Ant Technology

Message Push Service
User Guide

Document Version: 20250731

LB
ANT GROUP

(@ 8823, Message Push Service User Guide-Legal disclaimer

Legal disclaimer

Ant Group all rights reserved ©2022.

No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement

ﬂmrﬁwand other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer

The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

> Document Version: 20250731 |

pusd . Message Push Service

User Guide:Document convent
ions

Document conventions

Style

& Danger

Warning

(]> Notice

@ Note

Bold

Courier font

[talic

[1or[alb]

{} or {a|b}

Description

A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

Italic formatting is used for parameters
and variables.

This format is used for an optional
value, where only one item can be
selected.

This format is used for a required
value, where only one item can be
selected.

Example

/\ Danger:

Resetting will result in the loss of
user configuration data.

Warning:
Restarting will cause business

interruption. About 10 minutes are
required to restart an instance.

[i]) Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all
files.

Click Settings> Network> Set
network type.

Click OK.
Run the cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20250731

Ru%E . Message Push Service User Guide+Table of Contents

Table of Contents

1.About Message Push Service - 07
2Terminology s 10
3.Message push process - 12
4.Client-side development -~ 16
4.1, Android ——————— oo 16
4.1.1. Quick start == tem et e 16
4.1.2. Process notification clicks - 20
4.1.3. Integrate third-party push channels - 23
4.1.3.1. Integrate HUAWEI Push ————— 23
4.1.3.2. HONOR Push - 27
4133. OPPOPush ———erio- 00 oo oh-» —o - . 29
4.1.3.4. Integrate vivo Push ——-"—— 31
4.1.3.5. Integrate MiPush - 34
4.1.3.6. Integrate FCM push channel ————————r 36
4.1.4. Vendor Message Classification - 38
4.1.5. Advanced features 54
4.2, 10 57
5.Server-side configuration -----------—mmmmmm e 69
6.Console operations -——-——-—-=-——--——m e 70
6.1. Data overview ————-—— 70
6.2. Message management - 73
6.2.1. Create a message - Simple push - 73
6.2.2. Create a message - Multiple push o 80
6.2.3. Manage simple push messages - 86
6.2.4. Manage multiple push messages - 87
6.2.5. Manage scheduled push task —————— - 88

> Document Version: 20250731 |

@ 8888, Message Push Service User Guide+Table of Contents

6.3.

Message templates ss—atee—r e

89
6.3.1. Create a message template =————r—r—rrvo—r—or— 89
6.3.2. Manage message templates =————r——o—-r————— 92

6.4. Message revocation s s e 92
6.5. User tag management = e 94
6.6. Device status query ss=resosmm o rn s o 95
6.7. Channel configuration ss==—stmm et s o 96
6.8. Communication configuration ————-———— 105
6.9. Key management sfssims el o e e s 108
71.APl reference E= s e o o T e m s s 114
7.1. Client APIs &=t e o L e s 114
7.2. Server APls e e e e 117
7.2.1. Overview &=t e o o e e 117
7.2.2. SDK preparation #sssme e o m s in s s e 119
7.2.3. Simple push ZEsdsamnn s o o e s 121
7.2.4. Template push s e o s s s 131
7.2.5. Multiple push s o s s 141
7.2.6. Broadcast Push sfsssrme ol am e camans 150
7.2.7. Message revocation s——s—r——te——rr———— 159
7.2.8. Usage analysis s a e e e e m e 163
7.2.9. 5cheduled Push Tasks === —wr e 171
7.2.10. Vendor receipt interface code sample oo~ 177
7.2.11. Extension parameters ===t w0 o 182
7.2.12. Result codes of APl call s i e e 183

8.Message content restrictions sttt s o cains e 187

Q. FAQ - 189

10.Appendix S rtc e e s e 193

10.1. Create an iOS push certificate - 193

> Document Version: 20250731 I

@ 8888, Message Push Service

User Guide*Table of Contents

10.2. Create iOS P8 Real-time Activity Certificate ——-—-—--———--—-—-—— 196

10.3. Message push status codes

> Document Version: 20250731

User GuiderAbout Message Pu

@ 8888, Message Push Service sh Service

1.About Message Push
Service

Message Push Service (MPS) provided by mPaaSs is a professional mobile message push
solution and supports various push types for different scenarios to cater to personalized push
requirements. To improve the arrival rate of pushed messages, mPaaS integrates the push
functions of Huawei, Xiaomi and other vendors in MPS. In addition to the capability of quickly
pushing messages in the console, mPaaS provides server-side integration solutions. With
these solutions, you can quickly integrate the function of pushing messages to mobile devices
to keep interactions with app users, thereby effectively improving the user retention rate and
user experience.

Features

You can initiate various types of message push through MPS. Both self-built and vendors'
push channels are supported. In addition, messages can be pushed through the console or
APIs. You can select push types, channels, and modes based on your requirements.

The core functions of MPS are described as follows:

e Multiple push modes: Messages can be precisely pushed to custom user groups,
individual users, or all users through the MPS console or APIs.

e Custom message validity period: If a device is offline when a message is sent for the
first time, the message can be resent when the device is connected or a user binding
request is initiated within the validity period of the message.

« Different types of push targets: You can establish mapping between devices and login
users to push messages by device or user ID.

¢ Personalized message templates: On the template management page, you can
customize templates to meet your personalized push requirements.

e Usage analysis: Based on tracking logs reported by the client SDK, MPS collects and
analyzes push data from various dimensions including platform, version, push channel,
push type, and time, and generates analysis reports. You can view the statistics by minute
or other granularity.

¢ Push configuration: On the push configuration page, you can configure a push certificate.
For iOS devices, you can select an Apple APNs gateway based on your requirements.

¢ Channel configuration: You can configure third-party push channels to integrate the push
functions provided by Huawei, Xiaomi, and other third-party vendors, thereby improving the
arrival rate of pushed messages.

¢ Key management: All external APIs of MPS will sign the requests to ensure business
security. On the key configuration page, you can configure keys based on your
requirements. In addition, the message receipt function is provided for tracking the
message delivery results.

Principle

In mPaas, MPS is one of the core basic components that directly interact with clients. It
transmits business data related to message notifications through TCP persistent
connection channels or various phone vendors' push channels.

> Document Version: 20250731 7

User GuiderAbout Message Pu

@ 8888, Message Push Service sh Service

The client calls the Remote Procedure Call (RPC) gateway through mPaaS MGS for device
registration, user binding, and third-party channel binding, thereby implementing message
push by device and user. Client behavioral event tracking logs are collected and uploaded
based on specifications. Based on the logs, the backend collects and analyzes push data in
real time and generate statistical reports. MPS provides two push methods. You can either
call APIs on your server based on the business logic to push personalized messages or
directly push messages in the console. To improve the arrival rate of messages, MPS supports
third-party push channels such as those provided by Huawei, Xiaomi, FCM, and APNs and
keeps transparent to backend business systems. In this way, the business systems can focus
on business function implementation, and don’t need to pay attention to device models.

Console
App
Push on demand Broadcast push
RPC SDK PUSH SDK HTTPS o lat
: emplate
MAS user fencing management
l HTTPS
Push callback Real-time analysis
Gateway
l TR/Dubbo
MPS - | Third-party channels
Register devices Bind users Huawei vivo
Business HTTPS
. — . .
system TR Push data Log tracking HTTPS Xiaomi OPPO
Connect services Connect storage FCM APNs

Advantages

MPS has the following advantages:

¢ Quick and stable: Messages are delivered quickly and arrive at targets stably.
e Easy to access: You can complete MPS access efficiently at a low cost.

¢ Quantified push effect: The push data statistics function is integrated to intelligently
analyze the arrival rate and open rate of messages. This helps you clearly understand the
push effects.

¢ Precise personalized push:

o Personalized messages can be precisely pushed from various dimensions such as
individual users and custom user groups.

o A push console is provided to meet some simple push requirements. In addition, server-
side integration solutions are provided to implement complex push requirements.

o Message receipts are supported to track the message delivery results, improving the user
retention rate and user activeness effectively.

o Mapping between device IDs and app user IDs is established. The app user name can be
directly used as the message recipient. In this way, messages can accurately arrive at
any devices to which the user logs in.

Application scenarios
Typical application scenarios for MPS are as follows:

e Marketing activities

> Document Version: 20250731 8

User GuiderAbout Message Pu

@ 8888, Message Push Service sh Service

Push targeted messages to users, including marketing activities, business reminders, etc.,
to increase user stickiness. By calling the message push API, the app pushes targeted
messages to target users to reach more users in a more active way, which attracts user,
increases consumption, and improves the conversion effect of final marketing activities.

¢ System notification

According to the business logic of the app server, specify the target user group, and
directly push the message to the target device.

The following push modes are supported to accommodate different application scenarios:
e Simple Push: Quickly push messages to a single user or device with simple configuration.

e Template Push: Push messages to a single user or device, a message template can be
specified, and the message body is obtained by replacing the template placeholder.

e Multiple Push: Push messages to a number of devices or users , you can specify a message
template and set different placeholder variable values for different devices or users in the
configuration file.

e Broadcast Push: Push to devices on the entire network, you can specify a message
template, the message body is obtained by replacing the template placeholder.

> Document Version: 20250731 9

@ 8888, Message Push Service User Guide-Terminology

2. Terminology

Terms are listed in an alphabetical order.

Ad-token

The unique identifier of Android device, mainly used in client SDK.
Apache Dubbo (Dubbo)

Dubbo is an open source distributed service framework developed by Alibaba, which provides
high-performance RPC invocation, microservice governance and other capabilities for
interface agents.

Applid
Application ID, generated when application is created.
Bind-info

The mapping relation between device token and user ID, in connection with two operations:
binding and unbinding.

BroadcastPush

Used to push the same message to all devices. The message content is generated by
replacing parameters in template.

Device Token

The unique identifier of Apple device, provided by iOS system.
Msgkey

Used to uniquely identify a message.

MultiplePush

Used to push customized message to a large number of targets. The message content is
generated by using the same template and replacing parameters with different content
according to different targets.

Push Cert

The certification, in iOS, used to establish connections with Apple's APNs servers.
SimplePush

Used to push the same message to individual target(s).

TaobaoRemoting (TR)

TaobaoRemoting (TR) framework refers to the underlying communication framework
developed by Ant Group for RPC calls.

Target ID/Token

The target to push message to, which can be Ad-token of Android, Device Token of iOS or
userld and is determined according to context.

TaskName
Each message push is identified as a task.
Template

The framework to generate a message, including attribute configuration of message,
message content and placeholders which can be dynamically replaced.

Templatekv

"k" is the placeholder parameter in template; "v" is the parameter to be replaced.

> Document Version: 20250731 10

(@ 8823, Message Push Service User Guide-Terminology

Template Placeholder

The dynamically replaceable parameters in template configuration.
TemplatePush

Used to push the same message to individual target(s). The message content is generated by
replacing parameters in template.

Userld/Usrid

Used to identify user, corresponding to device, normally used for binding.

> Document Version: 20250731 11

User Guide-Message push pro

© 2852, Message Push Service o

3.Message push process

After integrating the Message Push Service (MPS), the client uses the mPaaS Mobile Gateway
Service to call the Remote Procedure Call (RPC) gateway for device registration, user binding,
and third-party channel binding, so as to implement message push by devices or users. The
message push processes are different in different device platforms. The following sections
introduce message push process through RPC on different device platforms.

Before acquainting yourself with the push process, you need to know some basic concepts
involved in message push.

Basic concepts

¢ Device ID (token): MPS assigns a unique identifier to each client device and determines
the target of message push based on the identifier.

o For Android devices, a persistent connection is established for message push.

o For iOS devices, the Apple Push Notification service (APNs) is used for message push.

¢ Push mode: MPS provides the following push modes:
o Device ID-specific push
o User ID-specific push

o Broadcast push without specifying any identifiers

® Note

No matter which mode is adopted, mapped device IDs will be eventually generated
inside the system. User ID-specific message push offers convenience in interworking
with your business systems. As user IDs are eventually mapped to device IDs, you
must bind user IDs to device IDs. The recommended method is to bind the user ID to
the corresponding device ID upon user login. When the user logs out, the binding
relationship is removed.

e Third-party push: Third-party push refers to pushing by vendors, which can guarantee a
high arrival rate. During the initialization process of calling the init method, the client

applies for device IDs from both mPaaS and the third-party platform. Device IDs are then
returned by mPaaS and the third-party platform in the callback.

If you want to use a third-party push, you should call the report API to upload both

mPaa$S device ID and the third-party device ID to Mobile Push Core, and associate the two
device IDs. After the above operation is completed, the third-party device ID can be truly
used, otherwise the message push is a common mPaaS push.

Process
The MPS involves two backend systems:
e Mobile Push Core (Pushcore): handles service logic and provides APIs to developers.

¢ Mobile Push Gateway (Mcometgw): maintains persistent connections with Android
devices.

> Document Version: 20250731 12

é

User Guide-Message push pro

%R Message Push Service o

® Note

For the devices configured with access to the third-party push platform, such as Xiaomi,
Huawei or other vendors, the client also requests the device ID from the third-party
platform. The third-party push channel is only available after you call the report APIto
bind the mPaaS device ID and third-party device ID returned. For general devices, only
the device ID returned by mPaaSs is used.

Learn about the process for integrating MPS on different device platforms:

Android devices in Chinese mainland

iOS devices and Android devices outside China

Android devices in Chinese mainland

The client uses RPC to directly interact with Mobile Push Core (Pushcore) through the RPC
gateway. For Android devices in China, MPS provides a self-built gateway. The following
figure shows the process.

Client RPC gateway Server Pushcore Mcometgw

Configure signature key

@ Create an App in the mPaas
console

@© Integrate Android Push SDK

© start the App, and initiates
Android Push SDK

@ Establish persistent connection
and send the token

© Determine if it is a third-party
channel. If yes and you need
the channel, invoke the third-
party channel device
initialization to obtain the token

© Report the third-party Call the request to backend after
channel device information signature verification
. . ! Call the request to backend after
@ Bind users upon login signature verification
i
i - : -
Initiate messages push Initiate messages push
© Listen on messages :
j Send messages
i
| Unbind users when they Call the request to backend after !

actively log out signature verification

Where,

When the app starts, the client establishes a persistent connection with Mcometgw. If the
connection setup information of the client does not include the device identifier, Mcometgw
issues the device identifier.

If the user enables the MPS from a third-party channel such as Mi and Huawei, and the
client is a third-party device, the third-party SDK initializes, establishes a persistent
connection with the vendor’s push gateway, and obtains the device ID from the third-party
channel.

The app calls the device report RPC API and reports the third-party device information.
The app user initiates a login request on the client.

The server receives the user login request. When successfully logging in to the app, you
can send a user-device binding request to Pushcore.

The server initiates a push request.

\Y

Document Version: 20250731 13

e

User Guide-Message push pro

%R Message Push Service o

Pushcore receives the push request, and distinguishes the message push type.
o If the message is pushed by device, Pushcore calls Mcometgw to send the message.

o If the message is pushed by user, Pushcore obtains the device ID based on the user ID in
the request and then calls Mcometgw to send the message.

Mcometgw sends the message to the client.

After the message is successfully sent, the client will confirm the receipt of the message
with Mcometgw. If the user has configured a callback API, Pushcore will send a receipt to
the server.

When the user actively logs out of the app, the client calls the unbinding RPC API.

iOS devices and Android devices outside China

The push gateway for Android devices outside China uses Google Firebase Cloud Messaging
(GCM/FCM) for Android, while the push gateway for iOS devices uses the Apple Push

N

otification service (APNs). The following takes the iOS device for example.

The client uses RPC to directly interact with Mobile Push Core (Pushcore) through the RPC
gateway. The following figure shows the process.

Client RPC gateway Server Pushcore APNS

Configure signature key

o Create an App in the mPaas
console
© Configure iOS push certificate

© Integrate i0S Push SDK

|
i
© Obtain i0S token

© Report the third-party Call the request to backend after
channel device information signature verification

. . ! Call the request to backend after
© Bind users upon login signature verification

i i
E Initiate messages push ' Initiate messages push
° Listen on messages E .
E i Send messages
| i
o i
| i

© Unbind users when they E Call the request to backend after
actively log out signature verification

Where,

The client obtains the iOS device ID.

The client calls the device report RPC API and reports the device ID to Pushcore through the
RPC gateway.

The app user initiates a login request on the client.

When successfully logging in to the app, the user can call the binding RPC API to send a
user-device binding request to the RPC gateway, which forwards the request to Pushcore.

The server sends a push request to Pushcore.
Pushcore receives the push request and distinguishes the message push type.

o |f the message is pushed by device, Pushcore directly calls the APNs to send the
message.

\Y

Document Version: 20250731 14

User Guide-Message push pro

© 2852, Message Push Service o

o If the message is pushed by user, Pushcore obtains the device ID based on the user ID in
the request and then calls the APNs to send the message.

e After the message is successfully sent, the client will confirm the receipt of the message
with Pushcore. If the user has configured a callback API, Pushcore will send a receipt to the
server.

> Document Version: 20250731 15

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘;

4.Client-side development
4.1. Android
4.1.1. Quick start

This guide briefly describes how to fast integrate MPS to the Android client. You can integrate
Message Push Service (MPS) through Native AAR or Portal & Bundle method.

The complete integration process mainly includes the following four steps:

1. Add SDK: Add the SDK dependencies and androidManifest configuration.

2. Initialize the SDK: Initialize the push service to establish persistent connection between the
client and the mobile push gateway.

3. Create a service: Create a service to receive Android device IDs (Ad-tokens), so you can
push messages based on device ID.

4. Bind user ID: Report user ID to the server to bind the user ID and the device ID, so you can
push messages based on the user ID.

Prerequisites
e You have completed the basic configuration with reference to the general operations.
o If you integrate MPS through Native AAR, ensure that you have added mPaaSs to project.

o If you integrate MPS in componentized integration mode (through Portal & Bundle
projects), ensure that you have completed the componentized integration process.

e You have obtained the .config configuration file from the mPaaS console. For how to
generate and download the configuration file, see Add configuration file to project.

e The wMpPushMsgServiceAdapter mMmethod described in this guide only works in the baseline

10.1.68.32 or later version. If your current baseline version is lower than 10.1.68.32, please
refer to mPaaS upgrade guide to upgrade the baseline version to 10.1.68.32.

® Note

You can continue using the aliprushRcvservice method in the earlier version. Click
here to download the documentation about using 2a1iPushRcvService

Procedure
To use MPS, you should complete the following steps.
1. Add MPS SDK.

Add the push SDK dependencies and androidManifest configuration.

i. Add SDK dependencies. Choose an integration method, and complete the required steps
accordingly.

= Native AAR: Follow the instructions in AAR component management to install the
PUSH component in the project through Component management (AAR).

= Componentized integration mode (Portal & Bundle): Install the PUSH component in the
Portal and Bundle projects through Component management (AAR). For more
information, see Add component dependencies.

> Document Version: 20250731 16

https://gw.alipayobjects.com/os/bmw-prod/af2fd0f5-29b6-40de-a8d8-52e4f209ab59.pdf

© 2852, Message Push Service User Guide-Client-side gi:’:’rl]‘é

ii. Add androidManifest configuration. Inthe aAndroidManifest.xm1 file, add the
following content:

® Note

If you add the SDK through Portal & Bundle, you should add the above content in the
Portal project.

<uses-permission android:name="android.permission.RECEIVE BOOT COMPLETED" />

<service
android:name="com.alipay.pushsdk.push.NotificationService"
android:enabled="true"
android:exported="false"
android:label="NotificationService"
android:process=":push">
<intent-filter>
<action android:name="${applicationId}.push.action.START PUSHSERVICE" />
</intent-filter>
</service>
<receiver
android:name="com.alipay.pushsdk.BroadcastActionReceiver"
android:enabled="true"
android:process=":push">
<intent-filter android:priority="2147483647">
<action android:name="android.intent.action.BOOT COMPLETED" />
<action android:name="android.net.conn.CONNECTIVITY CHANGE" />
<action android:name="android.intent.action.USER PRESENT" />
<action android:name="android.intent.action.ACTION POWER CONNECTED" />
</intent-filter>

</receiver>

> Document Version: 20250731 17

User Guide:Client-side develo

© 2852, Message Push Service Sment

iii. In order to improve the arrival rate of messages, the push SDK has a built-in process
keep-alive function, including the above-mentioned
com.alipay.pushsdk.BroadcastActionReceiver to listen to the system broadcast to wake

up the push process, and automatically restart after the process is recycled. When
accessing, you can decide whether to enable these functions according to your own
needs:

a. If you do not need to monitor the system startup broadcast, you can delete:

<uses-permission android:name="android.permission.RECEIVE BOOT COMPLETED" />
<action android:name="android.intent.action.BOOT COMPLETED" />

b. If you do not need to monitor the network switching broadcast, you can delete:

<action android:name="android.net.conn.CONNECTIVITY CHANGE" />

c. If you do not need to monitor the user wake-up broadcast, you can delete:

<action android:name="android.intent.action.USER PRESENT" />

d. If you do not need to monitor the charging status change broadcast, you can delete:

<action android:name="android.intent.action.ACTION POWER CONNECTED" />

e. If you do not need to monitor all the above broadcasts, you can set the
android:enabled attribute of com.alipay.pushsdk.BroadcastActionReceiver to false .

f. If you do not need to automatically restart after the push process is recycled, you can
add the following configuration under the application node:

<meta-data
android:name="force.kill.push"

android:value="on" />

® Note

This configuration is only valid in baseline version 10.2.3.21 and above.

