Add classes that require security protection : optional. To select the classes that you need to harden, perform the following steps:
i. (Optional) Enter a keyword for the class name, and click Search to search for the class. We recommend that you enter a complete class name to

search. If more than 1,000 search results are found, no results are displayed on the platform. If this case occurs, you need to enter the complete
class name to search again.

ii. Select one or more classes. Up to 300 classes are supported.

Note
The selected class names appear under the search box. You can click the cross sign (×) to clear the class on the same line as the cross sign.

Please select the So file to be protected : Select the So file to be hardened, the operation method is as follows:
i. Enter the keyword in the So file name and click Search to search for the target file.
ii. Click the check box in front of the So file to be hardened to select one or more target So files.

Important
When selecting the So file to be hardened, it is not recommended to choose a third-party So file for hardening, because hardening a third-party
So file to improve application security is of little significance and is prone to compatibility issues.

Please select the Assets file to be protected: Select the Assets file that needs to be hardened, and the operation method is as follows:

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 11

i. Enter keywords in the Assets file name and click Search to search for the target file.
ii. Click the check box in front of the Assets file to be hardened to select one or more target Assets files.
Click Confirm hardening. When the message App is hardening is displayed on the page, the hardening task has been created. Click View
hardening list. On the Application security hardening page, you can view the security hardening list. A card for the current task is already
added to the list. In the card, you can view the hardening progress of the task and download the hardened APK or AAB file.

Follow-up operation
Download a hardened package

The information about the created security hardening tasks is displayed as cards in the security hardening list. On a hardening task card, you can view the information about the app that you need to harden in the task and the hardening status of the app. In addition, you can download the hardened package, view the failure log, and delete the hardening task.
The security hardening list is arranged in descending order of the task creation time. The task cards display the following information:

Application name
When the hardening is successful, the name is displayed in blue.
When the hardening fails or is being performed, the name is displayed in black.

Hardening status
On the right side of Application name, the hardening status of the current task is displayed. The values of the hardening status include Hardened, Hardening

Hardened: indicates that the current hardening task is successful.
Hardening: indicates that the current hardening task is in progress.
Hardening failed: indicates that the current hardening task failed.

Package name: the name of the uploaded APK or AAB package.
Version number: the version number of the app.
Application size: the size of the APK or AAB before the hardening.
Creation time: the time when the current task was created.

Procedure
To view the security hardening list, perform the following steps:

1. Log on to the mPaaS console and select the target app from the app list.
2. In the left-

side navigation pane, choose Mobile application security > Application security hardening. On the Application security hardening page, you can view the security hardening list.

Related topics
In a task card, in addition to viewing the app information and the hardening status, you can perform the following operations:

Download security hardened package
View security hardening details
View a hardening failure log

A hardened package is the APK or AAB file that has undergone security hardening. This topic provides guidance on how to download a hardened
package in a task from a hardening task card.

Note
For tasks in the Hardening or Hardening failed state, no entries to download hardened packages are provided on the cards.

To download a hardened package, perform the following steps:
1. Log on to the mPaaS console and select the target app from the app list.
2. In the left-side navigation pane, choose Mobile application security > Application security hardening. The Application security hardening

page appears.
3. In the security hardening list, click Hardened package on the target task card to download the hardened package in the task.

Important
After the download is complete, make sure to check whether the key components such as the upgrade component and the hotfix
component are properly functioning.
The signature information of the app is deleted during the hardening process. Therefore, you need to re-
sign the downloaded hardened package and then release the re-signed hardened package in the app market.

If the installation package works abnormally after hardening, please search for the group number 31591197 with DingTalk to join DingTalk group for
further communication.

After you create a hardening task, you can view the security hardening details of the task.
Basic information: displays the information about the hardened app, including Application name, Application package name, Application
version, and Application size. Note that the app size is the size of the app before the app is hardened.
Hardened package: provides an entry to download the hardened package.

Important
The signature information of the app is deleted during the hardening process. Therefore, you need to re-sign the downloaded hardened package
and then release the re-signed hardened package in the app market.

Hardening details: displays the comparison of app details before and after hardening in terms of Application size, MD5, and Security.