2. Initialize the SDK.

Initialize the message push service to establish persistent connection between the client
and the Mobile Push Gateway. The persistent connection is maintained by the SDK, and is
regarded as the self-built channel.

o Native AAR

= |f you have called the mPaaSs initialization method in application , you can call the
following method behind MP.init ()

MPPush.init (this);

= If you haven't called the mPaas initialization method, you can call the following
methods in Application

MPPush.setup (this) ;
MPPush.init (this);

o Portal & Bundle

> Document Version: 20250731 18

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘2

IN LauncherApplicationAgent OF LauncherActivityAgent , Call the following method in
postInit

MPPush.init (context) ;

3. Create a service.

Create a service to inherit MPPushMsgServiceAdapter , and override the onTokenReceive
method to receive the device token delivered by the self-built channel.

public class MyPushMsgService extends MPPushMsgServiceAdapter ({

/**
* Call back upon receiving the token delivered by the self-built channel

*

* (@param token Device token delivered by the self-built channel
=/

@Override

protected void onTokenReceive (String token) ({

Log.d ("Receive the token delivered by the self-built channel: " + token);

Declare the service in aAndroidManifest.xml

<service

android:name="com.mpaas.demo.push.MyPushMsgService"

android:exported="false">

<intent-filter>
<action android:name="${applicationId}.push.action.MESSAGE RECEIVED" />
<action android:name="${applicationId}.push.action.REGISTRATION ID" />
<category android:name="${applicationId}" />

</intent-filter>

</service>

After you complete this step, you can push messages by device on the console. The device
ID required refers to the token.

4. Bind user ID.

The user ID is customized by the developer. It can be the user ID of the real user system or
other parameters that can form a mapping relationship with users, such as account and
mobile phone number.

After receiving the token, you can bind the token with the user ID:

String userId = "Custom userId";
ResultPbPB bindResult

MPPush.bind (context, userId, token);
Log.d ("Bind userId " + (bindResult.success ? "Succeeded" : ("Error:" + bindResult.cod

e)));:

If you have already set the user ID by calling wmpLogger , you don’t have to pass the user
ID when binding it. For example:

MPLogger.setUserId("Custom userId");
ResultPbPB bindResult MPPush.bind (context, token);

> Document Version: 20250731 19

User Guide:Client-side develo

© 2852, Message Push Service Sment

To unbind the user ID, for example, the user exits the app, you can call the following
method:

ResultPbPB unbindResult = MPPush.unbind(context, userId, token);

ResultPbPB unbindResult = MPPush.unbind (context, token);

After you complete this step, you can push messages by user on the console. The user ID
required refers to the custom user ID.

Related operations

e To improve the message arrival rate, you are recommended to integrate the push channels
provided by Android mobile phone vendors. Currently, MPS supports Huawei, Xiaomi, OPPO,
and vivo push channels. For how to access the push channels of those vendors, see
Integrate third-party channels.

e A notification will be sent automatically when the third-party channel receives the message.
The users can click on the notification to open the Web page. If you need to jump to the in-
app page according to a customized DeeplLink, or customize the behavior after receiving
the message, see Process notification click.

For more functions, see Advanced features.

Sample code

Click here to download the sample code.

What to do next

After you successfully integrate MPS to your Android client, you can call the RESTful interface
through the server. For more information, see Configure server > Push messages.

4.1.2. Process notification clicks

For the apps which have third-party channels integrated and run on the corresponding
vendors’ mobile phones, the server pushes messages through the third-party channels by
default; for other apps, the server pushes messages through the self-built channel.

e When self-built channel receives a message, the push SDK automatically deliver a
notification, and the user can click it to open the Web page.

Important

Message notification IDs used by the SDK start from 10000. Make sure that other
notification IDs you use do not conflict with them.

e To jump to an in-app page, refer to Implement in-app page redirection.

e To process the received messages by yourself, refer to Implement custom message
processing.

e After the third-party channel receives a message, the mobile system will automatically
deliver a notification. Neither the push SDK nor developers can interfere. The push SDK can
receive the message and open the Web page only when the user clicks the notification.

e To jump to an in-app page, refer to Implement in-app page redirection.

e To process the redirection upon click on message by yourself, refer to Implement custom
message processing.

Prerequisites

> Document Version: 20250731 20

https://github.com/mpaas-demo/android-push?spm=a2c4g.11186623.2.32.3f5c6fe0GIFBz9

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘2

e The wMpPushMsgServiceAdapter Mmethod mentioned in this guide is only applicable for

baseline 10.1.68.32 or later version. If your current baseline version is lower than
10.1.68.32, refer to mPaaS upgrade guide to upgrade the baseline.

e You can continue using the alipushRecvservice method in the earlier version. Click here
to download the documentation about using AliPushRcvService

Implement in-app page redirection

If you need to jump to a specific page in the app, you can fill in a custom DeepLink in the
redirection address of the message, for example: mpaas://navigate , and set up a routing

Activity in the app to receive the DeepLink and then distribute it to other pages.

You also need to add the corresponding intent-filter iNn AndroidManifest.xml for the
routing Activity, for example:

<activity android:name=".push.LauncherActivity"
android:launchMode="singleInstance">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.BROWSABLE" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="mpaas" />
</intent-filter>
</activity>

Obtain URI and message from the routing Activity.

Uri uri = intent.getData();

MPPushMsg msg = intent.getParcelableExtra ("mp push msg");

Implement custom message processing

To process the messages by yourself, you can override the onMessageReceive and
onChannelMessageClick method of MPPushMsgServiceAdapter

> Document Version: 20250731 21

https://gw.alipayobjects.com/os/bmw-prod/af2fd0f5-29b6-40de-a8d8-52e4f209ab59.pdf

© 2852, Message Push Service User Guide-Client-side g‘:r:’sr']i

public class MyPushMsgService extends MPPushMsgServiceAdapter {

/**

* Callback after the self-built channel receives the message
*
* @param msg Message received

* @return Whether the message has been processed:

* If true is returned, the SDK will not process the message; the developer needs t
o process the message, including notification delivery and redirection upon click on no
tification.
* If false is returned, the SDK will automatically deliver a notification and add
the redirection upon click on notification.
*/
@Override
protected boolean onMessageReceive (MPPushMsg msg) {
Log.d ("Receive message through self-built channel:" + msg.toString()):

// Process the message by yourself, such as delivering custom notification
return true;

/**
* Callback after the notification is clicked. The messages delivered through the t
hird-party channels are displayed on the notification bar.

*

* (@param msg Message received
* @return Whether the click on message has been processed:

* If true is returned, the SDK will not process the click on notification delivere
d through the third-party channel; the developer needs to process the redirection upon
click on notification.

* If false is returned, the SDK will automatically process the redirection upon cl
ick on notification.

*/
@Override
protected boolean onChannelMessageClick (MPPushMsg msg) {
Log.d ("Message through the third-party channel is clicked:" + msg.toString());
// Process the logic after the message is clicked by yourself
return true;

MPPushMsg encapsulates all the parameters of the message:

> Document Version: 20250731 22

User Guide:Client-side develo

© 2852, Message Push Service Sment

String id = msg.getId(); // Message ID

boolean isSilent = msg.isSilent(); // Whether to silence the message

String title = msg.getTitle(); // Message title
String content = msg.getContent(); // Message body

String action = msg.getAction(); // Redirection type, 0: URL, 1l: Custom DeepLink
String url = msg.getUrl(); // Redirection address, URL or DeepLink

int pushStyle = msg.getPushStyle(); // Message type, 0: Normal message, 1: Big text, 2:
Rich text
String iconUrl = msg.getIconUrl(); // Icon of rich text message

String imageUrl = msg.getImageUrl(); // Large image of rich text message

String customId = msg.getCustomId(); // Custom message ID

String params = msg.getParams(); // Extension parameters

After you process the message, you may need to report the following message tracking,
otherwise the MPS usage analysis module on the mPaaS console will not get accurate
statistical data.

MPPush.reportPushOpen (msg); // Report that the message was opened
MPPush.reportPushIgnored(msg); // Report that the message was ignored

For the messages delivered through self-built channel:
e For silent messages, there is no need to report the message tracking.

e For non-silent messages, it is required to report the opened and ignored messages. You can
listen the message opening and ignorance by calling the setcontentIntent and

setDeleteIntent mMethods of wNotification.Builder oOr through other effective methods.

For the messages delivered through the third-party channels, there is no need to report the
message tracking by yourself.

4.1.3. Integrate third-party push channels

4.1.3.1. Integrate HUAWEI Push

This guide mainly introduces the process of integrating HUAWEI Push. The process falls into
three steps:

1. Register HUAWEI Push
2. Integrate HUAWEI Push
3. Test HUAWEI Push

Register HUAWEI Push

Visit the Huawei Developer official website, register an account, and enable the push service.
For more information, see Enable HUAWEI Push.

Integrate HUAWEI Push

MPS supports access to Huawei HMS2 and HMS5. However, you can only select HMS2 or
HMSS5 in the process of integrating Huawei push component.

> Document Version: 20250731 23

https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/android-config-agc-0000001050170137

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘2

e The HMS2 is obsolete. If you are integrating HUAWEI Push for the first time, you are
recommended to integrate HMS5.

¢ If you have upgraded from HMS2 to HMS5, you need to delete the HMS2 androidManifest
configuration listed below first.

The following describes the integration methods of Huawei HMS2 and HMS5 respectively.

HUAWEI Push - HMS5.x version

1. Add Push - HMS5 component in the IDE plugin. The steps are roughly the same as adding
MPS SDK, see Add SDK.

® Note

The Push - HMS5 component only contains adaptive codes, without HMS SDK. You can
add the HMS SDK dependencies separately by following the steps below.

2. Download the configuration file agconnect-services.json in the Huawei App Service
Console and place it under the assets directory of the main project.

3. Configure the Maven warehouse address of HMS SDK in the build.gradle file in the
project root directory.

allprojects {
repositories {
// Other repos are ignored

maven {url 'https://developer.huawei.com/repo/"'}

}
4. Add HMS SDK dependencies in the build.gradle file of the main project.

dependencies {
implementation 'com.huawei.hms:push:5.0.2.300"'

}
o The HMS SDK version is updated frequently. For the latest version, refer to HMS SDK
Version Change History.

o The current adaptable version is 5.0.2.300. If you need to use a higher version, you can
change it by yourself. Generally, the vendor’s SDK is downward compatible. If it is not
compatible, you can give feedback to adapt to the needs of the new version

5. To use obfuscation, you need to add the related obfuscation configurations.

o No matter which integration method is used in integrating HUAWEI push SDK, you need
to add Huawei push obfuscation rules.

o If you integrated HUAWEI push SDK through Native AAR, you need to add mPaa$S
obfuscation rules.

HUAWEI Push - HMS2.x version

1. Add Push - HMS2 component in the IDE plugin. The steps are roughly the same as adding
MPS SDK, see Add SDK.

The current HMS2 SDK version is V2.5.2.201.

2. Corﬂﬁgure AndroidManifest.xml , and replace the value of com.huawei.hms.client.appid

If you integrate the MiPush SDK through Portal & Bundle projects, please configure the
AndroidManifest.xml in the Portal project.

> Document Version: 20250731 24

https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides-V5/android-app-version-0000001074227861-V5
https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/android-config-obfuscation-scripts-0000001050176973?spm=a2c4g.11186623.2.12.14321111Vvkvxp

© 2852, Message Push Service User Guide-Client-side ga’;‘g

<activity
android:name="com.huawei.hms.activity.BridgeActivity"
android:configChanges="orientation|locale|screenSize|layoutDirection|fontScale"
android:excludeFromRecents="true"
android:exported="false"
android:hardwareAccelerated="true"
android:theme="@android:style/Theme.Translucent">
<meta-data
android:name="hwc-theme"
android:value="androidhwext:style/Theme.Emui.Translucent" />
</activity>
<!--To prevent dex crashing in an earlier version, dynamically enable provider, and
set "enabled" to false.-->
<provider
android:name="com.huawei.hms.update.provider.UpdateProvider"
android:authorities="${applicationId}.hms.update.provider"
android:exported="false"
android:enabled="false"

android:grantUriPermissions="true">

</provider>
<!-- Replace the "appid" of value with the actual app ID in the service deta
ils of the app on Huawei Developer. Keep the slash (\) and space in the value. -->

<meta-data
android:name="com.huawei.hms.client.appid"
android:value="\ your huawei appId" />
<receiver
android:name="com.huawei.hms.support.api.push.PushEventReceiver"
android:exported="true"
>
<intent-filter>
<!-- Receive the notification bar message sent by the channel. It is
compatible with earlier versions of PUSH.-->
<action android:name="com.huawei.intent.action.PUSH" />
</intent-filter>

</receiver>

<receiver
android:name="com.alipay.pushsdk.thirdparty.huawei.HuaweiPushReceiver"
android:exported="true"
android:process=":push">
<intent-filter>
<!-- Required, used for receiving TOKEN. -->
<action android:name="com.huawei.android.push.intent .REGISTRATION" />
<!-- Required, used for receiving messages -->
<action android:name="com.huawei.android.push.intent.RECEIVE" />
<!-- Optional, used for triggering onEvent callback upon a click on t
he notification bar or the button on the notification bar -->

<action android:name="com.huawei.android.push.intent.CLICK" />

<!-- Optional, used for checking whether the PUSH channel is
connected. You do not need to configure this parameter if access check is not require
el ==>
<action android:name="com.huawei.intent.action.PUSH_STATE" />
</intent-filter>
</receiver>

> Document Version: 20250731 25

© 2852, Message Push Service User Guide-Client-side ‘;i:’srl]?

3. To use obfuscation, you need to add the related obfuscation configurations.

o If you integrated HUAWEI push SDK through Native AAR, you need to add mPaaS
obfuscation rules.

o If you integrated HUAWEI push SDK through other methods, you don’t have to add any
obfuscation configuration.

Test HUAWEI Push

1. After integrating HUAWEI Push, you can start the app on your Huawei phone, and the MPS
SDK will automatically get the HUAWEI Push token and report it. Before you start the app,
make sure that you have called the initialization method, see Message push initialization.

2. Push test messages when the app process is killed:

o If you can still receive the messages, it means that the app has successfully integrated
HUAWEI Push.

o |If you cannot receive the messages, you can follow the steps below for troubleshooting.

Troubleshooting

1. Check if the Huawei configuration and parameters are consistent with that in the Huawei
push backend.

o For HMS2, check if androidManifest.xml has related configurations added, and check if
com.huawei.hms.client.appid IS Same as that in Huawei push backend.

o For HMS5, check if agconnect-services.json exists, and the file is correctly placed.

2. Check if HUAWEI Push is enabled in the mPaaS console (see Configure HUAWEI Push), and
the relevant configurations are consistent with that on Huawei push backend.

3. View the logs in Logcat to troubleshoot:
i. Selectthe push process, filter mpPush.PushProxyFactory , and check if the following log
exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.hms.Creator (HMS2)
D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.hms5.Creator (HMS5)

If not, it means that there may be a problem with the Push - HMS2 or Push - HMS5
component. Check if the component has been correctly added.

ii. Select the main process, filter muMs , and check if the channel token of HUAWEI Push
has been obtained. If the following log get token failed appears:

It means the system failed to get the channel token, see HUAWEI Push Result Codes for
the failure reason.

iii. Select the main process, filter report channel token , check if the channel token of
HUAWEI Push has been successfully reported. If the following log appears:

report channel token error: xxxx

It means the channel token reporting failed, you need to check if the base64acode in the

mPaa$S configuration file has a value, and check if the apk signature that you uploaded
when obtaining the configuration file is consistent with the app.

Other questions

Does MPS has any version restrictions on EMUI and Huawei
mobile services

> Document Version: 20250731 26

https://developer.huawei.com/consumer/en/doc/development/HMSCore-References-V5/error-code-0000001050255690-V5?spm=a2c4g.11186623.2.28.68ac1781avgDVc

User Guide:Client-side develo

© 2852, Message Push Service Sment

There are version restrictions on Emotion Ul (EMUI for short, it is an Android-based emotional
operating system developed by Huawei) and Huawei mobile services.

For detailed version requirements, see Conditions for devices to receive Huawei notifications.

Failed to print logs for Huawei mobile phones

On the dialing interface of the Huawei mobile phone, enter ##2846579## to enter Project
menu > Background settings > LOG settings and select AP Logs. After the phone
restarts, Logcat will start to take effect.

4.1.3.2. HONOR Push

This article describes the integration process of HONOR Push, which includes the following
three steps.

1. Register HONOR Push
2. Integrate HONOR Push
3. Test HONOR Push

Register HONOR Push

login HONOR development official website, registered account and open push service. For
more information, see Enable the push function.

Integrate HONOR Push

1. Add the Push> HONOR component in the same way as you add the push SDK. For more
information, see Add a push SDK.

® Note

The Push> HONOR component contains only the adaptation code and does not contain
the HONOR Push SDK. You can add the HONOR Push SDK dependency separately as
follows.

2. Prepare the development environment. The development environment must be compatible
with the integration environment of HONOR Push. For more information, see Prepare the
development environment.

3. Add a configuration file. Download the mcs-services.json configuration file from the
HONOR Developer Service Platform. For more information, see Add an application
configuration file.

4. configure the repository address of the sdk. For more information, see Configure the Maven
repository address of the SDK.

5. Add dependency configurations. In the application-level build.gradie file, add the
following compilation dependencies to the dependencies field:

dependencies {
// Add the following configuration
implementation 'com.hiHONOR.mcs:push:7.0.61.302"'

}

o For more information, see Add dependencies.
o For more information about how to update the version, see Version information.

o The current version of mPaaS is 7.0.61.302. If you want to use a later version, you can
modify it as required. Generally, the manufacture SDK will backward compatible it.

> Document Version: 20250731 27

https://developer.huawei.com/consumer/en/doc/development/HMS-Guides/push-faq-v4#restrictions
https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=app-registration.md&token=
https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=build-info.md&token=
https://developer.hihonor.com/
https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=intergrate.md&token=#%E6%B7%BB%E5%8A%A0%E5%BA%94%E7%94%A8%E9%85%8D%E7%BD%AE%E6%96%87%E4%BB%B6
https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=intergrate.md&token=#%E9%85%8D%E7%BD%AE%20SDK%20%E7%9A%84%20Maven%E4%BB%93%E5%9C%B0%E5%9D%80
https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=intergrate.md&token=#%E6%B7%BB%E5%8A%A0%E4%BE%9D%E8%B5%96%E9%85%8D%E7%BD%AE
https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=version-history.md&token=

é

User Guide:Client-side develo

RE%E2. Message Push Service
ANTGROUP g pment

6.

To use obfuscation, add the relevant obfuscation configuration:
o You must add the Obfuscation Script for all access methods.

o If you use the AAR access method, you mustadd a confusion rule.

Test HONOR Push

2.

Important

Please note that the following (excluding 8.0) versions of HONOR Magic OS 8.0 will
continue to use the Huawei push adaptation layer.

After you enable HONOR Push, you can start the application on the HONOR mobile phone
and make sure that the initialization method is called. For more information, see Quick
start. Then, the push SDK obtains the token of the HONOR Push provider and reports the
token.

You can push a test message when the application process is killed:
o If you still receive messages, your application is successfully connected to HONOR Push.

o If you cannot receive the message, troubleshoot the issue as follows.

Troubleshoot issues

1. Check whether the HONOR configuration and parameters are consistent with the HONOR
push background, whether the relevant configuration is added in the
AndroidManifest.xml , and whether the com.niHONOR.push.app id is consistent with the
HONOR push background.
2. Check whether the mecs-services.json file exists and whether the storage location is
correct.
3. Check whether the HONOR channel is enabled in the mPaaS console. For more information,
see Configure the HONOR channel.
4. View the logcat logs for troubleshooting:
i. Select the push process, filter the mpPush.PushProxyFactory , and check whether the
following logs exist:
D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.HONOR.Creator
ii. Select the main process, filter mHONOR, and check whether the token is obtained. If a log
get token failed appears, the token fails to be obtained. For error codes, see Error
codes.
iii. Select the main process, filter the report channel token , and check whether the
reporting HONOR manufacturer token is successful. If the following log appears:
report channel token error: xxXxx
This indicates that the manufacture token fails to be reported. Please check whether the
base64Code in step 3 to add the configuration file to the project has a value and
whether the apk signature uploaded when obtaining the configuration file is consistent
with the current application.
If the Push> HONOR component is not available, an error may occur when you add the
HONOR component. Check whether the HONOR component is added.
Others

What models and system versions are supported?

>

Document Version: 20250731 28

https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=configuration-content.md#%E9%85%8D%E7%BD%AE%E6%B7%B7%E6%B7%86%E8%84%9A%E6%9C%AC
https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=sdk-error-code.md&token=

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘2

At present, HONOR's manufacturer push channel supports HONOR mobile phones with Magic
OS version 8.0 and above. Versions below Magic OS version 8.0 (excluding 8.0) continue to
use Huawei's manufacturer push channel.

4.1.3.3. OPPO Push

This article describes the integrating process of OPPO push, including the following three
steps.

1. Register OPPO Push
2. Add OPPO Push
3. Test the OPPO push

Register OPPO Push

Register an account on the OPPO Open Platform and apply for integrating to the push service.
For more information, see OPPO Push Platform User Guide.

Connect to OPPO Push

1. Install the push- OPPO component in the same way as you add the push SDK. For more
information, see Add an SDK. The Push- OPPO component contains only adaptation code
and does not contain OPPO Push SDK.

2. Go to the OPPO SDK documentation to download the SDK and integrate it into the main
project. The current version of the adaptationis 3.4.0 . If you need to use a higher

version, you can modify it according to your requirements. Generally speaking, the vendor
SDK will be backward compatible. If it is not compatible, you can join the DingTalk group
41708565 to feed back and adapt to the new version.

3. Configure the AndroidManifest.xml (add the component-based method in the Portal
project) and replace the com.oppo.push.app key and com.oppo.push.app secret values
in it.

> Document Version: 20250731 29

https://open.oppomobile.com/newservice/capability?pagename=push
https://open.oppomobile.com/wiki/doc#id=10195
https://open.oppomobile.com/wiki/doc#id=10875

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘2

<uses-permission android:name="com.coloros.mcs.permission.RECIEVE MCS MESSAGE" /
<uses-permission android:name="com.heytap.mcs.permission.RECIEVE MCS MESSAGE"/>

<application>

<service

android:name="com.heytap.msp.push.service.CompatibleDataMessageCallbackService"
android:exported="true"
android:permission="com.coloros.mcs.permission.SEND MCS MESSAGE"
android:process=":push">
<intent-filter>
<action android:name="com.coloros.mcs.action.RECEIVE MCS MESSAGE"/>
</intent-filter>

</service>

<service
android:name="com.heytap.msp.push.service.DataMessageCallbackService"
android:exported="true"
android:permission="com.heytap.mcs.permission.SEND PUSH MESSAGE"
android:process=":push">
<intent-filter>
<action android:name="com.heytap.mcs.action.RECEIVE MCS MESSAGE"/>
<action android:name="com.heytap.msp.push.RECEIVE MCS MESSAGE"/>
</intent-filter>
</service>
<meta-data
android:name="com.oppo.push.app key"
android:value="0OPPO open platform acquisition"
/>
<meta-data
android:name="com.oppo.push.app secret"
android:value="OPPO Open Platform Acquisition"
/>
</application>

4. To use obfuscation, add the relevant obfuscation configuration:
o You must add OPPO push obfuscation rules for all the integration methods.

o If you use the AAR integration method, you mustadd mPaa$S obfuscation rules.

5. If you are using the OPPO push version 3.4.0 , you must add the following dependencies:

implementation 'commons-codec:commons-codec:1.15"

Test the OPPO push

1. After OPPO push is enabled, you can start your application on your mobile phone and make
sure that the initialization method is called. For more information, see Initialize message
push. The push SDK automatically obtains the vendor token of OPPO push and reports the
token.

2. You can push a test message when the application process is killed:
o If you still receive the message, the application is successfully connected to OPPO Push.

o If you cannot receive the message, troubleshoot the issue as follows.

> Document Version: 20250731 30

https://open.oppomobile.com/wiki/doc?spm=a2c4g.11186623.2.12.454e3801PnlETY#id=10875

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘&

Troubleshooting

1. Check whether the androidManifest.xml configuration is added and whether the values of
com.oppo.push.app key and com.oppo.push.app _secret are consistent with those of the

OPPO open platform.

2. Check whether the OPPO channel is enabled in the mPaa$S console. For more information,
see Configure the OPPO push channel.

3. View the logcat logs for troubleshooting:
i. Select the push process, filter the mpPush.pPushProxyFactory , and check whether the
following logs exist:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.oppo.Creator
If no push- OPPO component is available, a problem may exist when you add the push-
OPPO component. Check whether the push- OPPO component is added correctly.

ii. Select the push process, filter moppo , and check whether the vendor token pushed by

OPPO is obtained. If the following log is displayed ("OPPO onRegister error" or
"responseCode" is not 0), it indicates that the OPPO push registration failed. For error
codes, see OPPO push error codes, and drop down to the error code definition description

section.

iii. Select the main process, filter the report channel token , and check whether the OPPO
vendor token is successfully reported. If the following log appears:

report channel token error: xxxx

This indicates that the vendor token fails to be reported. Please check whether the
base64Code Of the mPaaS configuration file has a value and whether the apk signature

uploaded when obtaining the configuration file is consistent with the current application.

iv. Select the push process, filter the mcssdkx , and view the internal logs of OPPO push.

Other FAQ
What models and system versions does OPPO push support?

Currently, OPPO models, OnePlus 5/5T and above and realme models are supported for
ColorOS 3.1 and above systems.

ColorOS is a mobile phone operating system that is deeply customized and optimized based
on Android system launched by OPPO.

4.1.3.4. Integrate vivo Push

This guide mainly introduces the process of integrating vivo Push. The process falls into three
steps:

1. Register vivo Push
2. Integrate vivo Push

3. Test vivo Push

Register vivo Push

Register an account on the vivo Developers Platform and request to integrate the push
service with reference to vivo Push Platform Operation Guide.

Integrate vivo Push

> Document Version: 20250731 31

https://open.oppomobile.com/wiki/doc#id=10875
https://dev.vivo.com.cn/documentCenter/doc/180
https://dev.vivo.com.cn/documentCenter/doc/151

User Guide:Client-side develo

© 2852, Message Push Service Sment

1. Add Push - vivo component in the IDE plugin. The steps are roughly the same as adding
MPS SDK, see Add SDK.

The component has integrated the vivo Push SDK V2.3.4. You can upgrade the vivo Push
SDK on demand. Generally, the vendor's SDK is downward compatible. If it is not
compatible, you can submit a ticket about the adaption issue.

2. Configure androidManifest.xml , and replace the values of com.vivo.push.api key and
com.vivo.push.app id . If you integrate the vivo Push SDK through Portal & Bundle
projects, please configure the androidManifest.xml in the Portal project.

<application>
<service
android:name="com.vivo.push.sdk.service.CommandClientService"
android:process=":push"
android:exported="true" />
<activity
android:name="com.vivo.push.sdk.LinkProxyClientActivity"
android:exported="false"
android:process=":push"
android:screenOrientation="portrait"
android:theme="@android:style/Theme.Translucent.NoTitleBar" />
<meta-data
android:name="com.vivo.push.api key"
android:value="Provided by vivo Developers Platform" />
<meta-data
android:name="com.vivo.push.app id"
android:value="Provided by vivo Developers Platform" />

</application>

3. To use obfuscation, you need to add the related obfuscation configurations.

o No matter which integration method is used in integrating vivo push SDK, you need to
add vivo push obfuscation rules.

o If you integrated vivo push SDK through Native AAR, you need to add mPaaS obfuscation
rules.

Test vivo Push

1. After integrating vivo Push, you can start the app on your vivo phone, and the MPS SDK will
automatically get the OPPO Push token and report it. Before you start the app, make sure
that you have called the initialization method, see Message push initialization.

2. Push test messages when the app process is killed:

o If you can still receive the messages, it means that the app has successfully integrated
vivo Push.

o If you cannot receive the messages, you can follow the steps below for troubleshooting.
Troubleshooting

1. Check if androidManifest.xml has related configurations added, and check if the values of
com.vivo.push.api key and com.vivo.push.app id are the same as that on vivo
Developers Platform.

2. Check if vivo Push is enabled in the mPaa$S console (see Configure vivo Push), and the
relevant configurations are consistent with that on vivo Developers Platform.

3. View the logs in Logcat to troubleshoot:

> Document Version: 20250731 32

https://dev.vivo.com.cn/documentCenter/doc/365

User Guide:Client-side develo

© 2852, Message Push Service Sment

i. Selectthe push process, filter mpPush.PushProxyFactory , and check if the following log
exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.vivo.Creator
If not, it means that there may be a problem with the Push - vivo component. Check if the
component has been correctly added.

ii. Selectthe push process, filter mvivo , and check if the channel token of vivo Push has
been obtained. If the following log “fail to turn on vivo push” appears:

It means the vivo Push registration failed, see vivo Push Error Codes.
iii. Select the main process, filter report channel token , check if the channel token of vivo
Push has been successfully reported. If the following log appears:

report channel token error: xxXxx

It means the channel token reporting failed, you need to check if the base64code in the

mPaa$S configuration file has a value, and check if the apk signature that you uploaded
when obtaining the configuration file is consistent with the app.

4. If the above steps do not resolve the issue, please search for the group number 31591197
with DingTalk to join DingTalk group for further communication.

FAQ
Models and OS versions supported by vivo Push

The models and earlier system versions supported by vivo Push are listed in the following
table. For other questions on vivo Push, see vivo Push FAQs.

> Document Version: 20250731 33

https://dev.vivo.com.cn/documentCenter/doc/368
https://dev.vivo.com.cn/documentCenter/doc/156#w1-08608733

é Te el
ANT GROUP

Message Push Service

User Guide:Client-side develo

pment

Device model

Android version Version for system test Minimum version supported

Android 9.0 and later versions are supported by default

Ya3 Android 81
Ya1 Android 81
Y93 Standard Androd 8.1
Y935 Androd 8.1
vivo Z1Youth Androd 8.1
Yar7 Androd 8.1
73 Android 81
Y81 Android 81
®23 Android 81
H21s Android 81
H23 Androd 8.1
MEX S Androd 8.1
MEX A Android 81
MEX A Android 81
#2110 Androd 8.1
H21 Androd 8.1
X20 Android 81
Y8ls Androd 8.1
Y834 Androd 8.1
x9sp 81 Android 8.1
x5 81 Android 81
71 Android 81
Y71 Androd 8.1
Y73 Androd 8.1
¥20 Plus Android 81
Y85 Android 81
®8 81 Android 81
*9Plus 8.1 Androd 8.1
YT5A Androd 7.1
Y794 Androd 7.1
Y661 A Androd 7.1
#a Android 71
%93 Android 71
3P Android 71
x95p Androd 7.1
xplayt Androd 7.1
YEIA Android 70
Y53 Android6.0
YETA Android6.0
Y55 Android6.0
Y66 Android6.0

4.1.3.5. Integrate MiPush

PD1818 A 1896
PD1818E A 175
PD1818E A 15.25
PD1818C A 1910
PD1730E_A 11327
PD1813 A 1106
PD1813B A 15189
PD1732D A_1.145
PD1816_A 1102
PD1B814 A 154
PD1809_A 1140
PD1805 A 1183
PD1806B A_2171
PD1806_A_216.0
PD1801 A 1150
PD1728 A 1210
PD1709_A 881
PD1732 A 1122
PD1803_A 1205
PD1635 A 815.0 Beta
PD1616B_A_8150 Bsta
PD1730C_ A 196
PD1731 A 195
PD1731C A 180
PD1710_A 830
PD1730_A_113.10
PD1616 D 86.15
PD1619 A 8121
PD1718 A 1126
PD1708 A 1.23.10
PD1621BA A 185
PD1616 D 7155
PD1616BA_A_1.135
PD1618_A_7.14.10
PD1635 A 1215
PD1610 D 7111
PD1705 A 111.15
PD1628_A_116.20
PD1612 A 11127
PD1613 A 11911
PD1621 A 112.36

PD1818_A_ 1896
PD1B18SE A_175
PD1818E A_15.25
pD1818C A 19.10
PD1730E_A_113.27
PD1813 A 1106
PD1813B A 1519
PD1732D_A_1145
PD1816_A_ 1102
PD1814 A 154
PD1809 A 1141
PD1805 A 1184
PD18B0O6B A 2171
PD1806_A 2171
PD1801 A 1151
PD1728 A 1217
PD1709_A 882
PD1732 A 1129
PD1803 A 12010
PD1635 A 8150 Beta
PD1616B_A_8150 Beta
PD1730C_A_193
PD1731 A 195
PD1731C A 18.0
PD1710_A 8B40
PD1730_A_ 11311
PD1616_ D _86.16
PD1619 A 8121
PD1718 A 1126
PD1708 A 12310
PD1621BA A 185
PD1616 D 7155
PD1616BA A 1.135
PD1619_A_ 71410
PD1635 A 1216
PD161C D 7111
PD1705 A 11115
PD1628_A_116.20
PD1612 A 11127
PD1613 A 11911
PD1621 A 11236

This guide mainly introduces the process of integrating MiPush. The process falls into three

steps:

1. Register MiPush
2. Integrate MiPush
3. Test MiPush

Register MiPush

Complete MiPush registration with reference to the following official Xiaomi documents:

e Register a Xiaomi developer account

e Enable MiPush

Integrate MiPush

1. Add Push - Xiaomi component in the IDE plugin. The steps are roughly the same as

adding MPS SDK, see Add SDK. Currently, the built-in MiPush SDK is V4.0.2. You can see

Release notes to learn the historical versions.

> Document Version: 20250731

34

https://global.developer.mi.com/document?doc=accountRegistration.becomeADeveloper
https://dev.mi.com/console/doc/detail?pId=68

User Guide:Client-side develo

© 2852, Message Push Service Sment

2. Configure androidManifest.xml , and replace the values of xiaomi appid and
xiaomi_appkey . If you integrate the MiPush SDK through Portal & Bundle projects, please
configure the androidManifest.xml in the Portal project.

<permission
android:name="${applicationId}.permission.MIPUSH RECEIVE"
android:protectionlLevel="signature"/>

<uses-permission android:name="${applicationId}.permission.MIPUSH RECEIVE"/>

<application>

<!-- Keep the slash (\) and space in the value -->
<meta-data

android:name="xiaomi_ appid"

android:value="\ 2 "/>

<!-- Keep the slash (\) and space in the value -->

<meta-data
android:name="xiaomi_ appkey"

android:value="\ 5XXXXXXXXXXXXXXX" />

</application>

Test MiPush

1. After integrating MiPush, you can start the app on your Xiaomi phone, and the MPS SDK will
automatically get the MiPush token and report it. Before you start the app, make sure that
you have called the initialization method, see Message push initialization.

2. Push test messages when the app process is killed:

o If you can still receive the messages, it means that the app has successfully integrated
MiPush.

o If you cannot receive the messages, you can follow the steps below for troubleshooting.

Troubleshooting

1. Check if AndroidManifest.xml has been configured, and the values of xiaomi appid and
xiaomi_appkey in the file are consistent with that on Mi Developer Platform.

2. Check if MiPush is enabled in the mPaa$S console (see Channel configuration), and the
relevant configurations are consistent with that on Mi Developer Platform.

3. View the logs in Logcat to troubleshoot:
i. Selectthe push process, filter mpPush.PushProxyFactory , and check if the following log
exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.mi.Creator

If not, it means that there may be a problem with the Push - Xiaomi component. Check if
the component has been correctly added.

ii. Selectthe push ,filter mMi , and check if the MiPush channel token has been
obtained.
If the following log (register fail) appears, it means the MiPush registration failed. See
MiPush error codes for the failure reason (reason). If the value of reason is
UNKNOWN, it is generally due to incorrect xiaomi appid OF xiaomi_ appkey . 10 learn
about the result codes (resultcode), see MiPush server error codes.

> Document Version: 20250731 35

https://dev.mi.com/console/doc/detail?pId=41#_2_1
https://dev.mi.com/console/doc/detail?spm=a2c4g.11186623.0.0.2a671c84xJ8kXs&pId=1557

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘&

iii. Select the main process, filter report channel token , check if the MiPush channel token
has been successfully reported. If the following log appears:

report channel token error: xxXxx

It means the channel token reporting failed, you need to check if the base64code in the

mPaa$S configuration file has a value, and check if the apk signature that you uploaded
when obtaining the configuration file is consistent with the app.

4.1.3.6. Integrate FCM push channel

MPS supports integrating the Firebase Cloud Messaging (FCM) push channel to satisfy the
message push requirements on overseas Android devices.

The following sections describe how to integrate the FCM push channel.

Prerequisites

Before you integrate FCM, ensure that the following conditions are met:

e Adopt native AAR integration mode. Portal & Bundle integration modes don't work for FCM.
e Gradle must be 4.1 or later versions.

e AndroidX is used.

® com.android.tools.build:gradle must be 3.2.1 or a later version.

® compileSdkversion mMmust be 28 or a later version.

Integrate FCM SDK

Perform the following steps:
1. Add your app in the Firebase console.
Log on to the Firebase console and register your app. See Firebase documentation.
2. Add the Firebase Android configuration file to your app.

Download the configuration file google-services.json and move the file to the main
module of your project.
3. Add the Google service plug-in to the buildscript dependency in the root-level
build.gradle file.

> Document Version: 20250731 36

https://firebase.google.com/docs/cloud-messaging/android/client

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘2

buildscript {

repositories {
// Check that you have the following line (if not, add it):
google () // Google's Maven repository

dependencies {

//

// Add the following line:

classpath 'com.google.gms:google-services:4.3.4' // Google Services plugin

allprojects {
//

repositories {
// Check that you have the following line (if not, add it):
google() // Google's Maven repository
//

4. Apply the Google service plug-in in the bvuild.gradle file of the main module.

apply plugin: 'com.android.application'
// Add the following line:

apply plugin: 'com.google.gms.google-services' // Google Services plugin

android {

//

5. Add the FCM SDK dependency to the build.gradle file of the main module.

dependencies {
// Import the BoM for the Firebase platform

implementation platform('com.google.firebase:firebase-bom:26.1.1")

// Declare the dependencies for the Firebase Cloud Messaging and Analytics libra
ries

// When using the BoM, you don't specify versions in Firebase library
dependencies

implementation 'com.google.firebase:firebase-messaging'

implementation 'com.google.firebase:firebase-analytics'

Integrate mPaa$S
Perform the following steps:

1. Add the FCM Adapter dependency to the bvuild.gradle file of the main module.

> Document Version: 20250731 37

User Guide:Client-side develo

© 2852, Message Push Service Sment

dependencies {

implementation 'com.mpaas.push:fcm-adapter:0.0.2"

2. Integrate the MPS SDK, with reference to the requirements on mPaaS baseline:

o FOr com.mpaas.push:fcm-adapter:0.0.2 , the baseline must be 10.1.68.34 or later
version.

o For com.mpaas.push:fcm-adapter:0.0.1 , the baseline must be 10.1.68.19 or later
version.

3. Receive push messages.

Due to the features of FCM SDK, the messages pushed through the FCM channel may not
always be received by the client through the FCM channel, but may be received through the
self-built channel. The specific rules are:

o If the app is in frontend, the messages are passed through to the app by FCM, and the
app will receive the message through the self-built channel.

o If the app is in backend or the app is killed, the messages are sent through FCM channel,
and are displayed on the notification bar.

4. (Optional) You can register a message receiver to obtain an error message when the FCM
initialization fails. For details, see Error codes.

Refer to the following sample code:

<receiver android:name=".push.FcmErrorReceiver" android:exported="false">
<intent-filter>

<action android:name="action.mpaas.push.error.fcm.init" />
</intent-filter>

</receiver>

package com.mpaas.demo.push;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

import android.widget.Toast;

public class FcmErrorReceiver extends BroadcastReceiver ({
@Override
public void onReceive (Context context, Intent intent) {
String action = intent.getAction();
if ("action.mpaas.push.error.fcm.init".equalsIgnoreCase (action)) {
Toast.makeText (context, "fcm error " + intent.getIntExtra("error", 0),
Toast.LENGTH SHORT) .show () ;
}

4.1.4. Vendor Message Classification

In order to improve the end user push experience and create a good and sustainable
notification ecology, major vendors have been limiting the frequency of pushed messages
according to classification.

> Document Version: 20250731 38

https://developers.google.com/android/reference/com/google/android/gms/common/ConnectionResult

© 2852, Message Push Service User Guide-Client-side g‘:r:’sr']i

Introduction

Classify and manage messages based on push content, and you can customize the
Channel ID.

e Applies to all Android channels
e Create a client-side custom channel

e Send the corresponding channel ID when pushing

Requir

Parameter Type ed Examples Description
channelld Strin No channelld: "channelldTest" Android notification
g channelld

e |f you need to deliver vendor channel important level messages, please refer to the usage
guide for each vendor message classification below.

Huawei Classification
Vendor's instructions on message classification

According to the message content, Huawei Push classifies notifications into two categories:
Service and Communication, and Information Marketing. It also manages the
notification methods and message styles of different types of messages as follows:

Message Type Service and Communication Information Marketing

Including information messages
and marketing messages, which
refers to event information,
content recommendations,
information, etc. sent by
operators to users

Including social communication
Push content messages and service
reminder messages

Silence notifications, which only
display messages in the drop-

Notification method (EMUI Lock screen, ringtone, 1ges 1
10.0 or later) vibration down notification bar
Message style Text + small image Text only

Starting from 2023.01.05, the
daily push limit for information
marketing messages will be
Push quantity Unlimited managed based on application
type. For more information, see
Push quantity limit requirements
for different application types.

> Document Version: 20250731 39

https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/message-restriction-description-0000001361648361#section199311418515

User Guide:Client-side develo

RE%E2. Message Push Service
é ANTGROUP g pment

You need to apply for self-
classification rights from
Huawei. After the review is
passed, the classification
information provided by
developers will be trusted.
Messages are not subject to
intelligent classification.

Configuration method Default value

Classification Method
Message intelligent classification

The intelligent classification algorithm automatically classifies your messages based on
multiple dimensions such as the content you send.

Message self-classification

Starting from July 1, 2021, Huawei Push Service began to receive applications for self-
classification rights and interests of developers. After the application is successful, developers
are allowed to classify messages according to Huawei push classification specifications.

Huawei Message Classification Application

For more information about self-classification application, see Huawei message classification
management solution.

e |f the application does not have a self-classification benefit, the push messages of the
application are automatically classified by using intelligent classification.

e If an application has a self-classification benefit, it trusts the classification information
provided by the developer. Messages are not subject to intelligent classification.
Connecting with Harmony message classification and

parameter enumeration on mPaaS MPS
(thirdChannelCategory.hms)

Pass parameter (string) Description
1 IM: Instant Message
2 VOIP: Voice Over Internet Protocol
3 SUBSCRIPTION: Subscription
4 TRAVEL: Travel
5 HEALTH: Health
6 WORK: Work item reminder

> Document Version: 20250731 40

https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/message-classification-0000001149358835

© 2852, Message Push Service

User Guide:Client-side develo
pment

10

11

12

13

14

ACCOUNT: Account dynamics

EXPRESS: Order&Logistics

FINANCE: Finance

DEVICE_REMINDER: Device reminder

SYSTEM_REMINDER: System prompt

MAIL: Mail

PLAY VOICE: Voice broadcast (only transparent
message support)

MARKETING: Content recommendations, news,
financial updates, life information, social updates,
research, product promotions, feature
recommendations, operational activities (only
content is marked and will not speed up message
sending)

Connecting HMS message reminder level parameter
enumeration on mPaaS MPS (notifyLevel.hms)

Pass parameter
(string)

Description

LOW: Indicates that the expected reminder mode of the notification bar
message is silent reminder. After the message arrives at the phone, there is

1 no ringtone or vibration.

NORMAL: Indicates that the expected notification mode of the notification bar
message is a strong reminder. After the message arrives at the phone, the

2 user is reminded by ringing or vibrating. The actual message reminder mode
of the terminal device will be adjusted according to the value of the category
field or the result of smart classification (default value).

Parameter passing example

> Document Version: 20250731

41

https://developer.huawei.com/consumer/cn/doc/HMSCore-References/https-send-api-0000001050986197#ZH-CN_TOPIC_0000001700731289__p5203378238
https://developer.huawei.com/consumer/cn/doc/HMSCore-Guides/message-classification-0000001149358835#ZH-CN_TOPIC_0000001652651372__li19162756181511

© 2852, Message Push Service

User Guide:Client-side develo
pment

Parameter name

thirdChannelCategory

notifyLevel

Typ Require Examples

d

Map No

Map No notifyLevel: {"hms": "1"}

HONOR Classification
Vendor's instructions on message classification

Based on the content of the message, Huawei Push classifies the notifications into two
categories: service and communication and information marketing, as follows:

Message Type

Push content

Notification method

Message style

Service and Communication

including social communication
messages and service alert
messages.