5.3.2. View the security hardening list

5.3.3. Download a hardened package

5.3.4. View security hardening details

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 12

Hardened class: displays hardened classes and the comparison between the code before and after the hardening.
Hardened So files: Show hardened So files.
Hardened Assets Files: Display hardened Assets files.

Note
When creating a hardening task, if you choose to harden classes, So files, and Assets files, you can see the details of the security hardened
classes, security hardened So files , and security hardened Assets files on the security hardening details page of the task.

Procedure
You can view the hardening details of tasks in the Hardened state. For tasks in the Hardening or Hardening failed state, no entries to view
hardening details are provided. To view the hardening details, perform the following steps:

1. Log on to the mPaaS console and select the target app from the app list.
2. In the left-side navigation pane, choose Mobile application security > Application security hardening. The Application security hardening

page appears.
3. In the security hardening list, click the app name on the target task card. On the Security hardening details page, you can view the hardening

details.

4. (Optional) To view the hardened class, move the pointer to the question mark () that follows Security hardening class to view the comparison
between the code before and after the hardening.

Note
If decompilation fails, the code screenshots before and after the hardening are blank.

For tasks in the hardening failed state, you can download hardening failure logs. For tasks in the Hardening or Hardened state, no entries to view hardening failure logs are provided.
To download a hardening failure log, perform the following steps:

1. Log on to the mPaaS console and select the target app from the app list.
2. In the left-

side navigation pane, choose Mobile application security > Applicaiton security hardening. The Application security hardening page appears.

3. In the security hardening list, find the target hardening task and click the Download failed logs icon () in the upper-
right corner of the task card to download the hardening failure log.

In the security hardening list, you can search for and delete hardening tasks.

Search for a task
You can search for a task in the security hardening list by app name or package name. To search for a task, perform the following steps:
In the search box in the upper-right corner of the security hardening list, enter the keyword for the app name or package name. The system searches
the security hardening list based on the entered content in real time.

Delete a task
To delete a hardening task, perform the following steps:

1. Log on to the mPaaS console and select the target app from the app list.
2. In the left-side navigation pane, choose Mobile application security > Application security hardening. The Application security hardening

page appears.
3. In the security hardening list, click Delete on the target task card. In the dialog box that appears, click OK to delete the task.

Hardening of mobile apps can be implemented by calling OpenAPIs of Mobile Security Armor (MSA). The OpenAPIs connect the server on the user side
to the server of the Mobile PaaS (mPaaS).

Procedure
To call OpenAPIs of MSA, perform the following steps:

1. Query the token uploaded to Object Storage Service (OSS).
2. Upload the APK or AAB to OSS.
3. Notify MSA of the uploaded APK or AAB.
4. Query the upload result by initiating a polling task and obtain the ID of the hardening task.
5. Instruct MSA to start hardening.
6. Query the hardening result by initiating a polling task and obtain the URL of the hardened app.
7. Download the hardened package.

Rate limiting and throttling
To prevent the overuse of the OpenAPIs from affecting the operating of apps, a rate limiting and throttling mechanism is implemented for calls to the
OpenAPIs . The following content describes the specific mechanism:

OpenAPIs of MSA adopt a single-instance rate limiting and throttling mechanism. The mechanism is implemented based on the appId and
workspaceId fields.
MSA provides two devices to receive API requests, which are then forwarded by using Server Load Balancer (SLB).

5.3.5. View a hardening failure log

5.3.6. Search for and delete a task

5.4. OpenAPIs
5.4.1. Preparations for API calls

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 13

In a single MSA instance, the API for uploading app packages can be called up to 10 times per minute, that is, once every 6 seconds. The remaining
MSA APIs can be called up to 600 times per minute, that is, once every 0.1 seconds.

Preparations
Before you call an API, you must obtain the AccessKey pair, the app ID, the workspace ID, and the tenant ID, configure Maven dependencies, and
configure a file upload.

Obtain the AccessKey pair
An AccessKey pair includes an AccessKey ID and an AccessKey Secret. For more information about how to obtain an AccessKey pair, see Obtain an
AccessKey pair.

AccessKey ID: identifies a user.
AccessKey Secret: the secret used to authenticate the user. Keep the secret confidential.

Obtain the app ID, workspace ID, and tenant ID
1. Log on to the mPaaS console and click the app.
2. On the Overview page, click Code configuration and select Android or iOS as needed. Then, click Download configuration file and click

Download now. In the Code configuration panel, you can view the app ID, workspace ID, and tenant ID.

Configure Maven dependencies
Before you call an API, you must configure Maven dependencies. The following code shows sample configurations.

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-mpaas</artifactId>
 <version>3.0.3</version>
</dependency>

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-core</artifactId>
 <optional>true</optional>
 <version>[4.3.2,5.0.0)</version>
</dependency>

Upload a configuration file
File streams are not allowed in all APIs. Therefore, to upload a file, you must invoke an upload tool class to upload the file to OSS. Then, you must pass
the returned OSS address as a parameter to the specified API.
You can download the file upload tool class OssPostObject.java.zip.

Examples
To view an example of how to use MSA APIs, see mpaas-msa-client.zip.

This topic describes the open APIs of Mobile Security Armor (MSA).

Query the token of an uploaded file
Request - GetFileTokenForUploadToMsaRequest

Parameter Type Description

appId String The app associated with the request.

workspaceId String The workspace to which the app belongs.

tenantId String The tenant to which the app belongs.

onexFlag Boolean The value is fixedly set to true .

Response - GetFileTokenForUploadToMsaResponse
{
 "resultContent":{
 "content":{
 "accessid":"LTAI7z7XPfKU****",
 "dir":"mds/tempFileForOnex/ONEXE9B092D/test/PUQYHL/8b574cb7-3596-403f-a0e9-208660fc2081/",
 "expire":"1584327372",
 "host":"https://mcube-test.oss-cn-hangzhou.aliyuncs.com",
 "policy":"QwM2YtYTBlOS0yMDg2NjBmYzIwODEvIl1dfQ==",
 "signature":"kisfP5YhbPtmES8+w="
 },
 "resultMsg":"",
 "success":true
 },
 "requestId":"8BAA3288-662E-422C-9960-2EEBFC08369F",
 "resultCode":"OK"
}

5.4.2. API references

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 14

https://account.alibabacloud.com/login/login.htm?oauth_callback=https%253A%252F%252Fmpaaspub.console.aliyun.com%252F
https://gw.alipayobjects.com/os/bmw-prod/4fdfe800-944f-4c18-bffd-ef9227a9822e.zip
https://gw.alipayobjects.com/os/bmw-prod/609fd87f-6203-4d07-882c-1e0a98d832d2.zip

Response parameters

Parameter Type Description

requestId String The ID of the request.

resultCode String If OK is returned, the request is successful. If other codes are returned, the API
request failed.

ResultContent.Content Object The returned object. For more information about the meanings of the fields in the
object, see the following table.

The following table lists the fields contained in the returned object and describes the meanings of the fields.

Parameter Type Description

resultMsg String The value returned if the query failed.

success Boolean Indicates whether the query is successful.

Instruct MSA to start processing an app that is uploaded to OSS
Request - UploadUserAppToMsaRequest

Parameter Type Description

appId String The app associated with the request.

workspaceId String The workspace to which the app belongs.

tenantId String The tenant to which the app belongs.

fileUrl String The URL of the uploaded APK or AAB.

Response - UploadUserAppToMsaResponse
{
 "resultContent":{
 "data":{
 "id": 12345,
 "enhanceTaskId": 12345,
 "progress": 10,
 "status": 0
 },
 "resultMsg":"",
 "success":true
 },
 "requestId":"637D5BE0-0111-4C53-BCEE-473CFFA0DBAD",
 "resultCode":"OK"
}

Response parameters

Parameter Type Description

requestId String The ID of the request.

resultCode String If OK is returned, the request is successful. If other codes are returned, the API
request failed.

resultContent Object The returned object. For more information about the meanings of the fields in the
object, see the following table.

The following table lists the fields contained in the returned object and describes the meanings of the fields.

Parameter Type Description

data.id String
The ID of the upload task. If hardening is in progress, you need to query the ID by
initiating a polling task.