Lock screen display + drop down
notification bar display, support
ringtone, vibration

Text + small image

Description

In the example, a
value of "9" indicates
a HUAWEI FINANCE

thirdChannelCategory: type message. For
{"hms": "9"} more information

about other values,
see Vendor Message
Classification

The value of "1" in
the example
indicates that the
expected reminder
mode of the
notification bar
message is silent
reminder. After the
message arrives at
the phone, there is
no ringtone or
vibration.

Information Marketing

Including information messages and
marketing messages, which refers
to event information, content
recommendations, information, etc.
sent by operators to users

Silent notifications to display
messages only in the drop-down
notification bar

Text only

> Document Version: 20250731

42

User Guide:Client-side develo

© 2852, Message Push Service Sment

Information marketing messages
manage the upper limit of the daily
push quantity based on the
application type,

e News category (three classified
Push quantity Unlimited as news category): 5
e Other application types: 2

For more information, see
Maximum number of push
requests for different application
types.

Classification Method

Message intelligent classification

The intelligent classification algorithm automatically classifies your messages based on the
content you send and other factors.

Message self-classification
Allows developers to classify messages based on message classification specifications.

Connecting with HONOR message classification and parameter
enumeration on mPaaS MPS (thirdChannelCategory.HONOR)

Pass parameter (string) Description
1 Service and communication category
2 Information marketing category

Parameter passing example

Parameter T)e(p Required Examples Description

The example passes
a value of "1" to
thirdChannelCategory: indicate a
{"HONOR": "1"} communication
message of the
HONOR service.

thirdChannelCategory Map No

Xiaomi Message Classification
Vendor's instructions on message classification

According to the New Rules for Classifying Xiaomi Push Messages, Xiaomi Push classifies
messages into two categories: Private Messages and Public Messages. If you choose not
to access private messages or public messages, the application is connected to the default
channel.

> Document Version: 20250731 43

https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=notification-push-standards.md&token=#%25E4%25B8%258D%25E5%2590%258C%25E5%25BA%2594%25E7%2594%25A8%25E7%25B1%25BB%25E5%2588%25AB%25E7%259A%2584%25E6%258E%25A8%25E9%2580%2581%25E6%2595%25B0%25E9%2587%258F%25E4%25B8%258A%25E9%2599%2590%25E8%25A6%2581%25E6%25B1%2582
https://dev.mi.com/console/doc/detail?pId=2422

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘3

Message Type Default value Public Message Private Message

Chat messages,
personal order changes,
courier notifications,

Hot news, new product
promotion, platform

You can follow the announcements, transaction reminders
Push content public trust scenario community topics, loT svstem notificationé
description of Xiaomi. award-winning Y !

and other content
related to private
notifications

activities, etc., multi-
user universal content

Notification method Not provided N/A. Ring, vibration

2-3 times. For more
Push quantity limit 1 times information, see Public Unlimited
trust restrictions.

. . 1 entry per day for a Single application
User reclellvelz quantity single device for a single device single Unlimited
imit . L
single application day 5-8

You must apply on the Xiaomi Push platform. For
Application method No need to apply more information, see Channel application and
access methods.

Xiaomi message classification application

For more information, see Channel application and access method in the official Xiaomi
documentation.

Connecting with Xiaomi message classification and parameter
enumeration on mPaaS MPS

Parameter Type Reqdmre Examples Description
The channelld of
miChannelld Strin No miChannelld:"miChannelldTest" the push channel
9 of the Xiaomi
vendor

OPPO Message Classification
Old messages classification
Vendor's description on message classification

Message Type Private Public

> Document Version: 20250731 44

https://dev.mi.com/distribute/doc/details?pId=1655#_3
https://dev.mi.com/console/doc/detail?pId=2422
https://dev.mi.com/distribute/doc/details?pId=1655#_4
https://dev.mi.com/console/doc/detail?pId=2422#_2

© 2852, Message Push Service

User Guide:Client-side develo
pment

For information that users
have a certain degree of

attention and hope to receive

in time, such as instant chat
information, personal order
changes, express
notification, subscription
content updates, comment
interaction, member points
changes, etc.

Push content

Push quantity limit Unlimited

Single-user push limit

(log/day) Unlimited

e The client creates a
custom channel.

o After the private message
application email passes,
you need to register the
channel on the OPPO push
platform and set the
corresponding attribute of
the channel to private.

Configuration methods

OPPO private channel application

e Private channel rights application

Public trust is aimed at users' low
attention and no psychological
expectation for receiving such

information, such as hot news, new
product promotion, platform
announcements, community topics,
award-winning activities, etc., and multi-
user universal content

There are public channel sharing push
times, after reaching the push limit on
the same day, all public channel will no
longer push messages; Push limit: when
the cumulative number of users is less
than 50000, it is calculated by 100000;
When the cumulative number of users is
greater than or equal to 50000, it is
calculated by the cumulative number of
users * 2

o News category (three classified as
news category): 5

e Other application types: 2

The application category is subject to
the "software classification" submitted
by the basic application information
when creating the application. If you
need to modify the application
category, you can update the
application information in the mobile
application list-application details

Enable by default

e After the private application email is passed, you need to register the channel on the OPPO
push platform and set the corresponding attribute of the channel to private

Connecting with OPPO message classification and parameter

enumeration on mPaaS MPS

> Document Version: 20250731

https://open.oppomobile.com/new/developmentDoc/info?id=11227
https://push.oppo.com/

© 2852, Message Push Service

User Guide:Client-side develo
pment

Parameter TZP
channelld St;n

Require

d

New messages classification

Examples Description

channelld:"channelldTest"

Vendor's description on message classification

OPPO PUSH divides messages into two categories and provides corresponding permissions
based on the user's attention to different categories of messages:

Message
Type

Communic
ations and
Services

Content
and
Marketing

Defining scope

1. Chat messages,

calls, and other
information
between users.

2. Important

notification
reminders that
are closely
related to the
user, and the
user expects to
receive such
messages.

Content or product
promotion
notifications
proactively sent by
developers to
users.

Important

Push content
direction

1. Point-to-point

chat messages
(or private
messages)
between users,
group chat

messages, video

and voice
reminders.

2. Personal

account and
asset changes,
personal device
reminders,
personal
order/express
status changes,
etc.

Content

recommendations,
platform activities,

social dynamics,
etc.

Notification
method

The default is
<Notification bar,
Lock screen>; it
can be upgraded
to <Notification
bar, Lock screen,
Banner, Ringtone,
Vibration> as a
strong reminder

method (Need to

apply).

Only displayed in
the pull-down
notification bar.

OPPO private
channel channelld

Number of
messages

There is no limit on
the sending and
receiving amount.

The number of
push notifications
per day and the
number of
messages a single
user can receive
are limited. For
details, please
refer to Push
Service
Restrictions.

e The new message classification capability currently supports system versions 0S13
and above, and will be gradually compatible with OS12 and below in the future.

> Document Version: 20250731

46

https://open.oppomobile.com/new/developmentDoc/info?id=13189
https://open.oppomobile.com/new/developmentDoc/info?id=13190

© 2852, Message Push Service User Guide-Client-side g‘:r:’sr']?

e The default reminder method for communication and service messages is
<Notification bar, Lock screen>. You can apply for a strong Notification method of
<Notification bar, lock screen, banner, ringtone, vibration> according to the rules
and needs. Strong Notification method will cause a certain degree of
disturbance to users, so please apply and use them with caution.

Enable OPPO new message classification

To enable OPPO new message classification, please refer to New message classification
integration process.

Connecting with OPPO message classification and parameter
enumeration on mPaaS MPS (thirdChannelCategory.oppo)

Pass parameter (string) Description

1 IM: instant chat, audio, video calls

2 ACCOUNT: Personal account and asset changes
3 DEVICE_REMINDER: Personal device notification
4 ORDER: Individual order/express status changes
5 TODO: Personal schedule/to-do

6 SUBSCRIPTION: Personal subscription

7 NEWS: News

8 CONTENT: Content recommendation

9 MARKETING: Platform activities
10 SOCIAL: Social dynamics

Connect to OPPO message notification level parameter
enumeration on mPaaS MPS (notifyLevel.oppo)

Pass parameter (string) Description

1 Notification Bar

> Document Version: 20250731 47

https://open.oppomobile.com/new/developmentDoc/info?id=13189

© 2852, Message Push Service User Guide-Client-side ga’;‘g

2 Notification bar + Lock screen

Notification bar + Lock screen + Banner + Vibration +

16 Ringtone

Important

e If the user has not enabled the OPPO new message category, there is no need to
pay attention to this field.

If the user has enabled the OPPO new message category and the
notifyLevel.oppo parameter is passed, the corresponding

thirdChannelCategory.oppo pParameter cannot be empty.

Parameter passing example

Require

Parameter Type d Examples Description
The example value is "7" for
thirdChannelCateg thirdChannelCatego news information. For other
Map No " W, ngn
ory ry: {"oppo": "7"} values, see Vendor Message
Classification.
The example value "2" means
. notifyLevel: "Notification bar + Lock screen".
notifyLevel Map No {"oppo": "2"} For other values, see Notification

bar message.

vivo Message Classification
Vendor's instructions on message classification

e Valid users for which notifications are enabled: The push-sdk subscription for application

integration is successful, and the device has the permission to enable notifications for
networking within the last 14 days.

e If the number of active users on notification is less than 10000, the operation message
maghnitude is 10000 by default.

e The number of valid users with enabled notifications and the magnitude of operational
messages that can be sent can be queried in the push operation background.

e The push quota is calculated based on the number of arrivals. If the number of arrivals on

the current day exceeds the limit, it is included in the control.

Message Type System Message Operation Message

> Document Version: 20250731

48

https://open.oppomobile.com/new/developmentDoc/info?id=13189
https://open.oppomobile.com/new/developmentDoc/info?id=11236

© 2852, Message Push Service

User Guide:Client-side develo
pment

Messages that users need to
know in a timely manner, such as
instant messages, emails,
reminders set by users, and
notifications such as logistics

Push content

e Default ring, vibrate, message
Notification bar display

permissions
e Default lock screen, suspended

Three times the number of valid
users who are notified. You can
apply for unlimited message
permissions by email. For more
information, see Push message
limits.

Push quantity limit

User receive quantity

limit Unlimited

Messages that users pay less
attention to, such as: content
recommendations, activity
recommendations, social updates and
other notifications

e By default, there is no ringing, no
vibration, and messages are stored
in the box when the application is
not alive

e Default no lock screen, no
suspension

e News category (three-level
classification is news category): 3
times the number of effective users
who are informed

e Other categories: 2 times the
number of effective users of
notification opening

e News category (three-level
classification is news category): 5

e Other categories: 2

Connect to vivo's secondary message classification parameter
enumeration (thirdChannelCategory.vivo) on mPaaS MPS

Pass parameter (string)

Description

IM

Point-to-point chat messages (private messages, group chats, etc.)
between users, including pictures, file transfers, audio (or video) calls in
chat messages, not include private messages from unfollowed people,
official accounts, or private messages or advertisements and email
reminders pushed to users by merchants in batches

ACCOUNT

Account changes: account online and offline, status changes,
information authentication, membership expiration, renewal reminders,
balance changes, etc.

Asset changes: real asset changes under the account, typical operator
reminders such as transaction reminders, phone bill balance, traffic,
voice duration, SMS quota, etc.

> Document Version: 20250731

https://dev.vivo.com.cn/documentCenter/doc/695

pusd . Message Push Service

User Guide:Client-side develo
pment

TODO

TODO is related to personal schedule and needs to remind users of
something to deal with.

Meeting reminders, class reminders, appointment reminders, travel
flights and other travel-related news.

The push object is the service provider: workflow messages such as
ticket processing, status flow reminders, and order messages such as
order receipt, shipment, and after-sales reminders.

Business operation reminders such as insufficient inventory, sold-out
reminder, product removal notice, cash withdrawal restriction,
customer complaint warning, store restriction, product blacklist,
transaction violation, fake /fraud-related delivery notice, etc.

DEVICE_REMINDER

Reminder messages such as device status /information /prompt /alarm
sent by IoT devices

Health device reminders, including exercise (steps, mileage,
swimming distance, etc.), physical data (heart rate, weight, body fat,
calories, etc.)

Tips and status reminders related to mobile phone operation

ORDER

Order-related information in various goods and services such as e-
commerce shopping and gourmet group purchases is pushed to users.

> .

Successful order placement, order details, order status, after-sales
progress, etc.

Logistics news such as express delivery, delivery, signature, pickup,
etc.

> Document Version: 20250731

50

@ 2858, Message Push Service

User Guide-Client-side develo

pment

SUBSCRIPTION

Users actively subscribe to follow and expect to receive messages at
specific times:

e Actively subscribe to thematic content, schedule event reminders,
actively set live broadcast start reminders, and book updates

e Set product or air ticket price reductions, product group opening
reminders

o Actively follow market trends reminders
e Actively set check-in and clock-in reminders

e Paid subscription content update reminders, etc.

(@ Important

To apply for subscription messages, you must meet the following
requirements and provide complete proof:

interface needs to appear at least "subscribe" or
"appointment" and other words.

e Subscription is an active behavior of users. If users do not
subscribe, messages are not pushed to users.

e After the user subscribes, the user interface in the
application has a clear prompt, and the user will receive a

will receive xx message push

e The scope of subscribing to messages should not be too
broad or specific. For example, subscribing to market
information is too broad and unspecific.

e The push content needs to reflect that the push is a user's

message contains the following characters: "Subscribe to
messages", "Subscribe to ...", etc.

NEWS

Newly occurring and valuable factual news content.

CONTENT

Content-based information recommendations include hot searches,

e In-app support for users to subscribe /unsubscribe, the user

push message related to the subscription. For example: you

subscription message. For example, the header or body of a

reviews, advertisements, books, music, videos, live broadcasts, courses,

programs, game promotions, community topics, etc. as well as:
e Related content information for each vertical category

o Weather forecast: including various weather forecasts, weather
warning reminders, etc.

e Travel information: including traffic regulations announcements,
driving test information, navigation road conditions, railway ticket
purchase announcements, epidemic news, road control, etc.

> Document Version: 20250731

51

© 2852, Message Push Service

User Guide:Client-side develo
pment

10

MARKETING

Non-user active settings, activities that require user participation
reminders, small game reminders, service or commodity evaluation
reminders, etc. For example: lucky draw, points, sign-in, task, sharing,
crop someone's way on Farmville, receiving gold coins, etc.

Commodity recommend, including red envelope discounts, business
service updates, new stores, etc. For example, notice related to
possible interest, lowest price of goods, full reduction, promotion,
rebate, coupon, voucher, red envelope, credit score increase, etc.

Other news: user survey questionnaire, function introduction,
invitation recommend, version update, etc.

SOCIAL

Social interaction reminders between users, such as: friend dynamics,
new fans, adding friends, being liked, being @, being collected,
commenting, leaving messages, following, replying, forwarding, and
stranger messages.

User recommendation: people nearby, big V, anchor, opposite sex,
people who may know, etc.

Connecting with vivo message classification and parameter
enumeration on mPaaS MPS

Parameter sz

classification Strin

thirdChannelCategory Map

Requi

red Examples Description

The type of
messages used to
pass the vivo push
channel:

e 0 - Operation
No classification:"1" messages

e 1 - System class
messages

If this parameter is
not specified, the
default value is 1

In the example, a
thirdChannelCategory: {"vivo": value of "1" indicates
"1"} a vivo IM type
message

> Document Version: 20250731

52

User Guide:Client-side develo

© 2852, Message Push Service Sment

® Note

The classification parameter "0" represents the operation message, which is directly
deducted from the total amount of operation messages without secondary correction by
intelligent classification, and is controlled by the frequency limit of the number of pieces
received by the user.

In the classification parameter, "1" indicates a system message. After the intelligent
classification is corrected twice, if the intelligent classification identifies that the message
is not a system message, it is automatically corrected to an operation message and the
amount of the operation message is deducted. If the message is identified as a system
message, the amount of the operation message is deducted from the total amount of the
system message.

Java sample code for MPS to connect to manufacture message
classification

The vendor's message classification push parameter recommendations are all
uploaded, and MPS will encapsulate the corresponding vendor classification
parameters according to the device type.

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com");

// Create and initialize a DefaultAcsClient instance.

// The AccessKey pair of an Alibaba Cloud account has permissions on all API op
erations. We recommend that you use a RAM user to call API operations or perform routin
e O&M.

// We recommend that you do not hard code your AccessKey ID and AccessKey secre
t in your project code. Otherwise, the AccessKey pair may be leaked and the security of
all resources within your account is compromised.

// In this example, the AccessKey ID and AccessKey secret are saved as
environment variables. You can also save the AccessKey pair in the configuration file b
ased on your business requirements.

// We recommend that you configure environment variables first.

String accessKeyId = System.getenv ("MPAAS AK ENV");

String accessKeySecret = System.getenv ("MPAAS SK ENV");

DefaultProfile profile = DefaultProfile.getProfile(

"cn-hangzhou", // The region ID.
accessKeyId,

accessKeySecret) ;

IAcsClient client = new DefaultAcsClient (profile);

// Create an API request and set parameters
PushSimpleRequest request = new PushSimpleRequest () ;
request.setAppId ("ONEX570DA89211721") ;
request.setWorkspaceId ("test") ;

request.setTaskName ("Test task");

request.setTitle ("Test");

request.setContent ("Test") ;

request.setDeliveryType (3L) ;

Map<String, String> extendedParam = new HashMap<String, String>():;
extendedParam.put ("keyl", "valuel");
request.setExtendedParams (JSON.toJSONString (extendedParam)) ;
request.setExpiredSeconds (300L) ;

request.setPushStyle (2) ;

Chrdimar dmanaTTrla — WA NI FanT+TT TN N N Mk b o~ o /S A i Aa -~

> Document Version: 20250731 53

User Guide:Client-side develo

© 2852, Message Push Service Sment

OLLLIY LUAYSULLS — {1\ USLAULLULL\ .\ LLLPS.//pLle iipads . uss=Cli™
hangzhou.aliyuncs.com/tmp/test.png\", \"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.al
iyuncs.com/tmp/test.png\", \"miuiUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"fcmUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"i0sUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\"}";

String iconUrls = "{\"defaultUrl\":\"https://pre-mpaas.oss—-cn-
hangzhou.aliyuncs.com/tmp/test.png\", \"hmsUrl\":\"https://pre-mpaas.oss—-cn-
hangzhou.aliyuncs.com/tmp/test.png\", \"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.al
iyuncs.com/tmp/test.png\", \"miuiUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\"}";

request.setImageUrls (imageUrls) ;

request.setIconUrls (iconUrls) ;

request.setStrategyType (2) ;

request.setStrategyContent ("

{\"fixedTime\":1630303126000,\"startTime\":1625673600000, \"endTime\":1630303126000,\"circ
Type\":1,\"circlevalue\":[1, 7],\"time\":\"13:45:11\"}");

Map<String, String> target = new HashMap<String, String>();
String msgKey = String.valueOf (System.currentTimeMillis());
target.put ("userl024",msgKey) ;

request.setTargetMsgkey (JSON.toJSONString (target)) ;

// The manufacture message category field.

// Encapsulate the VIVO message classification level 1 category.
request.setClassification("1");

// Encapsulate Huaweil message classification, HONOR message classification, and VIVO me
ssage classification level 2 category

Map<String, String> map = new HashMap<>();

map.put ("hms", "2");

map.put ("vivo", "3");

map.put ("HONOR", "1");
pushSimpleReqg.setThirdChannelCategory (map) ;

// Encapsulate the Xiaomi message classification.
pushSimpleReq.setMiChannelId ("miChannelIdTest) ;

// Encapsulate the OPPO message classification.

pushSimpleReqg.setChannelId ("channelIdTest") ;

// Initiate the request and handle the response or exceptions

PushSimpleResponse response;

try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;

} catch (ClientException e) {

e.printStackTrace() ;

4.1.5. Advanced features

> Document Version: 20250731 54

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘2

After integrating the push SDK, you can configure the client as follows:
e Clear corner mark
e Submit vendor channel token

e Custom notification channels (NotificationChannel)
Prerequisites

e The wMpPushMsgServiceAdapter mMmethod in this topic applies only to baseline versions

10.1.68.32 and later. If the current baseline version is earlier than 10.1.68.32, upgrade the
baseline version by referring to mPaaS Upgrade Guide.

e The AalipushRcvService method in the old version can still be used. Click here to
download the old version of the document.

Clear corner mark

For messages received through the vendor channel, the number of messages can be
displayed on the app icon. Currently, the push SDK only supports Huawei channels to
automatically clear corner markers.

e Set the application corner to automatically clear when the user clicks the notification:

// Specify whether to automatically clear the data.

boolean autoClear = true;

MPPush.setBadgeAutoClearEnabled (context, autoClear);

// Set the application entry Activity class name. If you do not set this parameter,
you cannot clear the corner mark.

String activityName = "com.mpaas.demo.push.LauncherActivity";

MPPush.setBadgeActivityClassName (context, activityName) ;

¢ In scenarios where corner markers cannot be automatically cleared, for example, when a
user actively clicks an application icon to enter an application, you can call the following
method in the application to actively clear corner markers:

MPPush.clearBadges (context) ;

Report vendor channel token

If you have connected to the vendor channel, the push SDK will receive the token of the
vendor channel after initialization. The push SDK will automatically bind the vendor channel
token and user-created channel token for reporting.

If necessary, you can listen for the issuance and reporting of the vendor channel token by
rewriting the MPPushMsgServiceAdapter onChannelTokenReceive and

onChannelTokenReport Mmethods:

> Document Version: 20250731 55

https://gw.alipayobjects.com/os/bmw-prod/0f269a4c-c5f6-4ca2-b323-74564cd91ccc.pdf

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘2

public class MyPushMsgService extends MPPushMsgServiceAdapter {

/**

* Callback of the vendor channel token received

*

* @param channelToken The token of the vendor channel.

* @param channel The type of the vendor channel.