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 15

data.enhanceTaskId String The hardening task ID returned after the upload is complete. This ID is used to
start a hardening task.

data.status Integer The status of the upload task. Valid values: –1: failed. 0: processing. 1: uploaded

resultMsg String The value returned if the query failed.

success Boolean Indicates whether the query is successful.

Query the upload status of an app
Request - GetUserAppUploadProcessInMsaRequest

Parameter Type Description

appId String The app associated with the request.

workspaceId String The workspace to which the app belongs.

tenantId String The tenant to which the app belongs.

id Long The ID of the upload task.

Response - GetUserAppUploadProcessInMsaResponse
{
 "resultContent":{
 "data":{
 "id": 12345,
 "enhanceTaskId": 12345,
 "progress": 10,
 "status": 0
 },
 "resultMsg":"",
 "success":true
 },
 "requestId":"637D5BE0-0111-4C53-BCEE-473CFFA0DBAD",
 "resultCode":"OK"
}

Response parameters

Parameter Type Description

requestId String The ID of the request.

resultCode String If OK is returned, the request is successful. If other codes are returned, the API
request failed.

resultContent Object The returned object. For more information about the meanings of the fields in the
object, see the following table.

The following table lists the fields contained in the returned object and describes the meanings of the fields.

Parameter Type Description

data.id String The ID of the upload task. If hardening is in progress, you need to query the ID by
initiating a polling task.

data.enhanceTaskId String The hardening task ID returned after the upload is complete. This ID is used to
start a hardening task.

data.status Integer The status of the upload task. Valid values: –1: failed. 0: processing. 1: uploaded

resultMsg String The value returned if the query failed.

success Boolean Indicates whether the query is successful.

Start a hardening task

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 16

Request - StartUserAppAsyncEnhanceInMsaRequest

Parameter Type Description

appId String The app associated with the request.

workspaceId String The workspace to which the app belongs.

tenantId String The tenant to which the app belongs.

id Long The ID of the hardening task.

taskType String The type of the task. Valid values: shell : adds shells. enhance_shell : uses
Java2C.

classes String

The core classes that you want to harden by using Java2C. We recommend that
you add critical core classes only. You can separate the classes by commas (,). For
example, set the value to com.a.a,com.b.b . If you specify this parameter,
ensure that taskType is set to enhance_shell . However, this parameter is
not applicable to some classes. If you set this field for these classes, hardening
may fail.

totalSwitch boolean The total switch that specifies whether to enable the task. To use a switch
subordinate to the total switch, you must set this parameter to true .

javaHook Integer The anti-hooking technique at the Java layer. Valid values: 0: killself. 1: warning

memoryDump Integer The anti-memory dump technique. Valid values: 0: killself. 1: warning

emulatorEnvironment Integer The anti-emulator technique. Valid values: 0: killself. 1: warning

nativeHook Integer The anti-hooking technique at the native layer. Valid values: 0: killself. 1: warning

dalvikDebugger Integer The anti-debugging technique at the Java layer. Valid values: 0: killself. 1: warning

nativeDebugger Integer The anti-debugging technique at the native layer and the rooting technique. Valid
values: 0: killself. 1: warning

Response - StartUserAppAsyncEnhanceInMsaResponse
{
 "resultContent":{
 "data":{
 "afterMd5": "aaaaaaaa",
 "afterSize": 1000,
 "appCode": "ONEXxxxx",
 "appPackage": "com.example.app",
 "beforeMd5": "bbbbbb",
 "id": 1,
 "label": "Alipay",
 "progress": 0,
 "status": 2,
 "taskType": "shell",
 "versionCode": 1,
 "versionName": "1.0.0",
 "enhancedClasses": ["aaa", "bbb"]
 },
 "resultMsg":"",
 "success":true
 },
 "requestId":"F9C681F2-6377-488D-865B-1144E0CE69D2",
 "resultCode":"OK"
}

Response parameters

Parameter Type Description

requestId String The ID of the request.

resultCode String If OK is returned, the request is successful. If other codes are returned, the API
request failed.

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 17

resultContent Object The returned object. For more information about the meanings of the fields in the
object, see the following table.

The following table lists the fields contained in the returned object and describes the meanings of the fields.