)

@Override
protected void onChannelTokenReceive (String channelToken, PushOsType channel) {

Log.d ("Received vendor channel token: " + channelToken);

Log.d("Vendor: " + channel.getName())

/**
* Callback for the result of vendor channel token reporting

*
* @param result The report result.
Y
@Override
protected void onChannelTokenReport (ResultBean result) {

Log.d ("Report vendor token " + (result.success ? "Success" : ("Error:" +

result.code)));

}

/‘k*
* Indicates whether the vendor token is automatically reported.

*
* @return The return value is false, which can be reported as required.
w/

@Override

protected boolean shouldReportChannelToken () {

return super.shouldReportChannelToken () ;

If you need to bind the report, you can override the shouldReportChannelToken method and
return false, and call it after ensuring that you have received two tokens:

MPPush.report (context, token , channel.value(), channelToken);

Custom NotificationChannel

To customize the name and description of the wNotificationchannel of the self-built channel,
you can add them in the AndroidManifest.xml

> Document Version: 20250731 56

User Guide:Client-side develo

© 2852, Message Push Service Sment

<meta-data
android:name="mpaas.notification.channel.default.name"
android:value="Name" />

<meta-data
android:name="mpaas.notification.channel.default.description"

android:value="Description" />

Adjust push channel priority order

Baseline 10.2.3.43 and later allow you to adjust the priority of vendor channels on specific
devices. To use this feature, create a mpaas_push_config.properties file in the assets
directory of your project and enable it as needed.

Prioritize the Honor channel on Huawei /Honor devices

To preferentially use the Honor Push Channel on Huawei or Honor devices, add the following
to the file mpaas_push_config.properties:

// Prioritize the use of Honor channels on Huawei /Honor devices

isHonorBeforeHms=true

Prioritize the use of device vendor channels on devices with
FCM push capabilities

To preferentially use the device vendor's channel on devices with FCM push capabilities, add
the following to the file mpaas_push_config.properties:

// Device vendor’ channels will be used first on devices with FCM push capability.

isFcmEnd=true

4.2. 10S

This guide introduces how to integrate MPS to iOS client. You can integrate MPS to iOS client
based on native project with CocoaPods.

® Note

Since June 28, 2020, mPaa$S has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to
10.1.68 or 10.1.60, see mPaa$S 10.1.68 upgrade guide or mPaa$S 10.1.60 upgrade guide.

Prerequisites

You have integrated your project to mPaaS. For more information, refer to Integrate based on
native framework and using Cocoapods.

Procedure
To use MPS, you should complete the following steps.
1. Use CocoaPods plugin to add the MPS SDK.
i. Inthe Podfile file, use mPaas pod "mPaas Push" to add dependency.

ii. Execute pod install to complete integrating the SDK.

> Document Version: 20250731 57

Buks . Message Push Service User Guide-Client-side gi:’:’r'fé

2. Configure the project.
Enable the following functions in the TARGETS directory of your project:
o Capabilities > Push Notifications

| < & PushDemo D
D General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT > (2 Homekit

Q PushDemo

TARGETS » (©) Hotspot Configuration
/A PushDemo

» " icloud

> % In-App Purchase

<
([orr]
(I or+
(I or+
(I oF+
> (2] inter-App Audio (I oF+
» X Keychain Sharing (I o |
> (%) Maps (I o+ |
» &> Multipath (I o]
(I or+
(I or+ |
(I oF+
{ on I

> N)) Near Field Communication Tag Reading
> Network Extensions
» (/P Personal VPN

v(® Push Notifications

Steps: ¥ Add the Push Notifications feature to your App ID
v Add the Push Notifications entitlement to your entitlements file

o Capabilities > Background Modes > Remote notifications
3#H < & PushDemo < >

D General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT
4 ®\ Access WiFi Information
\g PushDemo m
TARGETS

A PushDemo > (5B App Groups [m
> Apple Pay Cm
4 @ Associated Domains m
» [Q) AutoFill Credential Provider [o |
v @ Background Modes m

Modes: Audio, AirPlay, and Picture in Picture

Location updates
Voice over IP

") Newsstand downloads
External accessory communication
Uses Bluetooth LE accessories
Acts as a Bluetooth LE accessory
Background fetch

Remote notifications

Steps: v Add the Required Background Modes key to your info plist file

3. Use the SDK. In the case of using CocoaPods to access the iOS client based on an existing
project, you need to complete the following operations.

> Document Version: 20250731 58

User Guide:Client-side develo

© 2852, Message Push Service Sment

i. (Optional) Register device token.

The message push SDK will automatically request the registration of deviceToken when
the application is started. Generally, you do not need to request the registration of
deviceToken. But in special cases (such as when there is privacy control at startup, when
all network requests are blocked), you need to trigger the registration of deviceToken
again after the control and authorization. The sample code is as follows:

- (void) registerRemoteNotification
{
// Push notification registration
if ([[[UIDevice currentDevice] systemVersion] floatValue] >= 10.0) {// 10.0+
UNUserNotificationCenter* center = [UNUserNotificationCenter
currentNotificationCenter];
center.delegate = self;
[center
getNotificationSettingsWithCompletionHandler:” (UNNotificationSettings * Nonnull se
ttings) {

[center requestAuthorizationWithOptions:
(UNAuthorizationOptionAlert |UNAuthorizationOptionSound|UNAuthorizationOptionBadge)
completionHandler:” (BOOL granted, NSError *

_Nullable error) {

// Enable or disable features based on authorization.

if (granted) {

dispatch _async(dispatch get main queue (), "{
[[UIApplication sharedApplication]

registerForRemoteNotifications];

});

11
} else {// 8.0,9.0

UIUserNotificationSettings *settings = [UIUserNotificationSettings
settingsForTypes: (UIUserNotificationTypeBadge
|UIUserNotificationTypeSound|UIUserNotificationTypeAlert) categories:nil];

[[UIApplication sharedApplication]
registerUserNotificationSettings:settings];

[[UIApplication sharedApplication] registerForRemoteNotifications];

> Document Version: 20250731 59

© 2852, Message Push Service

User Guide:Client-side develo
pment

Obtain the device token and bind it with user ID.

The message push SDK provided by mPaaS encapsulates the

logic of registering with the APNs server. After the program
starts, the Push SDK automatically registers with the APNs

server. You can obtain the deviceToken issued by APNSs in

the callback method of successful registration, and then call

the interface method of PushService to report the binding
userid to the mobile push core.

// import <PushService/PushService.h>
- (void)application: (UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken: (NSData *)deviceToken
{

[[PushService sharedService] setDeviceToken:deviceToken];

[[PushService sharedService] pushBindWithUserId:@"your userid(to be replaced)"
completion:” (NSException *error) {

}1;

}

The pUSh SDK also provides the APl - (void) pushUnBindWithUserId: (NSString *)userId
completion: (void (*) (NSException *error))completion; for unbinding the device token

from the user ID of the app. For example, you can call the unbind API after the user
switches to another account.

Receive push messages.

After the client receives the pushed message, if the user
clicks to view it, the system will start the corresponding
application. The logic processing after receiving the push
message can be done in the callback method of apppeiegate .

> Document Version: 20250731

60

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘2

= In the system versions earlier than iOS 10, the methods of

processing notification bar messages or silent messages
are as follows:

// Cold start for push messages in system versions earlier than i0S 10

- (BOOL) application: (UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions {

NSDictionary *userInfo = [launchOptions objectForKey:
UIApplicationLaunchOptionsRemoteNotificationKey];

if ([[[UIDevice currentDevice] systemVersion] doubleValue] < 10.0) {

// Cold start for push messages in system versions earlier than i0S 10

}

return YES;

}

// When the app runs in the foreground, adopt the method of processing common p
ush messages; when the app runs in the background or foreground, adopt the method
of processing silent messages ; when the app version is earlier than i0S 10, adop
t the method of processing notification bar messages

- (void)application: (UIApplication *)application didReceiveRemoteNotification: (N
SDictionary *)userInfo fetchCompletionHandler: (void (”) (UIBackgroundFetchResult r
esult))completionHandler

{

// Process received messages

}

= OniOS 10 and above, you need to implement the following delegate methods to listen
for notification bar messages:

> Document Version: 20250731 61

© 2852, Message Push Service User Guide-Client-side g‘:r:’sr']?

// Register UNUserNotificationCenter delegate
if ([[[UIDevice currentDevice] systemVersion] doubleValue] >= 10.0) {
UNUserNotificationCenter* center = [UNUserNotificationCenter
currentNotificationCenter];

center.delegate = self;

// Receive remote push messages when the app runs in the foreground

- (void)userNotificationCenter: (UNUserNotificationCenter *)center willPresentNo
tification: (UNNotification *)notification withCompletionHandler: (void (") (UNNotif
icationPresentationOptions options))completionHandler

{

NSDictionary *userInfo = notification.request.content.userInfo;

if ([notification.request.trigger isKindOfClass: [UNPushNotificationTrigger c
lassll]) |

// Receive remote push messages when the app runs in the foreground

} else {

// Receive local push messages when the app runs in the foreground

}

completionHandler (UNNotificationPresentationOptionNone) ;

// Receive remote push messages when the app runs in the background or uses col
d start mode

- (void)userNotificationCenter: (UNUserNotificationCenter *)center didReceiveNot
ificationResponse: (UNNotificationResponse *)response withCompletionHandler: (void (
~) (void)) completionHandler

{

NSDictionary *userInfo = response.notification.request.content.userInfo;

if ([response.notification.request.trigger isKindOfClass:

[UNPushNotificationTrigger class]]) {

// Receive remote push messages when the app runs in the background or
uses cold start mode

} else {

// Receive local push messages when the app runs in the foreground

}

completionHandler () ;

> Document Version: 20250731 62

User Guide:Client-side develo

© 2852, Message Push Service Sment

iv. Calculate message open rate.

In order to count the open rate of messages on the client side, you need to call the
pushOpenLogReport interface of Ppushservice (available in versions 10.1.32 and

above) to report the message open event when the app message is opened by the user.
After the event is reported, you can view the statistics of the message open rate on the
Message Push > Overview page in the mPaa$S console.

Jx
* Enable the API for reporting push messages so that the message open rate can be
calculated.

* @param userInfo userInfo of a message

* @return

*/
- (void)pushOpenLogReport: (NSDictionary *)userInfo;

4. Configure a push certificate.

To push messages through the MPS console of mPaaS, you need to configure an APNs push
certificate in the console. This certificate must match the signature on the client.
Otherwise, the client cannot receive push messages.

For more information about the configuration, see Configure an iOS push certificate.

Follow-up steps

e After an APNSs certificate is configured on the MPS console of mPaaS, messages can be
pushed to applications in device dimension. MPS pushes messages to clients through
Apple APNs. For more information, see Push process for Apple devices and Android devices
outside China.

e After user IDs are reported and the server binds them with device tokens, messages can be
pushed to applications in user dimension.

Code sample

Click here to download the code sample.

Related topics
e Create a message

e Configure the server

Live Activity message push

iOS introduces a new feature in version 16.1: Live Activity. This feature can display real-time
activities on the locked screen, helping users learn the progress of various activities in real
time from the locked screen. In the main project, you can use the ActivityKit framework to
start, update, and end the real-time activities. Among them, updating and ending real-time
activities can also be achieved through using remote push. In the widget extension, you can
use SwiftUl and WidgetKit to create the live activity interface. Among them, the live activity
remote push update function does not support .p12 certificate, so users need to configure

.p8 certificate.

Multiple live activities can be opened at the same time in the same project, and different live
activities have different tokens.

Access client
Configure the project which support Live Activity

> Document Version: 20250731 63

https://github.com/mpaas-demo/ios-push?spm=a2c4g.11186623.2.15.40556fe0bjccoZ

User Guide:Client-side develo

© 2852, Message Push Service Sment

1. Add a key-value pair in the 1nfo.plist file of the main project. The key is
NSSupportsLiveActivities and the valueis vEs

Key Type Value
~ Information Property List (26 items)
NSSupportsLiveActivities s YES

2. Create a new Widget Extension. If it already exists in the project, you can skip this step.

Choose a template for your new target:

Multiplatform i0S mac0S watchOS tvOS DriverKit Other (=) widgetl e

Application Extension

—
Widget Extension
Cancel

Choose options for your new target:

Product Name:

Team: Add account...

Organization Identifier:
Bundle Identifier: cn.jiguang.hxhg.ProductName

Include Live Activity
Include Configuration Intent

Project: PushSDK
Embed in Application: Demo
Cancel Previous

Access client by code
1. Create model.

Create a new swift file in the main project code and define activityaAttributes and

Activity.ContentState in it. The following code is sample code, please write it according to
actual business.

> Document Version: 20250731 64

© 2852, Message Push Service User Guide-Client-side ‘;‘2’;‘1‘2

import SwiftUI
import ActivityKit

struct PizzaDeliveryAttributes: ActivityAttributes {
public typealias PizzaDeliveryStatus = ContentState

public struct ContentState: Codable, Hashable {
var driverName: String

var estimatedDeliveryTime: ClosedRange<Date>

init (driverName: String, estimatedDeliveryTime: ClosedRange<Date>) {
self.driverName = driverName
self.estimatedDeliveryTime = estimatedDeliveryTime
}
init (from decoder: Decoder) throws {
let container:
KeyedDecodingContainer<PizzaDeliveryAttributes.ContentState.CodingKeys> = try decoder
.container (keyedBy: PizzaDeliveryAttributes.ContentState.CodingKeys.self)
self.driverName = try container.decode (String.self, forKey:
PizzaDeliveryAttributes.ContentState.CodingKeys.driverName)
if let deliveryTime = try? container.decode (TimeInterval.self, forKey:
PizzaDeliveryAttributes.ContentState.CodingKeys.estimatedDeliveryTime) {
self.estimatedDeliveryTime =
Date () ...Date() .addingTimeInterval (deliveryTime * 60)
} else if let deliveryTime = try? container.decode (String.self, forKey: P
izzaDeliveryAttributes.ContentState.CodingKeys.estimatedDeliveryTime) {
self.estimatedDeliveryTime =
Date()...Date() .addingTimeInterval (TimeInterval.init (deliveryTime)! * 60)
} else {
self.estimatedDeliveryTime = try
container.decode (ClosedRange<Date>.self, forKey:
PizzaDeliveryAttributes.ContentState.CodingKeys.estimatedDeliveryTime)

}

var numberOfPizzas: Int

var totalAmount: String

[e]

Both the main project target and Activity must be selected.

o

Received push messages are processed by the system and cannot be intercepted by
developers.

o ContentState contains data that can be dynamically updated. When pushing Live

Activity notifications, the dynamically updated parameter names and types must
correspond to those configured in contentstate

o

If some data needs to be processed, you need to override the decoder method of
ActivityAttributes.ContentState

2. Create interface.

Create live, active interfaces in Widget Extensions. Creates the Widget and returns an
Activity Configuration . Please write the specific Ul according to your own business.

> Document Version: 20250731 65

@ 2858, Message Push Service User Guide-Client-side gfr:/ee:;

< A > | Identity and Type

MyLiveActiveTestDemo) & Island) 3 IslandLiveActivity) [} body
12 struct LockScreenView: View { - = - - Name IslandLiveActivity.swift
12 var body: some View { = () Notification = (%) Compact () Expanded | () Minimal B ER! Dotoun - wint Source]
% Vstack {
15§ Vstack(alignment: .leading) {[##%)}.padding(15) Location Relative to Group e
i IslandLiveActivity.swift &
* N X . i Full Path [Users]yanjinquan/Desktop/
let context:ActivityViewContext<PizzaDeliveryAttributes> i
MyLiveActiveTestDemo/
Island/

3

struct IslandLiveActivity: Widget { IslandLiveActivity.swift °
var body: some WidgetConfiguration {

0 ActivityConfiguration(for: PizzaDeliveryAttributes.self) { context in

l // For devices that don't support the Dynamic Island.

On Demand Resource Tags

i LockScreenView(context: context)
Target Membership

} dynamicIsland: { context in
DynamicIsland {

3 MyLiveActiveTestDemo
DynamicIslandExpandedRegion(.leading) {/sss} & IslandExtension

DynamicIslandExpandedRegion(. trailing) { /s
DynamicIslandExpandedRegion(.center) {(sss}

Text Settings

DynamicIslandExpandedRegion(.bottom) {(ses}
/1 Line Endings. a
cnmpjcthzad:mgi() Indent Using Spaces e
/
compactTrailing: {([ss} - 2 R $
Wrap lines

Y ———

minimal: {(sss}
.keylineTint(.accentColor)

struct IslandLiveActivity Previews: PreviewProvider {

static var previews: some View {
activityAttributes
.previewContext(activityState, viewKind: .content)
.previewDisplayName (“"Notification®)

5 activityAttributes
58 .previewContext(activityState, viewKind:
.dynamicIsland(.compact))
.previewDisplayName ("Compact*)

activityAttributes
.previewContext(activityState, viewkind:
.dynamicIsland(.expanded))
QQaa

.previewDisplayName ("Expanded") oD 8 O
8

3. Use WidgetBundle.
If the target App supports both widgets and live activities, use a WidgetBundle.

import WidgetKit
import SwiftUI

@main
structIslandBundle: WidgetBundle {
varbody: someWidget {

Island()

IslandLiveActivity ()

}

}

4. Turn on the live activity.

> Document Version: 20250731

User Guide:Client-side develo

© 2852, Message Push Service Sment

func startDeliveryPizza () {
let pizzaDeliveryAttributes = PizzaDeliveryAttributes (numberOfPizzas: 1, totalAmo
unt:"$99")
let initialContentState = PizzaDeliveryAttributes.PizzaDeliveryStatus (driverName:
"TIM", estimatedDeliveryTime: Date()...Date() .addingTimeInterval (15 * 60))
do {
let deliveryActivity = try Activity<PizzaDeliveryAttributes>.request (
attributes: pizzaDeliveryAttributes,
contentState: initialContentState,
pushType: .token)
} catch (let error) {
print ("Error requesting pizza delivery Live Activity \
(error.localizedDescription) ")
}

5. Submit Token.

After the live activity is successfully turned on, the push Token of the live activity returned
by the system is obtained through the pushTokenUpdates method. Call PushService's

liveActivityBindWithActivityId:pushToken:filter:completion: method to submit. When
submitting the Token, the identifier of the live activity needs to be submitted together. This
identifier is needed when pushing live activities, and the server confirms the push target
based on this identifier. Please customize the identity of this live activity. Different live
activities have different ids (if they are same, it will cause push problems). For the same
live activity, do not change the id when the Token is updated.

® Note

ActivityKit is a swift language framework and does not support direct OC calls. When
using the framework API, please call it in the swift file. Since MPPushSDK is an OC
language, when swift calls OC, a bridge file needs to be created. And import #import
<MPPushSDK/MPPushSDK.h> in the bridge file.

let liveactivityId = UserDefaults.standard.string(forKey: "pushTokenUpdates id") 2?2 "
defloutliveactivityId"
Task {
for await tokenData in deliveryActivity.pushTokenUpdates {
let newToken = tokenData.map { String(format: "%02x", $0) }.joined()
PushService.shared () .liveActivityBind (withActivityId: liveactivityId,
pushToken: newToken, filter: .call) { excpt in
guard let excpt = excpt else {
///Submitted successfully
return
}
if "callRepeat" == excpt.reason {
///Repeated call, please ignore
print ("pushTokenUpdates id-Repeated calls")
} else {
///Submit failed

> Document Version: 20250731 67

@ 2858, Message Push Service

User Guide-Client-side develo
pment

After submitting successfully, the updates can be pushed by using the identification of live
activities.

® Note

Since the iPhone's pushTokenUpdates Will be called twice at the same time, that is, in
the scenario of multiple live activities, the previous live activity pushTokenUpdates Wwill

be reawakened when a new live activity is created, so the SDK provides a filtering
function, controlled by the parameter filter:

o When filter is MPPushServiceliveActivityFilterAbandon , the SDK will
automatically discard repeated calls without giving a callback.

o When filter is MPPushServiceLiveActivityFiltercall , the SDK will automatically

filter out this request and give a failure callback (callRepeat). At this time,
error.reason IS @"callRepeat" , please ignore it.

o When filter is MPPushServicelLiveActivityFilterReRefuse , NO filtering is
performed inside the SDK. When the same activityld and pushToken are called
repeatedly, if the submitting fails, the client's re-submitting will not be
considered the same call.

The definition of MpPPushServiceLiveActivityFilterType IS as follows:

typedef NS ENUM(NSInteger, MPPushServicelLiveActivityFilterType) {
MPPushServiceLiveActivityFilterAbandon, //Abandon it directly without any callback
MPPushServiceLiveActivityFilterCall,//Filter out this request and give a callback

for failure (callRepeat)
MPPushServicelLiveActivityFilterRefuse//No filtering

}i

> Document Version: 20250731

68

User Guide+Server-side config

© 2852, Message Push Service uration

5.Server-side configuration

After learning about the message push process of Mobile Push Service, you need to configure
signature verification, bind users and devices, and push messages.

Prerequisites

e You have activated mPaaS.

¢ You have a server-side application.

e You have reported the user ID and device ID on client.

Procedure
Step 1: Bind users and devices

When obtaining the user ID and device ID reported by client, the server calls the interface
provided by mobile push service to complete binding.

For more information about interfaces, see Client APIs or Server APIs.

Step 2: Push messages

Server can push the following four types of messages by calling interfaces:

Simple Push: Push simple messages.

Template Push: Push templated messages.

Multiple Push: Push different messages to different targets.

Broadcast Push: Push message to all users.

> Document Version: 20250731 69

User Guide-Console operation

© 2852, Message Push Service .

6.Console operations
6.1. Data overview

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or 10.1.60,
see mPaaS 10.1.68 upgrade guide (Android/iOS) or mPaaS 10.1.60 upgrade guide Android/iOS).

MPS provides statistics on message push data including pushed messages, successfully
pushed messages, message arrivals, opened messages, and ignored messages, and supports
filtering the data by platform, version, push channel, push type, and other criteria, and
exporting the data reports.

Prerequisites

e You have integrated MPS SDK based on the mPaaS framework.

¢ You have completed client tracking by referring to the following topics. All data involved in
usage analysis are collected from the SDK tracking logs.

o Android: Report push data

o j0S: Calculate message open rate

® Note

For iOS devices, currently you can only collect the message open rate.