Parameter Type Description

resultMsg String The value returned if the query failed.

success Boolean Indicates whether the query is successful.

data.afterMd5 String The MD5 checksum of the hardened APK or AAB.

data.afterSize Long The size of the hardened APK or AAB.

data.id Long The ID of the hardening task. This ID is used for subsequent polling.

data.label String The labels of the APK or AAB. The value is the same as that of the label field of the
APK or AAB.

data.progress Integer The progress of the hardening process. Valid values: 0 to 100

data.status Integer The status of the hardening task. Valid values: 0: not started. 1: task submitted. 2:
hardening. 3: hardened. 4. hardening failed

data.taskType String The type of the hardening task.

data.enhancedClasses String The class selected for Java2C hardening.

Query the progress of a hardening task
Request - GetUserAppEnhanceProcessInMsaRequest

Parameter Type Description

appId String The app associated with the request.

workspaceId String The workspace to which the app belongs.

tenantId String The tenant to which the app belongs.

id Long The ID of the hardening task.

Response - GetUserAppEnhanceProcessInMsaResponse
{
 "resultContent":{
 "data":{
 "afterMd5": "aaaaaaaa",
 "afterSize": 1000,
 "appCode": "ONEXxxxx",
 "appPackage": "com.example.app",
 "beforeMd5": "bbbbbb",
 "id": 1,
 "label": "Alipay",
 "progress": 0,
 "status": 2,
 "taskType": "shell",
 "versionCode": 1,
 "versionName": "1.0.0",
 "enhancedClasses": ["aaa", "bbb"]
 },
 "resultMsg":"",
 "success":true
 },
 "requestId":"F9C681F2-6377-488D-865B-1144E0CE69D2",
 "resultCode":"OK"
}

Response parameters

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 18

Parameter Type Description

requestId String The ID of the request.

resultCode String If OK is returned, the request is successful. If other codes are returned, the API
request failed.

resultContent Object The returned object. For more information about the meanings of the fields in the
object, see the following table.

The following table lists the fields contained in the returned object and describes the meanings of the fields.

Parameter Type Description

resultMsg String The value returned if the query failed.

success Boolean Indicates whether the query is successful.

data.afterMd5 String The MD5 checksum of the hardened APK or AAB.

data.afterSize Long The size of the hardened APK or AAB.

data.id Long The ID of the hardening task. This ID is used for subsequent polling.

data.label String The labels of the APK or AAB. The value is the same as that of the label field of the
APK or AAB.

data.progress Integer The progress of the hardening process. Valid values: 0 to 100

data.status Integer The status of the hardening task. Valid values: 0: not started. 1: task submitted. 2:
hardening. 3: hardened. 4. hardening failed

data.taskType String The type of the hardening task.

data.enhancedClasses String The class selected for Java2C hardening.

Query the download URL of the hardened product
Request - GetUserAppDownloadUrlInMsaRequest

Parameter Type Description

appId String The app associated with the request.

workspaceId String The workspace to which the app belongs.

tenantId String The tenant to which the app belongs.

taskId String The ID of the hardening task.

Response - GetUserAppDownloadUrlInMsaResponse
{
 "resultContent":{
 "data": { "url": "https://xxxx"},
 "resultMsg":"",
 "success":false
 },
 "requestId":"8F76783A-8070-4182-895D-14E5D66F8BA3",
 "resultCode":"OK"
}

Response parameters

Parameter Type Description

requestId String The ID of the request.

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 19

resultCode String
If OK is returned, the request is successful. If other codes are returned, the API
request failed.

checkRsaKeyResult Object The returned object. For more information about the meanings of the fields in the
object, see the following table.

The following table lists the fields contained in the returned object and describes the meanings of the fields.

Parameter Type Description

data.url String The download URL of the APK or AAB.

data.filename String The file name of the APK or AAB.

resultMsg String The value returned if the query failed.

success Boolean Indicates whether the query is successful.

Query a hardening log
Request - GetLogUrlInMsaRequest

Parameter Type Description

appId String The app associated with the request.

workspaceId String The workspace to which the app belongs.

tenantId String The tenant to which the app belongs.

taskId String The ID of the hardening task.