View push data
To view the statistical data about MPS usage, you should complete the following steps:

1. Log in to the mPaaS console, select the target app, and enter the Message Push Service
> Overview page.

2. Set filter criteria to query statistical data. You can filter by platform, version, push
channel, push type, and time, or input a complete task ID to search.

® Note

Searching data with task ID only works for messages delivered through multiple push.
You can view the task ID on the Multiple push records page.

o Platform: The options include All platforms, Android - workspaceld, and iOS -
workspaceld. Available options depend on the existing push platforms with message
push and the push console which launches message push. For example, if no message
has been pushed to iOS devices, the iOS - workspaceld option is unavailable. In these
options, workspaceld indicates the workspace ID of the push console.

o Version: The value depends on tracking log reported by the client SDK. MPS gets the app
version based on MAS statistics.

o Push channel: The options include All push channels, MPS self-built channel, and
Third-party channel (such as MIUI, HMS, vivo, OPPO and iOS). Only when any message
push through the push channel occurred, the corresponding option is available. For
example, if no message has been pushed through MIUI (MiPush) channel, the MIUI option
is unavailable.

> Document Version: 20250731 70

© 2852, Message Push Service

User Guide-Console operation
S

o Push type: The options include All push types, Simple push - non-template based,
Simple push - template based, Multiple push - all devices, and Multiple push -
not all devices. Only when message push of the push type occurred, the corresponding
option is available. For example, if no template-based simple push occurred, the
corresponding option is unavailable.

o Time range: A maximum of 90 days is allowed.

Core metrics

Display the critical push data within a certain period, including the pushed messages,
successfully pushed messages, message arrivals, opened messages, ignored messages, etc.

Metrics

Pushed messages

Successfully pushed messages

Message arrivals

Arrival rate

Description

The total number of messages pushed by the backend, which is
counted by backend.

MPS automatically collects statistics on the actual number of
messages that have been pushed in the specified time period,
which is counted by backend. The statistics doesn't care whether
the messages were pushed within the specified time period.

e One push task may contain multiple target IDs, and MPS needs
to push a message to each of these targets.

o If a token has expired or a user binding relationship does not
exist, the target ID is invalid and MPS will not count the
messages pushed to this target.

The actual number of messages that have arrived at the client,
which is counted by client. The statistics doesn’t care whether the
messages were pushed within the specified time period.

For example, if the message arrivals during 2021.8.1 ~ 2021.8.7 is
100, it means 100 pieces of messages arrived at client during the
period. Among those 100 pieces of messages, some may be
pushed before August 1.

The data statistics varies with the push channels:

e Android self-built channel: After messages are successfully
pushed to devices, statistics are collected based on tracking log
data reported by the client SDK.

e iOS and Android third-party channels: After messages are
pushed through specified channels, statistics are collected based
on push results returned by backend services of these channels.

Arrival rate = (Message arrivals/Pushed messages) x 100%.

> Document Version: 20250731

71

© 2852, Message Push Service

User Guide:Console operati

on
S

Opened messages

Open rate

Ignored messages

Ignorance rate

Data trend

The actual number of messages that have been opened on the
client, which is counted by client. The value depends on tracking
log data reported by the client SDK. MPS obtains the number of
opened messages based on MAS statistics. The statistics doesn't
care whether the messages arrived at client within the specified
time period.

For example, if the number of opened messages during 2021.8.1 ~
2021.8.7 is 88, it means 88 pieces of messages were opened by
users during the period. Among those 88 pieces of messages, some
may have arrived at client before August 1.

Open rate = (Opened messages/Message arrivals) x 100%

The number of messages that are manually ignored by users on
the client. The statistics doesn't care whether the messages arrived
at client within the specified time period. The value depends on
tracking log data reported by the client SDK. MPS obtains the
number of ignored messages based on MAS statistics.

For example, if the number of ignored messages during 2021.8.1 ~
2021.8.7 is 66, it means 66 pieces of messages were manually
ignored by users during the period. Among those 66 pieces of
messages, some may have arrived at client before August 1.

Ignorance rate = (Ignored messages/Message arrivals) x 100%

Message push statistical data is presented in a line chart. You can click the metric legend
under the chart to hide or display the curve of a metric.

In the upper left corner of the chart, you can select Query by quantity or Query by rate to
view the metric statistics in quantity or rate curves.

e Query by quantity: Displays curves of pushed, arrived, opened, and ignored messages.

e Query by rate: Displays curves of the arrival rate, open rate, and ignorance rate.

In the upper right corner of the chart, you can select a granularity to display the chart by

minute, hour, or day.

¢ Minutes: The horizontal axis displays the time points (accurate to minutes) of pushed,
arrived, opened, and ignored messages.

¢ Hours: The horizontal axis displays the time points (accurate to hours) of pushed, arrived,

opened, and ignored messages.

e Days: The horizontal axis displays the time points (accurate to days) of pushed, arrived,
opened, and ignored messages.

® Note

If you set a duration longer than one day, Minutes and Hours will be unavailable.

Push details

Daily or hourly push details listed in the table are consistent with data displayed in the core

metric chart.

> Document Version: 20250731

72

éggwg Message Push Service User Guide-Console operation

ANT GROUP
S

e The time points in the Time column are obtained from the horizontal axis of the core metric
chart.

e The list contains the following core metrics: pushed messages, successfully pushed
messages, message arrivals (arrival rate), opened messages (open rate), and Ignored
messages (ignorance rate).

Click Export in the upper right corner to download the corresponding data.

6.2. Message management

6.2.1. Create a message - Simple push

Important

Since March 18th, 2022, mPaaS MPS console has been upgraded. On the new console, the
push types have been integrated and optimized from the previous four types (simple
push, template push, multiple push and broadcast push) to two types (simple push and
multiple push). The upgraded simple push covers the capabilities of the original simple
push and template push; the upgraded multiple push covers the capabilities of the
original multiple push and broadcast push.

Simple push refers to pushing a message to an individual user or device. When you pushing
messages in this mode, you can either customize messages or create messages based on a
predefined message template.

Customizing message is applicable for the scenarios of pushing messages to a few targets,
such as verifying the validity of Apple Push certificate and checking whether the Android Push
SDK is correctly integrated. The message template is suitable for the scenario of pushing
messages to multiple targets in multiple times. That is to verify and test the template
function by creating a template-based message through the console before the template
function is automatically or widely used.

® Note

e The messages are pushed immediately after they are created. You cannot delete or
modify them.

e Since manual operations are required, we recommend you push messages through
the console in the scenarios requiring low-frequency message push, such as
system verification, operation support, and temporary emergency requirement.

The following sections describe how to create a simple push message in the console.
Prerequisites

e To push messages to iOS devices, you should have integrated MPS iOS SDK (see Integrate
iOS SDK) and configured the iOS push certificate on the Channel configuration page in
the mPaa$S console. For more information, see Configure iOS push channel.

e To push messages through the Android vendor channels (also known as third-party
channels), you should have integrated MPS Android SDK (see Integrate Android SDK),
integrated relevant vendor channels (see Integrate vendor push channels) and completed
corresponding push channel setting on the Channel configuration page in the mPaaS
console. For more information, see Channel configuration.

Procedure

> Document Version: 20250731 73

© 2852, Message Push Service

User Guide-Console operation

S
1. Log in to the mPaaS console, select the target app, and go to the Message Push Service
> Message management page.
2. Click the Create message push task button, and in the pop-up dialog box, select the
Simple push tab.
3. On the simple push tab page, configure the basic information of the message. The
configuration items are as follows:
Parameter Required Description

Whether to display the message:

o Yes: Indicates that the message will not be displayed in
any form on the target device, and user has no sense
about it.

o No: Indicates that the message will be displayed in the
notification bar.

For Android devices, you need to perform different

operations according to the push channel that you have

selected:
Message type: Yes o MPS channel: This parameter is sent to the client as a
silent message reference field. You need to parse the message body
and get the content of this field, then control the display
of the message.

o Vendor channel: This parameter is sent to the target
device as a field. The device vendor's system will then
parse the content of this field, and control the display of
the message. You do not need to perform any other
operations.

For iOS devices, the display of messages is controlled by

the device vendor’s system. You do not need to perform

any other operations.

Create the message in either of the following ways:

Message content Yes o Create: Customizes message content, including
creation method message title, body and the presentation style.

o Use a template: Uses the predefined template.

Choose a message template from templates listed on the

Message templates page.

Template Yes ® Note
It is required only when you choose to create the
message based on a template.
Temblate Enter variable values in the template. The system provides
P Yes configuration options for placeholders in the selected
placeholder
template.
> Document Version: 20250731 74

pusd . Message Push Service

User Guide-Console operation
s

Parameter Required

Push dimension Yes

User ID/Device

D Yes

Push priority of
Android message = yeg
channels

Description

Select the message delivery mode:

o Users: Push messages by user ID. You need to call the
bind API to bind the user ID with device ID. For more
information about the binding API, see Client APIs.

o Android: Push messages by Android device ID.

o i0S: Push messages by iOS device ID.

Input the corresponding user ID or device ID according to
the push dimension you chose.

o When the push dimension is Android, input the Ad-
token.

o When the push dimension is iOS, input the Device
Token.

o When the push dimension is user, input the actual user
ID, that is the value of userid passed in when you
called the binding API.

o [f there is any space in the device ID obtained from
sources such as logs, you need to delete the space.

Only available for Android push platform.

o Vendor channels preferred: Vendor channels are
preferred. If vendor channels are integrated, messages
are pushed through the corresponding vendor channels;
if no vendor channel is integrated to the app, the
messages are pushed through MPS self-built channel.

o MPS channel: MPS uses the self-built channel to push
messages.

For Android devices, this parameter specifies whether to
push messages through an MPS self-built channel or
vendor channel. For iOS devices, you do not need to set
this parameter (iOS push belongs to vendor channel push).

> Document Version: 20250731

75

pusd . Message Push Service

User Guide-Console operation
s

Parameter Required
Display style Yes
Message title Yes

Message content Yes

Icon No

Description

The style that how the message is displayed on the client.
You can choose any one of the following three styles:
Default (short text), Big text, and Rich text.

o Default: This style is suitable for messages with
concise and clear content. The message of this style
contains title and text only. It is recommended to keep
the length of the message text within 100 characters,
including custom parameters and symbols.

o Big text: This style is suitable for messages with long
text, such as information and news messages, so users
can quickly obtain information without opening the
application. The message of this style contains title and
text only. It is recommended to keep the length of the
message text within 256 characters, including custom
parameters and symbols.

o Rich text: This style supports the messages containing
icon and image, suitable for the messages with various
content. To ensure good message presentation effect, it
is better to keep the text within two lines.

Enter the title of the message with no more than 200
characters. The message display effect can be previewed
in the preview area.

Enter the message boy with no more than 200 characters.
The message display effect can be previewed in the
preview area.

The icon displayed on the right of the message, which can
be JPG, JPEG or PNG image. Enter the public accessible URL
of the icon here.

If you only provide the default icon URL while no materials
are uploaded for the corresponding vendor channels, the
default icon will be automatically pulled and used for the
messages pushed through the vendor channels. Since the
vendor channels have different requirements on the icon
material, it is suggested to upload the material for each
vendor channel separately according to their
requirements.

o Default icon: The suggested size is 140 * 140px, not
exceeding 50 KB.

o OPPO icon: The suggested size is 140 * 140px, not
exceeding 50 KB.

o Xiaomi icon: The suggested size is 120 * 120px, not
exceeding 50 KB.

o Huawei icon: The suggested size is 40 * 40dp, not
exceeding 512 KB.

o FCM icon: If no specific requirement applies, the
default icon will be automatically used.

> Document Version: 20250731

76

© 2852, Message Push Service

User Guide-Console operation

s
Parameter Required Description
The image displayed at the lower part of the message,
which can be JPG, JPEG or PNG image. Enter the public
accessible URL of the image here.
If you only provide the default image URL while no
materials are uploaded for the corresponding vendor
channels, the default large image will be automatically
pulled and used for the messages pushed through the
vendor channels. Since the vendor channels have different
requirements on the image, it is suggested to upload the
material for each vendor channel separately according to
their requirements.
Large image No o Default large image: The suggested size is 876 *
324px, not exceeding 1 MB.
o OPPO large image: The suggested size is 876 * 324px,
not exceeding 1 MB.
o Xiaomi large image: The suggested size is 876 *
324px, not exceeding 1 MB.
o iOS large image: Supports custom images, without
limitation on image size.
o FCM large image: If no specific requirement applies,
the default image will be automatically used.
Select the time to push message:
o Now: Push the message immediately once the message
push task is created.
o Scheduled: Specify a time to push the message. For
Push mode Yes example, push the message at 8:00 am on June 19th.
o Cyclic: Push the message at a specific time cyclically
within a period. For example, push the message at 8:00
am every Friday from June 1st to September 30th.

The preview area is on the right side of the message creation window. To preview the

message display effects for different platforms respectively, click Notification, iOS

message body and Android message body.
4. (Optional) Configure the advanced information on demand. In the Advanced information
area, complete the following configurations:

o Redirect upon click: Specify the operation to be performed after a user taps the
message on the phone. This parameter is sent to the client as a reference field. You need
to implement subsequent operations by referring to the field.
= Web page: Users will be redirected to a Web page.
= Custom page: Users will be redirected to a native page.

o Redirection address: The page to be visited after a user taps the message on the
mobile phone. Enter the address according to the option you chose.
= For Web page, enter the URL of the web page to be visited.
= For custom page, enter the address of the native page to be visited (Android:

ActivityName; iOS: VCName).
> Document Version: 20250731 77

égswg Message Push Service User Guide-Console operation

ANT GROUP
S

o Custom message ID: Custom message ID is automatically generated by the system to
uniquely identify the message in the client's system. It can be customized and a
maximum of 64 characters are allowed.

® Note

Custom message ID is required for silent message only.

o Valid period: Specify the valid period of the message in seconds. To ensure the
message arrival rate, when a message fails to be sent because the device is offline or the
user is logged out, MPS will resend it after the device is connected or a user binding
request is initiated within the validity period of the message. It is 180 seconds by default.

® Note

The valid period cannot be shorter than 180 seconds or longer than 72 hours.

o Extension parameters: Turn the switch on, click Add parameter, set the key/value,
and left click on any area of the page to complete setting. The extension parameters are
passed to the client together with the message body for your use.

Extension parameters include the following three types:
= System extension parameters

These extension parameters are occupied by the system, and cannot be modified.
System extension parameters include notifyType , action , silent , pushType

templateCode , channel ,and taskId

’

> Document Version: 20250731 78

User Guide-Console operation

© 2852, Message Push Service .

= System extension parameters with some significance

These extension parameters are occupied by the system and have some significance.
You can configure values of these extension parameters.

For more information about these parameters, see the following table.

Parameter Description

The custom ringtone of the message. The value of this
sound parameter is the path of the ringtone. This parameter is only
valid for Xiaomi phones and iPhones.

Badge number. Its value is a specific number. This extension
parameter will be passed to the client together with the
message body.

= For Android devices, you need to implement the badge logic
badge by yourself.

= For iOS devices, i0S system automatically implements the
badge logic. When a message is pushed to the target
mobile phone, the number that you specified in value
appears in the badge of the app icon.

The APNs custom push identifier. If a pushed message carries
this parameter, it indicates that the
UNNotificationServiceExtension 0f iOS10 is supported,

otherwise it is a normal push. The value is set to 1.

mutable-content

Accumulative badge number, only available in Huawei

badge add num channel.

Activity class corresponding to the desktop app icon in Huawei

badge class channel.
Big text style, the value is fixed to 1, and other values are
big text invalid. This parameter is only valid for Xiaomi and Huawei

phones.

m User-defined extension parameters

All other parameters than system extension parameters and system extension
parameters with some significance are user-defined extension parameters. User-
defined extension parameters are passed to the client together with the message body
for your use.

5. Click Submit to complete creating the message. The new message will appear in the
simple push records.

In addition to console operation, you can also push messages by calling relevant APIs. For
more information, see Server APIs.

Relevant operations

e Create a message - Multiple push

> Document Version: 20250731 79

© 2852, Message Push Service

User Guide-Console operation

S

e Call API to push messages

e Manage messages

6.2.2. Create a message - Multiple push

Important

Since March 18th, 2022, mPaaS MPS console has been upgraded. On the new console, the
push types have been integrated and optimized from the previous four types (simple
push, template push, multiple push and broadcast push) to two types (simple push and
multiple push). The upgraded simple push covers the capabilities of the original simple
push and template push; the upgraded multiple push covers the capabilities of the
original multiple push and broadcast push.

Multiple push is mainly used to push messages to a large number of users to meet some
operation needs.

The multiple push falls into network-wide push and non network-wide push.

¢ Network-wide push refers to pushing the same template-based message to all Android and
iOS networking devices, which only supports pushing by devices.

When you push a message to Android devices, all the Android devices that are connected
in the message validity period can receive the message; when you push a message to iOS
devices, all the iOS devices that are bound in the message validity period can receive the
message.

* Non network-wide push refers to pushing the same template-based message to specified
user groups.

You can manually upload a group of message receivers, customize tagged user groups, or
use the MAS groups.

® Note

e The messages are pushed immediately after they are created. You cannot delete or
modify them.

e Since manual operations are required, we recommend you push messages through
the console in the scenarios requiring low-frequency message push, such as
system verification, operation support, and temporary emergency requirement.

The following sections describe how to create a multiple push message in the console.

Prerequisites

e To push messages to iOS devices, you should have integrated MPS iOS SDK (see Integrate
iOS SDK) and configured the iOS push certificate on the Channel configuration page in
mPaaS console. For more information, see Configure iOS push channel.

e To push messages through the Android vendor channels (also known as third-party
channels), you should have integrated MPS Android SDK (see Integrate Android SDK),
accessed relevant vendor channels (see Integrate vendor push channels) and completed
corresponding push channel setting on the Channel configuration page in mPaa$S
console. For more information, see Channel configuration.

e Before creating a multiple push task, you need to prepare a template. For how to create a
template, see Create a message template.

> Document Version: 20250731 80

User Guide-Console operation

© 2852, Message Push Service .

e When you create a multiple push task, if you choose to call the MAS group as the target
audiences, you should create a MAS group in advance. For details, see Create user group. If
you choose a tagged user group as the target audiences, you should create a tagged user
group in advance. For details, see Create a user tag.

Procedure

1. Log in to the mPaaS console, select the target app, and go to the Message Push Service
> Message management page.

2. Click the Create message push task button, and in the pop-up dialog box, select the
Multiple push tab.

3. On the multiple push tab page, configure the basic information of the message. The
configuration items are as follows:

Parameter Required Description

Whether to display the message:

o Yes: Indicates that the message will not be displayed in
any form on the target device, and user has no sense
about it.

o No: Indicates that the message will be displayed in the
notification bar.

For Android devices, you need to perform different
operations according to the push channel that you have
selected:

Message type: Yes o MPS channel: This parameter is sent to the client as a

silent message reference field. You need to parse the message body
and get the content of this field, then control the display
of the message.

o Vendor channel: This parameter is sent to the target
device as a field. The device vendor's system will then
parse the content of this field, and control the display of
the message. You do not need to perform any other
operations.

For iOS devices, the display of messages is controlled by
the device vendor’s system. You do not need to perform
any other operations.

Select the message delivery mode:

o Users: Push messages by user ID. You need to call the
Push dimension Yes bind API to bind the user ID with device ID. For more
information about the binding API, see Client APIs.

o Devices: Push messages by device ID.

> Document Version: 20250731 81

User Guide-Console operation

pusd . Message Push Service .

When you choose the push dimension as Devices, you
need to select a push platform to specify the type of the
target device.

o Android: MPS provides vendor channels and MPS self-
build channel to push the message to the network-wide
Push platform Yes online Android devices (in valid period) or specified
Android devices. The message will be pushed only once
for each device.

o i0S: Use the vendor channel to push the message to the
network-wide or specified iOS devices. The message will
be pushed only once for each device.

o When you choose the push dimension asUsers, you
have the following options:

= Upload a group: Upload the file containing target IDs
and the personalized configuration of each target ID
based on the selected template. Every data record in
the file represents a message, which is identified by a
customer message ID. Requirements for the file
format are as follows:

= The format of each data record: target
ID,customer message ID,placeholder
1=XXX;placeholder 2=XXX.. , where the customer
message ID can be user customized.

= The file encoding type must be UTF-8 and the
maximum file size is 200 MB. Separate multiple
data records with line breaks. Each data record
must be 1~250 characters in length. Only one file
can be uploaded in one push task.

After a file is successfully uploaded, its icon is
displayed below the Upload button. You can
preview up to 10 data records of the file by clicking
the icon.

= MAS group: Call the MAS group and push the same
message to the specified group users. You need to
create a MAS group first. For details, see Create user
group. If the message template includes any
placeholder, this option is unavailable.

= User tags: Select the target groups by tag. You
should create a tagged user group first. For details,
see Create a user tag.

o When you choose the push dimension as Devices, you
have the following options:

= All devices: Push the message to all devices of the
Select push selected platform.

targets Yes

> Document Version: 20250731 82

pusd . Message Push Service

User Guide-Console operation

S

Template Yes

Template

placeholder WEs

Push priority of
Android message Yes
channels

Push mode Yes

= Partial devices: Upload the file containing target IDs
and the personalized configuration of each target ID
based on the selected template. Every data record in
the file represents a message, which is identified by a
customer message ID. Requirements for the file
format are as follows:

= The format of each data record: target
ID, customer message ID,placeholder
1=XXX;placeholder 2=XXX.. , where the customer
message ID can be user customized.

= The file encoding type must be UTF-8 and the
maximum file size is 200 MB. Separate multiple
data records with line breaks. Each data record
must be 1~250 characters in length. Only one file
can be uploaded in one push task.

After a file is successfully uploaded, its icon is
displayed below the Upload button. You can
preview up to 10 data records of the file by clicking
the icon.

= MAS group: Call the MAS group and push the same
message to the specified group users. You need to
create a MAS group first. For details, see Create user
group. If the message template includes any
placeholder, this option is unavailable.

Choose a message template from templates listed on the
Message templates page.

Enter variable values in the template. The system provides
configuration options for placeholders in the selected
template.

Only available for Android push platform.

o Vendor channels preferred: Vendor channels are
preferred. If vendor channels are integrated, messages
are pushed through the corresponding vendor channels;
if no vendor channel is integrated to the app, the
messages are pushed through MPS self-built channel.

o MPS channel: MPS uses the self-built channel to push
messages.