Response - GetLogUrlInMsaResponse
{
 "resultContent":{
 "data": { "url": "https://xxxx"},
 "resultMsg":"",
 "success":false
 },
 "requestId":"8F76783A-8070-4182-895D-14E5D66F8BA3",
 "resultCode":"OK"
}

Response parameters

Parameter Type Description

requestId String The ID of the request.

resultCode String If OK is returned, the request is successful. If other codes are returned, the API
request failed.

resultContent Object The returned object. For more information about the meanings of the fields in the
object, see the following table.

The following table lists the fields contained in the returned object and describes the meanings of the fields.

Parameter Type Description

data String The download URL of the log.

resultMsg String The value returned if the query failed.

success Boolean Indicates whether the query is successful.

5.5. Troubleshooting after Android hardening

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 20

This topic describes how to troubleshoot crash issues occurring after Android Apps are hardened.

Note
If an Android App can run normally before hardening but crashes upon being started after hardening, the reason may be that the runtime threat
detection of Mobile Security Armor (MSA) is detected. At this time, the MSA service will kill the Android App, that is, the Android App cannot be used
normally. The crash caused by hardening may be the desired crash of the hardening policy for protection purposes.

Troubleshoot in the logs of MSA
You can search for the following keywords by filtering the logs generated when the Android App crashes upon being started:

DEFENDER
DEFENDER indicates that the logs are printed by the MSA service.

behavior
The handling methods are displayed after behavior:

0 indicates that the Android App exits, 1 indicates that the logs are printed, and 2 indicates a pop-up window is displayed.
The reason for the crash is displayed after the keyword message.

jaffer
If jaffer exists, a signature problem may occur, for example, a resignature.

check your xxxx (This is the reason why a threat is detected).

Troubleshoot in the App crash logs
FATAL
FATAL indicates a fatal threat. The following stack information is the reason for the crash.

Why does the error code EnhanceError exist in the reinforcement failure log?
Cause analysis:
In the AndroidManifest.xml file of the application, no entry class is declared for the application tag.
Solution:
In the AndroidManifest.xml file, declare an entry class for the application tag.

Why did the selected class fail to be reinforced?
Cause analysis:
Before Mobile Security Armor (MSA) reinforces a class, it evaluates the operational risks of the class by assuming that the class is reinforced. If the
class is prone to operational risks after reinforcement, MSA automatically gives up reinforcing the class.
Solution:

5.6. FAQs

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 21

MSA does not reinforce a class that is prone to operational risks after reinforcement.

Mobile Security Armor User Guide·Security hardenin
g for Android apps

> Document Version: 20250731 22

This topic describes how to harden iOS apps using Mobile Security Armor (MSA). Before you harden iOS apps using MSA, you need to read the usage notes and complete the operations described in the prerequisites.

Usage notes
Before you harden iOS apps using Mobile PaaS (mPaaS) MSA, you need to read the following usage notes and ensure that your projects meet related requirements. Otherwise, you may fail to harden apps, or the effects of hardening apps may be affected.

It is recommended that the relevant code to be hardened is written in C or C++. iOS hardening has better and more stable support for C and C++. In
addition, it partially supports Objective-C and does not support Swift.
Hardening will bring performance losses and increase theoretical stability risks. It is recommended to only harden the core code that needs to be
protected, and extract the C and C++ code that needs to be protected into a separate Framework, and then harden it. Hardening of the entire
source code App is not supported.
Currently supports X86/M1 machines. You can select About This Mac from the Apple menu in the corner of the screen to view overview information
about your Mac, including processor information. If it shows Intel processor, it means your Mac is an X86 architecture.
Currently supports Xcode 14.1/14.2/15.0.1. Since iOS hardening processes the compiler and requires adaptation of specific Xcode, you need to use a
specific version of Xcode when using iOS hardening.

Important
Starting April 29, 2024, apps uploaded to App Store Connect must be built using Xcode 15 for iOS 17, iPadOS 17, Apple tvOS 17, or watchOS 10.

Please make sure that the App project's workspace is set to New Build System. The check path is Xcode > File > Project Settings > Build
System.