For Android devices, this parameter specifies whether to
push messages through an MPS self-built channel or
vendor channel. For iOS devices, you do not need to set
this parameter (iOS push belongs to vendor channel push).

Select the time to push message:

o Now: Push the message immediately once the message
push task is created.

o Scheduled: Specify a time to push the message. For
example, push the message at 8:00 am on June 19th.

o Cyclic: Push the message at a specific time cyclically
within a period. For example, push the message at 8:00
am every Friday from June 1st to September 30th.

> Document Version: 20250731

83

User Guide-Console operation

© 2852, Message Push Service .

The preview area is on the right side of the message creation window. To preview the
message display effects for different platforms respectively, click Notification, i0OS
message body and Android message body.

4. (Optional) Configure the advanced information on demand. In the Advanced information
area, complete the following configurations:

o Redirect upon click: Specify the operation to be performed after a user taps the
message on the phone. This parameter is sent to the client as a reference field. You need
to implement subsequent operations by referring to the field.

= Web page: Users will be redirected to a Web page.

= Custom page: Users will be redirected to a native page.

o Redirection address: The page to be visited after a user taps the message on the
mobile phone. Enter the address according to the option you chose.

= For Web page, enter the URL of the web page to be visited.

= For custom page, enter the address of the native page to be visited (Android:
ActivityName; iOS: VCName).

o Login status: Specify target users according to login status. When you select the
login/logout period, Permanent means no time limit, namely pushing messages to all
login/logout users.

Important

Login status is unconfigurable when you use Android push platform and push
messages through MPS self-built channel.

= If you select Login users, MPS will push messages to the users who logged in to the
App in the specified time period. For example, if the login period is 15 days, it means
pushing messages to the users who logged in to the App in recent 15 days.

= If you select Logout users, MPS will push messages to the users who logged out from
the App in the specified time period. For example, if the logout period is 15 days, it
means pushing messages to the users who logged out in recent 15 days.

= |f you select both Login users and Logout users, MPS will push messages to the
users who logged in to the App and logged out in the specified time period. For
example, if the login period is permanent while the logout period is 7 days, it means
pushing messages to all login users and the users who logged out in recent 7 days.

o Custom message ID: Custom message ID is automatically generated by the system to
uniquely identify the message in the client's system. It can be customized and a
maximum of 64 characters are allowed.

o Valid period: Specify the valid period of the message in seconds. It is 180 seconds by
default. To ensure the message arrival rate, when a message fails to be sent because the
device is offline or the user is logged out, MPS will resend it after the device is connected
or a user binding request is initiated within the validity period of the message.

o Extension parameters: Turn the switch on, click Add parameter, set the key/value,
and left click on any area of the page to complete setting. The extension parameters are
passed to the client together with the message body for your use.

Extension parameters include the following three types:

> Document Version: 20250731 84

User Guide-Console operation

© 2852, Message Push Service .

= System extension parameters

These extension parameters are occupied by the system, and cannot be modified.
System extension parameters
include notifyType , action , silent , pushType , templateCode , channel ,

and taskId

= System extension parameters with some significance

These extension parameters are occupied by the system and have some significance.
You can configure values of these extension parameters.

For more information about these parameters, see the following table.

Parameter Description

The custom ringtone of the message. The value of this parameter is
sound the path of the ringtone. This parameter is only valid for Xiaomi
phones and iPhones.

Badge number. Its value is a specific number. This extension
parameter will be passed to the client together with the message
body.

= For Android devices, you need to implement the badge logic by
badge yourself.

= For iOS devices, iOS system automatically implements the badge
logic. When a message is pushed to the target mobile phone, the
number that you specified in value appears in the badge of the App
icon.

The APNs custom push identifier. If a pushed message carries this
parameter, it indicates that the
UNNotificationServiceExtension 0f i0OS10 is supported,

otherwise it is a normal push. The value is set to 1.

mutable-content

badge add num Accumulative badge number, only available in Huawei channel.

Activity class corresponding to the desktop App icon in Huawei

badge class
channel.

Big text style, the value is fixed to 1, and other values are invalid. This

big_text parameter is only valid for Xiaomi and Huawei phones.

= User-defined extension parameters

All other parameters than system extension parameters and system extension
parameters with some significance are user-defined extension parameters. User-
defined extension parameters are passed to the client together with the message body
for your use.

5. Click Submit to complete creating the message. The new message will appear in the
multiple push records.

In addition to console operation, you can also push messages by calling relevant APIs. For
more information, see Server APIs.

> Document Version: 20250731 85

User Guide-Console operation

© 2852, Message Push Service .

Relevant operations
e Create a message - Simple push
e Call API to push messages

e Manage messages

6.2.3. Manage simple push messages

The Simple push records tab page shows the relevant information of simple push
messages created in the last 30 days., and you can query the historical messages. The list
only displays the messages pushed through the console. For the messages pushed by calling
simple push API, you can query the message details by device/user ID or custom message ID.

View push details

1. Log in to the mPaaS console, select your app, and enter the Message Push Service >
Message management > Simple push records page.

2. In the search box displayed in the upper right corner, enter a complete device ID, user ID or
customer message ID to search for the message. The message with the specified target ID
and customer message ID will be displayed in the message list.

® Note

You can only search for simple push messages created in the last 30 days.

Messages are sorted in descending order by creation time by default. The information
displayed in the list includes:

o Customer message ID: It is customized by user or automatically generated by system.
o Push time: It refers to the time when the message was pushed, accurate to seconds.

o Push mode: It indicates that the message was pushed immediately upon creation or was
pushed in schedule.

o Push dimension: It indicates that the message was pushed by user, Android device or
iOS device.

o Target ID: user ID or device ID.
o Message title: the title of a message.

o Creation time: The time when the message was successfully created, accurate to
seconds.

o Push status: Shows the push status of a message. To learn the status codes and
corresponding description, see Message push status codes.

3. To view the push details of a message, click the Expand button (+) of the target message
on the list.

Then the following information appears:

o Message ID: It refers to the unique identifier of a message automatically generated by
MPS.

o Offline retention period: It refers to the time when a message expires. If a message
has not been sent successfully, MPS will resend it after the device is connected or a user
binding request is initiated. However, if the message expires, MPS will not resend it.

o Display type: Shows that the message is a plain text message, a big text message or a
rich text message.

> Document Version: 20250731 86

User Guide-Console operation

© 2852, Message Push Service .

o Extension parameters: Shows the extension parameters added during message
creation.

o Message content: message body.

Revoke messages

It is supported to revoke the messages that have been pushed in past 7 days. For more
information, see Message revocation.

Silent messages will be immediately withdrawn once you revoke them, and the client-side
users have no sense about that. For non-silent messages, stop pushing the ones not arriving
user devices, and cancel presenting the ones that have arrived the user devices but not
appeared.

® Note

The messages with "Failed" push status cannot be revoked.

6.2.4. Manage multiple push messages

Message Push Service (MPS) provides real-time statistics on the multiple-push and broadcast-
push tasks that are created through MPS console or triggered by calling API to help you get
the message push status.

View push tasks

1. Log in to the mPaaS console, select your app, and enter the Message Push Service >
Message management > Multiple push records page.

2. In the search box displayed in the upper right corner, enter a complete push task ID or task
name, and specify the time range to search the tasks. The eligible tasks will appear in the
task list.

In the task list, the tasks are sorted in descending order by creation time. The task
information displayed includes:

o Task ID: The unique identifier of the push task, which is automatically generated by the
system.

o Task name (API): If the push task is delivered through the MPS console, the task name
is automatically generated by the system, usually named in the format “console + time”,
for example, “Console Wed Mar 24 14:47: 23 CST 202”; if the task is triggered by calling
an API, the task name is the name filled in by the caller.

o Push type: It indicates that the message was pushed immediately upon creation or was
pushed in schedule.

3. To view the push details, click the Expand button (+) of the target task on the list.

o Pushed messages: Refers to the total number of messages pushed by message push
backend, which is counted by the backend.

o Successfully pushed messages: Refers to the total number of messages successfully
pushed by message push backend, which is counted by the backend.

o Message arrivals: The number of messages that actually arrive the device. For iOS
channel or Android third-party channels (such as Xiaomi and Huawei), the statistics relies
on the result returned from the corresponding third-party channel’s backend after the
messages are pushed to the third-party channels. For the Android self-built channel, the
statistics relies on the tracking report after the messages are pushed the client.

> Document Version: 20250731 87

User Guide-Console operation

© 2852, Message Push Service .

o Offline retention period: Indicates the validity period of the message. In the validity
period, MPS delivers the message to the target devices or users once the target devices
get connected or the users initiate a binding request till the message is pushed
successfully. Once the message expires, the MPS will no longer deliver the message.

Revoke messages

It is supported to revoke the messages that have been pushed in past 7 days. For more
information, see Message revocation.

Silent messages will be immediately withdrawn once you revoke them, and the client-side
users have no sense about that. For non-silent messages, stop pushing the ones not arriving
user devices, and cancel presenting the ones that have arrived the user devices but not
appeared.

® Note

The messages with "Failed" push status cannot be revoked.

6.2.5. Manage scheduled push task

All scheduled push tasks and cyclic push tasks created through the mPaaS console and
triggered by calling APIs are displayed in the scheduled push task list. One cyclic push task
may contain one or more scheduled push tasks.

View a scheduled push task

1. Log in to the mPaaS console, and select a target app. In the navigation pane on the left,
choose Message Push Service > Message management > Scheduled push tasks.

2. In the search bars in the upper right of the displayed Scheduled push task tab page,
specify the scheduled push time and the push type, enter a push task ID, and click the

Search button («) to search. Or you can press Enter to search. The tasks that are found

will be displayed in the list.

By default, scheduled push tasks are sorted by creation time in descending order. The
information displayed in the list includes:

3. Specify the push type and the scheduled push time to filter messages, and enter a push
task ID to search for messages. The results that are found will be displayed in the message
list. Note that the push type can be mPaaS console or APl and all push types are displayed
by default. By default, messages in the message list are sorted by creation time in
descending order. The information displayed in the list includes:

o Scheduled push time: push time specified when you create a push task.

o Task ID: unique ID of a scheduled push task. The task ID is generated automatically by
the system.

o Push mode: scheduled and cyclic.

o Push dimension: the push dimension of a message, which can be users or devices.
o Message title: the title of a message.

o Message body: the body content of a message.

o Push type: simple push and multiple push.

o Creation method: the creation mode of a message. You can push a message through
the mPaaS console or by calling APIs.

o Push status: indicates whether a scheduled push task has been implemented.

> Document Version: 20250731 88

User Guide-Console operation

© 2852, Message Push Service .

Cancel a scheduled push task

A scheduled push task that has not been implemented can be canceled. Each cyclic push task
contains one or more scheduled push tasks. When you cancel a cyclic push task, you need to
confirm whether to cancel the latest scheduled push task or all scheduled push tasks.

With Message Push Service (MPS), you can cancel a scheduled push task by the mPaaS
console or by calling APIs. For more details, see section Cancel a scheduled push task.

6.3. Message templates

6.3.1. Create a message template

A template consists of the body, placeholders and some other attributes. You can use
placeholders to specify dynamic content in the template. Only templates with placeholders
can be used to send personalized messages.

You can use templates to flexibly configure messages and eliminate input of repeated
content.

In a template, you can mark the dynamic part in the title, body, and redirection URL by
using the format of #placeholder name#.

Procedure

1. Log in to the mPaaS console, select your app, and enter the Message Push Service >
Message templates page.

2. On the right page, click the Create template button, and in the pop-up template creation
window, configure template information. The following table describes related parameters.

Parameter Required Description

Template name, created in the console. The name must be

1 to 200 characters in length, and can contain letters,

digits, and underscores (_). The name must be unique, and

it will be used to identify the template in API calling.
Template name Yes

® Note

The template name cannot contain commas.

The description of the template. The description must be 1
Description Yes to 200 characters in length, and can contain letters,
numbers, and underscores (_).

The title of the template. The title must be 1 ~ 200

Template title Yes characters in length.

The body of the template. The text must be 1 ~ 200

Template body ves characters in length.

> Document Version: 20250731 89

pusd . Message Push Service

User Guide-Console operation

S

Message type:

. Yes
silent message

Display style Yes

Whether to display the message:

o

Yes: Indicates that the message will not be displayed in
any form on the target device, and user has no sense
about it.

No: Indicates that the message will be displayed in the
notification bar.

For Android devices, you need to perform different
operations according to the push channel that you have
selected:

o

MPS channel: This parameter is sent to the client as a
reference field. You need to parse the message body
and get the content of this field, then control the display
of the message.

Vendor channel: This parameter is sent to the target
device as a field. The device vendor's system will then
parse the content of this field, and control the display of
the message. You do not need to perform any other
operations.

For iOS devices, the display of messages is controlled by
the device vendor’s system. You do not need to perform
any other operations.

The style that how the message is displayed on the client.
You can choose any one of the following three styles:
Default (short text), Big text, and Rich text.

o

Default: This style is suitable for messages with
concise and clear content. The message of this style
contains title and text only. It is recommended to keep
the length of the message text within 100 characters,
including custom parameters and symbols.

Big text: This is style is suitable for messages with long
text, such as information and news messages, so users
can quickly obtain information without opening the
application. The message of this style contains title and
text only. It is recommended to keep the length of the
message text within 256 characters, including custom
parameters and symbols.

Rich text: This style supports the messages containing
icon and image, suitable for the messages with various

content. To ensure good message presentation effect, it
is better to keep the text within two lines.

> Document Version: 20250731

90

User Guide-Console operation

pusd . Message Push Service .

The icon displayed on the right of the message, which can
be JPG, JPEG or PNG image. Enter the public accessible URL
of the icon here.

If you only provide the default icon URL while no materials
are uploaded for the corresponding third-party channels,
the default icon will be automatically pulled and used for
the messages pushed through the third-party channels.
Since the third-party channels have different requirements
on the icon material, it is suggested to upload the material
for each third-party channel separately according to their
requirements.

Icon No o Default icon: The suggested size is 140 * 140px, not

exceeding 50 KB.

o OPPO icon: The suggested size is 140 * 140px, not
exceeding 50 KB.

o Xiaomi icon: The suggested size is 120 * 120px, not
exceeding 50 KB.

o Huawei icon: The suggested size is 40 * 40dp, not
exceeding 512 KB.

o FCM icon: If no specific requirement applies, the
default icon will be automatically used.

The image displayed at the lower part of the message,
which can be JPG, JPEG or PNG image. Enter the public
accessible URL of the image here.

If you only provide the default image URL while no
materials are uploaded for the corresponding third-party
channels, the default large image will be automatically
pulled and used for the messages pushed through the
third-party channels. Since the third-party channels have
different requirements on the image, it is suggested to
upload the material for each third-party channel
separately according to their requirements.

Large image No o Default large image: The suggested size is 876 *
324px, not exceeding 1 MB.

o OPPO large image: The suggested size is 876 * 324px,
not exceeding 1 MB.

o Xiaomi large image: The suggested size is 876 *
324px, not exceeding 1 MB.

o iOS large image: Support custom images, without
limitation on image size.

o FCM large image: If no specific requirement applies,
the default image will be automatically used.

> Document Version: 20250731 91

© 2852, Message Push Service

User Guide-Console operation

S

Redirect upon

click Yes
Redirection No
address

This parameter is sent to the client as a reference field.
You need to implement subsequent operations by referring
to the field.

o Web page: Users will be redirected to a Web page. Itis
required to enter the URL of the web page to be visited.

o Custom page: Users will be redirected to a native
page. It is required to enter the address of the native
page to be visited (Android: ActivityName; iOS:
VCName).

The page to be visited after a user taps the message on
the mobile phone. This parameter will be sent to the client
as a reference. You need to develop the implementation
logic by yourself. Set this parameter based on the value of
Redirect upon click.

3. Click Submit to create the template. When the template is created successfully, the
Message templates page is displayed, with the new template listed at the top.

6.3.2. Manage message templates

The template list displays information about existing message templates. You can view or

delete them as required.

View the template list

1. Log in to the mPaaS console, select your app, and enter the Message Push Service >

Message templates page.

Templates are listed in descending order by creation time . You can view the name,
description, body, and creation time of the template.

2. Click View in the Operations column of the target template to view detailed information

about the template.

Delete a template

The procedure is as follows:

1. On the template list, click Delete in the Operations column of the target template.

2. In the dialog box that appears, click OK. Then the template is deleted.

® Note

Before deleting a template, ensure that it is not used for any messages to be sent.
Otherwise, the corresponding messages cannot be sent.

6.4. Message revocation

Message Push Service (MPS) enables you to revoke messages that have been pushed. With

this function, notifications that have been sent but not viewed or cleared will disappear from

the device notification bar. To reduce business loss and related impacts, this function mainly
applies to the following two scenarios: 1. Wrong messages are pushed due to misoperations;
2. Messages that have been pushed but need to be revoked urgently in case of temporary

business changes.

> Document Version: 20250731

92

© 2852, Message Push Service

User Guide:Console operati

on
S

You can query the message status and revoke messages through the mPaaS console. In
addition, MPS supports backend APIs. You can revoke messages by calling APIs in the

business system.

The mode of implementing message revocation varies with the push channel. The following

table describes the specific details.

Revocation
Push channel supported or

not

Huawei Yes

Xiaomi Yes

OPPO Yes

Vendor channel
Vivo Yes
Apple (i0S) Yes

How it works

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

Revoke a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be directly
cleared. That is, the message will
disappear from the notification bar.

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

> Document Version: 20250731

93

© 2852, Message Push Service

User Guide-Console operation

S

Revocation

Push channel supported or
not
MPS self-built channel Yes
SMS push No

How it works

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

The SMS messages that have been
sent cannot be revoked.

Revoke a message by the mPaaS console

1. Log in to the mPaaS console, and select a target app. In the navigation pane on the left,
choose Message Push Service > Message management.

2. Select a message push task type to enter the message list page.

3. Select a message to be revoked, click Revoke, and click OK. After you perform the
revocation operation, a message that is being pushed will not be pushed. A message that
has been pushed but is not displayed will not be displayed.

Revoke a message by calling APIs

A message pushed in the simple push mode can be revoked by the message ID. A message
pushed in the multiple push mode can be revoked by the task ID. Only messages in recent 7

days can be revoked.

For how to revoke a message by calling APIs, see the documentation listed in Message

revocation API.

6.5. User tag management

With Message Push Service (MPS), you can set tags to customize user groups to whom
messages are pushed to facilitate user management. If you set a user tag when you push a
message, you can push the message to all the users marked with such tag.

A tag is one attribute that describes the basic attribute, hobbies, and behavior characteristics
of a user. After you set one tag for users, you can use such tag to select the user group with
the same characteristic. In this way, messages are accurately pushed to targeted users. For
example, you can set one tag called "Female" for female users. Then, you can select the user
group marked with such tag and push messages to the group on International Women's Day.

Users have a many-to-many relationship with tags. That is, one user can correspond to
multiple tags, and one tag can also correspond to multiple users.

Create a user tag

To create a user tag is to tag a group of users with the same characteristic.

The procedure is as follows:

1. Log in to the mPaaS console, and select a target app. In the navigation pane on the left,

choose Message Push Service >

Settings > User tag management.

> Document Version: 20250731

94

User Guide-Console operation

© 2852, Message Push Service .

2. Click Create user tag. In the displayed Create user tag page, enter a tag name and add a
group. Two ways of adding a group are as follows:

o Tag name: presents the group characteristic directly to facilitate user management. Any
character is supported. A maximum of 30 characters are allowed. The tag name should
be unique in an app.

o Add a group: supports adding users directly and importing a file including user IDs.

= Add directly: enter one or more user IDs in a text box. User IDs are separated with ",".
Each record cannot exceed 60 characters in length; otherwise, the excess content will
not be added. A maximum of 10,000 characters are allowed.

= Import file: upload a .txt file that contains the user ID. The file size cannot exceed 100
MB. User IDs are separated with a line break in a file. Each record cannot exceed 60
characters in length; otherwise, the excess content will not be added. A maximum of
500,000 user IDs can be uploaded. When you import user IDs, the system
automatically deduplicates the IDs.

3. After you complete the configuration, click Submit. A new user tag is created. The new
user tag will be displayed in the list.

View a user tag

All user tags in the list are displayed by creation time in descending order. The tag name, tag
ID, users, creation time, and update time are displayed in the user tag list. Where:

e Tag ID: generated automatically by the system after you create a user tag successfully.
e Users: the number of user IDs contained in the user group.

In the user tag list, click Details in the Operations column to view the user tag information.

Edit a user tag

In the user tag list, click Edit in the Operations column to edit the tag name or modify the
user information that corresponds to the tag.

For detailed operations of modifying the user information corresponding to a tag, see the
content of adding a group described in Create a user tag.

Delete a user tag

In the user tag list, click Delete in the Operations column to delete the user tag. When you
delete a user tag, all the user information corresponding to the user tag will be deleted.

Export a user list

In the user tag list, click Export in the Operations column to download the user list that
corresponds to the tag.

6.6. Device status query

Message Push Service (MPS) supports querying the status of the target devices to which the
messages are pushed by user ID (Userld) or device ID (Deviceld). You can check device status
to facilitate troubleshooting in case of any pushing problems.

Complete the following steps to query device status:

1. Log in to the mPaaS console, select the target app, and go to the Message Push Service
> Query tool page from the left navigation pane to enter the device status query page.

2. Set the query criteria to query the status of the target device.

> Document Version: 20250731 95

User Guide-Console operation

© 2852, Message Push Service .

Select the query dimension, User ID or Device ID, enter the corresponding user ID or
device ID, and then press Enter or click the search icon to query the relevant information of
the device. The queried information includes user ID , device ID, self-built Token, vendor
Token, platform, device manufacturer, and self-built channel status.

Where,

o User ID: It refers to the userid value passed in when the user calls the binding
interface.

o Device ID: For Android device, it refers to the self-built channel token; for iOS device, it
refers to the APNS token.

o Self-built Token: It refers to the identifier of self-built channel.
o Vendor Token: It refers to the identifier of the vendor channel.

o Self-built channel status: It indicates whether the self-built channel of the current
device is online.