Procedure
1. Configure environment files. Generate the MSAConfig.json file according to the following method, and put it in the $HOME directory. Open the

command line on the Mac machine and enter echo $HOME to get the $HOME directory. When using it, replace it with the real value. The fields are
as follows:

{
 "appId": "application appId",
 "workspaceId": "application workspaceId",
 "tenantId": "application tenantId",
 "accessKeyId": "Ant Cloud account accessKeyId",
 "accessKeySecret": "Ant Cloud account accessKeySecret",
 "license": "blank",
 "domain":"xxx"
}

Note
The domain values are ap-southeast-1 and cn-hongkong, which correspond to Singapore and Hong Kong respectively.
For how to obtain field values, please refer to How to obtain iOS hardening configuration file information.

2. Install the hardening tool.
i. Download the hardening tool, unzip it and go to the directory tools> xcode.

Note
xcodeplugin-x86_64-5.9.0.zip is suitable for Xcode 15.0.1 + Mac X86.
xcodeplugin-arm64-5.9.0.zip is suitable for Xcode 15.0.1 + Mac M1.
xcodeplugin-x86_64-5.7.2 is suitable for Xcode 14.1/14.2 + Mac X86 version.
xcodeplugin-arm64-5.7.2 is suitable for Xcode 14.1/14.2 + Mac M1 version.

ii. Open the insertdylib file. In the Confirm dialog box, click Open.

iii. Run the following command:

sh ./tools/xcode/install.sh

Note
After you run the command, the system automatically finds and replaces compilers in the /Applications/Xcode.app/ directory. If you need to restore replaced compilers, you can run the
command.

Open the Framework or IPA project by using Xcode, and then run the Build/Archive command. A dynamic library is not supported for now.

6.Security hardening for iOS apps

Mobile Security Armor User Guide·Security hardenin
g for iOS apps

> Document Version: 20250731 23

https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/en-US/20240514/jyiilw/xcodeplugin-x86_64-5.9.0.zip
https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/en-US/20240514/asnnpd/xcodeplugin-arm64-5.9.0.zip
https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20230724/zcsr/xcodeplugin-x86_64-5.7.2.zip
https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20230724/njix/xcodeplugin-arm64-5.7.2.zip

3. Open the Framework or IPA project by using Xcode, and then run the Build/Archive command. A dynamic library is not supported for now.

Important
The project path name cannot contain space characters or Chinese characters. Otherwise, an error may occur in the compilation process.

4. (Optional)
After the above step is complete, check the hardening effects through decompilation. You can check the hardening effects by running the following command. If hardening is successful, the output result will be displayed.

nm ./BinaryPath | grep obfuscator

Next steps
After hardening, please be sure to check whether the functions of the key components are normal. If the function of the installation package is
abnormal after hardening, Please submit a ticket to contact mPaaS technical support.

Mobile Security Armor User Guide·Security hardenin
g for iOS apps

> Document Version: 20250731 24

https://signin.aliyun.com/1747572089172846.onaliyun.com/login.htm?callback=https%253A%252F%252Fmpaas.console.aliyun.com%252F%253Fspm%253D5176.12818093.ProductAndResource--ali--widget-product-recent.dfa0.280e16d0Pl94a3&accounttraceid=eafd3fe824ff449bb05ed6a7fdea4846qsiw&cspNonce=xU7vBhsNPr&oauth_callback=https%253A%252F%252Fmpaas.console.aliyun.com%252F%253Fspm%253D5176.12818093.ProductAndResource--ali--widget-product-recent.dfa0.280e16d0Pl94a3&spma=a2c44&spmb=11131515#/main

	1.About Mobile Security Armor
	2.Terminology
	3.Price introduction
	4.New Tool Chain for Android Application Security Hardening
	4.1. Getting started
	4.2. user-guide
	4.3. View security hardening logs

	5.Security hardening for Android apps
	5.1. Instructions for use
	5.2. Quick start
	5.3. User guide
	5.3.1. Create a security hardening task
	5.3.2. View the security hardening list
	5.3.3. Download a hardened package
	5.3.4. View security hardening details
	5.3.5. View a hardening failure log
	5.3.6. Search for and delete a task

	5.4. OpenAPIs
	5.4.1. Preparations for API calls
	5.4.2. API references

	5.5. Troubleshooting after Android hardening
	5.6. FAQs

	6.Security hardening for iOS apps