= For Android device, the device status is either Online or Offline.

= For iOS device, since the iOS platform completes message push through the third-party
channel, so the device status is always Unknown.

6.7. Channel configuration

This topic describes how to configure push channels for Android and iOS.

Configure an Android push channel

To improve the reach rate of push, mPaaSs integrates push channels from vendors such as
Huawei, Xiaomi, OPPO, and vivo. Use Xiaomi notification bar messages, Huawei notification
bar messages, OPPO notification bar messages and vivo notification bar messages to achieve
message push. When the application is not run time, a notification can still be sent, and the
user can activate the process by clicking on the notification bar.

® Note

After you connect a manufacture-owned push channel, your application can achieve
stable push performance. Therefore, we recommend that you connect the manufacture-
owned push channel to your application.

This article will guide you to complete the console-side configuration required when you
access the Xiaomi, Huawei, OPPO, and vivo push channels.

e Configure a Huawei push channel
e Configure a HONOR push channel
e Configure a Xiaomi push channel
e Configure an OPPO push channel
e Configure a vivo push channel

e Configure an FCM push channel

Prerequisites

You must configure the client-side access. For more information, see Connect the
manufacture push channel.

Procedure
Configure a Huawei push channel

> Document Version: 20250731 96

© 2852, Message Push Service

User Guide-Console operation

S

1. In the left-side navigation pane, choose Message Push Service > Settings > Channel
Configuration.

2. Click Configure in the upper-right corner of the Huawei Push Channel section. The
configuration entry is displayed.

Huawei push channel

satus: @D
* Package name: = 123
* Huawei app ID: | appid
[ox |
Parameter Required Description
The access status switch of the channel. If you turn on
Status Yes the switch, MPS will access the Huawei push channel
based on the configuration; if you turn off the switch,
the access is canceled.
SDK package Yes Enter the Huawei application package name.
Huawei App ID Yes Enter the App ID of the Huawei application.
Huawei App Key Yes Enter the Huawei app Key (App Secret).
Manufacturer's Receipt Yes Control whether MPS supports vendor receipts.

® Note

You can log on to the Huawei Developer Alliance website and choose Management
Center > My Product > mobile application Details to obtain the application
package name, application ID, and key.

3. Click OK to save the configurations.

Configure an HONOR push channel

1. In the left-side navigation pane, choose Message Push Service > Settings > Channel
Configuration.

2. Click Configure in the upper-right corner of the HONOR Push Channel configuration
section. The configuration entry is displayed.

> Document Version: 20250731

97

https://developer.huawei.com/consumer/cn/

@ 8888, Message Push Service

User Guide-Console operation

S

nnnnn HONOR push channel

*satus: @D

* Package name: 123
* HONCR ApplD: appid

* HONOR Application ID: clientid
* HONOR Application Key: | secret

* Manufacturer's Receipt: Close

Parameter

Status

Package name

HONOR AppID

HONOR Application ID

HONOR Application
Key

Manufacturer's
Receipt

® Note

3. Click OK to save the configurations.

Require
d

Yes

Yes

Yes

Yes

Yes

Yes

Configure

Description

The access status switch of the channel. Turn on the switch,
MPS will access the HONOR push channel according to the
configuration; Turn off the switch, that is, cancel the access.

Support custom HONOR application package name.

The unique application identifier, which is generated when
the HONOR Push service of the corresponding application is
activated on the developer platform.

The customer ID of the application, which is used to obtain
the ID of the message sending token. It is generated when the
corresponding application PUSH service is activated on the
developer platform.

Enter the HONOR app Key (App Secret).

Control whether MPS supports vendor receipts.

You can log on to the HONOR Developer Alliance website and go to the Management
Center > My Products > mobile application Details page to obtain the application
package name, application ID, and key.

Configure a Xiaomi push channel

1. In the left-side navigation pane, choose Message Push> Settings> Channel

Configuration.

2. Click Configure in the upper-right corner of the Xiaomi Push Channel section. The
configuration entry is displayed.

> Document Version: 20250731

98

https://developer.hihonor.com/cn/

© 2852, Message Push Service

User Guide-Console operation
s

@ Xiaomi push channel

+ status: @)

* Package name: 123
* AppSecret: AppSecret

* Manufacturer's Receipt: | Open

* Receipt Address: | https://x

Please enter the correct URL address

Parameter

Status

Package name

AppSecret

Manufacturer's Receipt

Receipt Address

® Note

Required

Yes

Yes

Yes

Yes

No

Configure

Description

The access status switch of the channel. If you turn on
the switch, MPS will access the Xiaomi push channel
according to the configuration. If you turn off the switch,
the access is canceled.

Enter the main package name of the Xiaomi app.
Enter the AppSecret of the Xiaomi app.
Control whether MPS supports vendor receipts.

Required when enabling manufacturer receipt, the
protocol must be HTTPS.

To obtain the package name and key, log on to the Xiaomi Open Platform console and
choose Application Management > Application Information.

3. Click OK to save the configurations.

Configure an OPPO push channel

1. In the left-side navigation pane, choose Message Push> Settings> Channel

Configuration.

2. In the upper-right corner of the OPPO Push Channel section, click Configure. The
configuration entry is displayed.

> Document Version: 20250731

99

https://dev.mi.com/console/

User Guide-Console operation

pusd . Message Push Service .

© OPPO push channel (domestic

* Status: (X

* Package name: 123
* AppKey: appKey

* MasterSecret: Secret

Manufacturer's Receipt: = Open

* Receipt Address ‘ https://xo

Please enter the correct URL address

© 0PPO push channel (overseas

* Status: @)

* Package name: | 123
* AppKey: appKey

* MasterSecret: hitps://so0x

Parameter Required Description

The access status switch of the channel. If you turn on the switch,
Status Yes MPS connects to the OPPO push channel based on the configuration.
If you turn off the switch, the access is canceled.

The AppKey is the identity of the client and is used when the client

AppKey Yes SDK is initialized.

The MasterSecret is used by developers to verify their identities

MasterSecret ves when they call APl operations on the server.

Manufacturer's

Receipt Yes Control whether MPS supports vendor receipts.

Receipt No Required when enabling manufacturer receipt, the protocol must be
Address HTTPS.

® Note

On the OPPO Open Platform, after you grant the OPPO push permission, you can view
the AppKey and MasterSecret of the application on the OPPO Push Platform >
Configuration Management > Application Configuration page.

3. Click OK to save the configurations.

Configure a vivo push channel

1. In the left-side navigation pane, choose Message Push> Settings> Channel
Configuration.

> Document Version: 20250731 100

https://open.oppomobile.com/
https://push.oppo.com/

User Guide-Console operation

pusd . Message Push Service .
2. In the upper-right corner of the VIVO Push Channel section, click Configure. The
configuration entry is displayed.
@ vivo push channel
» status: @)
Parameter Required Description
The access status switch of the channel. If you turn on the switch,
Status Yes MPS connects to the vivo push channel based on the
configuration. If you turn off the switch, the access is canceled.
APP ID Yes 'Ap_plld. is the identity of the client and is used when the client SDK
is initialized.
The AppKey is the identity of the client and is used when the
AppKey ves client SDK is initialized.
The MasterSecret is used by developers to verify their identities
when they call APl operations on the server. This parameter
MasterSecret Yes corresponds to the AppSecret that you obtained from the vivo
developer platform.
Manufacturer s Yes Control whether MPS supports vendor receipts.
Receipt
Receipt No Required when enabling manufacturer receipt, the protocol must
Address be HTTPS.
® Note
After you apply for the push service for an application on the vivo open platform, you
can obtain the Appld,AppKey, and MasterSecret(AppSecret) of the application.
3. Click OK to save the configurations.
Configure a FCM push channel
> Document Version: 20250731 101

https://dev.vivo.com.cn/home

User Guide-Console operation

© 2852, Message Push Service .

If you use Google's FCM service as the message push gateway when you connect Android
devices outside China, you must configure the FCM push channel in the console.

Prerequisites

Before you configure the FCM push channel, you need to obtain the FCM server key on the
Firebase console.

Procedure

1. In the left-side navigation pane, choose Message Push Service > Settings > Channel
Configuration.

2. Click Configure in the upper-right corner of the FCM Push Channel section to configure
the channel.

3. Click the Status switch. If you turn on the switch, MPS is connected to FCM. If you turn off
the switch, MPS is not connected to FCM.

4. Enter the FCM server key. Make sure that the key is the server key. The Android key, iOS
key, and browser key are rejected by FCM.

5. Click OK to save the configuration.

Configure a New FCM push channel

Important

The old FCM API will no longer be supported and retired starting June 20, 2024. To avoid
any disruption for MPS, please migrate to the new FCM API as soon as possible.

1. Upload the FCM authentication file through the console.

FCM push channel

Firebase projects support Google service account, which you can use to call the Firebase
server API from your application server or a trusted environment. If you write code locally,
or deploy your app locally, you can authorize server requests through credentials obtained
by this service account.

® Note

To authenticate the service account and grant it access to Firebase services, you must
generate a private key file in JSON format by following these steps:

i. In the Firebase console, choose Settings > Service Account.

ii. Click Generate New Private Key and confirm by clicking the Generate Key
button.

iii. Store the JSON file containing the key in a safe place.

2. Switch the push link mode.

The link switching method provided by the new version of FCM logic is to add an extended
parameter (extended_params) configuration and add a key-value pair useNewFcmaApi=1 to

push messages through the new link.

> Document Version: 20250731 102

https://console.firebase.google.com/project/_/settings/serviceaccounts/adminsdk?authuser=0

é

User Guide-Console operation

%R Message Push Service .

Custom message ID

console_ 1718778475155

Valid period

180 sec
The valic eriod of mi age annot k horter than

180 seconds or lor

Extension parameters

key value

useNewFcmApi 1| Delete

+ Add parameter

cancel [N
When pushing messages, you need to add extended parameter:
o Old version: useNewFcmApi , 0;
o New version: useNewFcmApi , 1;

If no extended parameters are added, the old version is used by default.

Configure an iOS push channel

When accessing an Apple mobile phone, it relies on the APNs service as the message push
gateway. You need to upload an iOS push certificate on the console side to connect to the
APNs service.

Complete these steps to configure the iOS push certificate:

1.

Log on to the mPaaS console. In the left-side navigation pane, choose Message Push
Service > Settings.

On the right-side Settings page, click the Channel Settings tab. In the iOS Channel
section, configure the iOS certificate.

o Select Certificate File: Select and upload the prepared iOS push certificate. The
backend parses the uploaded certificate to obtain the certificate environment and the
Bundleld. For more information about how to create an iOS push certificate, see Create
an iOS push certificate.

o Certificate Password: Enter the certificate password that you set when you export the.
pl2 certificate.

Click Upload to save the configuration. If the format of the certificate is correct, you can
view the details of the certificate. If you need to verify whether the certificate corresponds
to the environment and is valid, you can test it by pushing a message in the console.

® Note

An iOS push certificate has a validity period. Update the certificate before the push
certificate expires to prevent message push from working properly. The system starts
reminding you to replace the certificate 15 days before the certificate expires. To replace
the certificate, click Re-upload below the certificate information to upload a new
certificate.

Configure iOS live activity message push certificate

> Document Version: 20250731 103

1B SRE

. User Guide:Console operation
ANT GROUP Message Push Service p

S

Important

Before configuring the iOS live activity message push certificate, you must first make sure
that the iOS original push certificate, that is, the .pi12 certificate, has been configured,

otherwise the live activity message certificate can not be configured.

The steps to configure the iOS live activity messaging certificate are as follows:

1. Log in to the mPaaS console, select the target application, and enter the Message Push
Service > Settings page from the left navigation bar.

2. On the settings page of the iOS channel, check the Token Authentication
configuration. After configuring bundleld, keyld, and teamld, upload the p8AuthKey
private key file, whichisa .ps file, and click OK.

Important

e The above parameters can be obtained by referring to Create iOS P8 Real-time
Activity Certificate.

e The environment for pushing live activity messages is bound to the original iOS
certificate, so the usage effect is as follows:

o If the original iOS certificate is a test environment sandbox certificate, live
activity messages in the test environment will be pushed.

o If the original iOS certificate is a production environment certificate, live
activity messages of the production environment will be pushed.

Configure the receipt address

Currently, the vendors that support receipts are: Huawei, Honor, HarmonyQS, Xiaomi, OPPO,
and vivo.

:,Ifnd Receipts Configuratoin
Huaw The receipt switch needs to be enabled inMessage Push Service > Settings > Channel
ei configuration, and the receipt address needs to be configured on theplatform provided by

the vendor.

The receipt switch needs to be enabled inMessage Push Service > Settings > Channel
Honor configuration, and the receipt address needs to be configured on theplatform provided by
the vendor.

Harm The receipt switch needs to be enabled inMessage Push Service > Settings > Channel

configuration, and the receipt address needs to be configured on theplatform provided by
ony0s the vendor

Message Push Service > Settings > Channel configuration, enable the receipt and

Xiaom configure the receipt address.

> Document Version: 20250731 104

https://developer.huawei.com/consumer/cn/doc/HMSCore-Guides/msg-receipt-guide-0000001050040176#section14138124113215
https://developer.honor.com/cn/docs/11002/guides/cloud-meassage-return
https://developer.huawei.com/consumer/cn/doc/harmonyos-guides/push-msg-receipt-0000001727885270#section86338111648

; . User Guide:Console operation
© 2852, Message Push Service p .

Message Push Service > Settings > Channel configuration, enable the receipt and

OPPO configure the receipt address.

Message Push Service > Settings > Channel configuration, enable the receipt and

vivo configure the receipt address.

6.8. Communication configuration

Email
Prerequisites

Provide the email address where you want toreceive /send messages.

Procedure

1. Log on to the mPaaS console. In the left-side navigation pane, choose Message Push >
Settings.

2. On the page that appears, click the Communication Management tab.

3. In the upper-right corner of the Communication Management section, click Configure.
The configuration entry is displayed.

Field Required Description
Status Yes Whether to enable email message reminder

Email receiving address Y Separate multiple emails with commas (,).
. es . .
collection The maximum number is 10.

Separate multiple emails with commas (,).

Email CC address collection No The maximum number is 10.

4. Click OK to save the configuration.

DingTalk

® Note
Currently DingTalk custom bots are only supported by internal groups.

Prerequisites

Before the configuration, you need to create a DingTalk group and add a custom DingTalk
robot to the group. The sequence of operations is as follows:

1. Create an internal group.

2. Group Settings> Bot.

> Document Version: 20250731 105

User Guide-Console operation

@ 2858, Message Push Service .

—

e Group Management
Group Owner

Group permission related settings >

Group Type

Internal Groups are only accessible by
members within the enterprise. The group will
automatically remove members who have left
the enterprise

Bot Not added >

Robots have various skills to make communication and collaboration
more intelligent and efficient

3. Add Bot > Custom.

Robot Management

Custom

Custom message
services via-+

4. Add> Robot Management.

> Document Version: 20250731 106

@ 8888, Message Push Service

User Guide-Console operation

S

Robot Management

T AJA o uroup:

* Security Setting =~ Custom Keywords

Additional Signature

SECcl12 IR e 4be618c308c

IP Address

Whether or not to open the Outgoing
mechanism(This function is under maintenance,
BJease forgive the inconvenience.)

Reset Copy

Setting instruction

y @chat robot, the message is sent to the specified external service, the
response of the external service however, can also be returned to the

I Acknpwledge and Accept {DingTalk Custom Robot Service Terms of Service)

> Document Version: 20250731

107

gy . User Guide:Console operation
© 2852, Message Push Service p .

X
Robot Management

1. Add robotv

2. Set up webhook, click setting instruction and check how to make robot

effective

Webhook: https://oapi.dingtalk.com/robot/send?access_tok Copy
* Keep Webhook address safe, do not upload to internet for public
access.
Use Webhook address to send push message to DingTalk
Groupchat

Finished Setting in...
Procedure

1. Log on to the mPaaS console. In the left-side navigation pane, choose Message Push >
Settings.

2. On the page that appears, click the Communication Management tab.

3. In the upper-right corner of the Communication Management section, click Configure.
The configuration entry is displayed.

Field Required Description
Status Yes Whgther to enable DingTalk message
reminder

Authentication key Yes DingTalk authentication key
WebhookUrl Yes DingTalk WebhookUrl

4. Click OK to save the configuration.

6.9. Key management

> Document Version: 20250731 108

© 2852, Message Push Service

User Guide-Console operation

S

To enhance interaction security between MPS and your business system, MPS will sign and
verify all data passed through APIs. In addition, MPS provides a key management page, on
which you can perform key configuration.

e Configure push API

MPS provides RESTful APIs. To ensure data security, MPS will verify the caller's identity.
Therefore, before calling an API, you must use the RSA algorithm to sign the request and
configure a key for identity verification in the Push API configuration area on the Key
management page of the MPS console.

e Configure callback API

To receive a receipt of the message sending result, configure the URL of the target RESTful
callback APl in the Callback API configuration area on the Key management page of
the MPS console, and obtain the public key. This is because MPS will sign request

parameters when calling a callback API. You need to use the public key to verify the request

signature.
Configure push API

Prerequisites

Before configuring the push API, you have used the RSA algorithm to generate a 2048-bit
public key.

e RSA public key generation method is as follows:

i. Download and install the OpenSSL tool (version 1.1.1 or above) from OpenSSL official
website.

ii. Open the OpenSSL tool and use the following command line to generate a 2048-bit RSA
private key.

openssl genpkey -algorithm RSA -out private key.pem -pkeyopt rsa keygen bits:2048
iii. Generate an RSA public key based on the RSA private key.
openssl rsa -pubout -in private key.pem -out public key.pem

e The signing rules are as follows:
o Use the SHA-256 signhature algorithm.
o Convert the signature to a base64 string.

o Replace the plus sign (+) and forward slash (/) in the base64 string with a minus
sign (-) to get the final signature.

Procedure
Complete the following steps to configure the push API:

1. Log in to the mPaaS console, select the target app, and go to the Message Push Service
> Settings page.

2. On the right side of the page, click the Key management tab to enter the key
management page.

3. Click Configure in the upper right corner of the Push API configuration area.

Field Required Description

> Document Version: 20250731 109

https://www.openssl.org/source/

éggwg Message Push Service User Guide-Console operation

ANT GROUP
S

Specifies whether to enable the push API. When
Status Yes it is on, the API provided by MPS can be called.
When it is off, the API cannot be called.

Encryption method No Only the RSA algorithm is available.

Enter a 2048-bit public key.

RSA public key No After you use a private key to sign request
parameters, MPS will use the public key to
decrypt them to verify the caller's identity.

Important

Ensure that the public key is set correctly and does not contain spaces. Otherwise, the
API call will fail. For more information about API calls, see API reference.

4. Click OK to save the settings.
Configure callback API

Log in to the mPaaS console, select the target app, and perform the following steps to
configure the callback API:

1. On the Key management page, click Configure in the upper right corner of the Callback
API configuration area.

Field Required Description

Specifies whether to enable the callback API.
MPS will send a receipt to your server according

Status ves to the configuration only after the APl is
enabled.

Enter the URL of the callback API. The URL must
be an HTTP request URL that can be visited in
Callback API URL Yes the public network. MPS uses the private key to
sign the POST request body and passes the
signed content as the sign parameter.

MPS uses the RSA algorithm to sign the POST

Encryption method No request body.

The system automatically sets this parameter
and you cannot modify it. After obtaining the
POST request body and the sign parameter,

RSA public key No your server needs to use the public key to verify
that the request is sent by MPS and has not
been tampered with during data transmission.
For more information about signature
verification, see API reference > HTTP call

> Document Version: 20250731 110

; . r Guide-Console ration
@ 8888, Message Push Service User Guide ole ope .

2. Click OK to save the settings.

The time when MPS executes a callback varies with the push channel.

® Note

o Vendor channels (FCM/APNs/Xiaomi/Huawei/OPPO/vivo): A callback is executed
when the third-party service is called successfully.

o MPS self-built channel: A callback is executed when a message is pushed
successfully.

Code sample

> Document Version: 20250731 111

é

User Guide-Console operation

%R Message Push Service .

/**
* Alipay.com Inc. Copyright (c) 2004-2020 All Rights Reserved.
=

package com.callback.demo.callbackdemo;

import com.callback.demo.callbackdemo.util.SignUtil;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

import org.springframework.web.bind.annotation.RequestParam;

/**
*
* @author yqj
* @version $Id: PushCallbackController.java, v 0.1 2020.03.22 11:20 AM yqj Exp $
=Y
@Controller
public class PushCallbackController {

/**
* Copy the RSA public key configured for the callback API on the message push cons
ole.
*/
private static final String pubKey = "";
@RequestMapping (value = "/push/callback" ,method = RequestMethod.POST)

public void callback (@RequestBody String callbackJson, @RequestParam String sign) {

System.out.println (sign) ;

// Signature verification

sign = sign.replace('-",'+");

sign = sign.replace(' ','/');

if (!SignUtil.check (callbackJson,sign,pubKey, "UTF-8")) {
System.out.println ("Signature verification failed");
return;

}

System.out.println ("Signature verification succeeded");

// JSON message body

System.out.println(callbackJson) ;

callbackdson specifies the JSON request body. An example is as follows:

>

Document Version: 20250731 112

User Guide-Console operation

© 2852, Message Push Service .

"extInfo":{
"adToken":"da64bc9d7d448684ebaececfecd73£612c57579008343a88d4dbdd145dad20e84",
"osType":"ios"

s

"msgId":"console 1584853300103",

"pushSuccess":true,

"statusCode":"2",

"statusDesc":"Acked",

"targetId":"da64bc9d7d448684ebacecfecd73£612c57579008343a88d4dbdd145dad20e84"

The following table describes each field in callbackdson . You can click here to download
the callback code sample.

Field Description

msgld The ID of the service message to be pushed.
pushSuccess Indicates whether the message is pushed successfully.
statusCode The message status code.

statusDesc The description of the message status code.

targetld The target ID.

> Document Version: 20250731 113

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/134470/AntCloud_zh/1584948144890/callback-demo.zip

© 2852, Message Push Service User Guide+API reference

7.APIl reference
7.1. Client APIs

Message Push Service involves the following client APIs.

Call method API Description
. Bind the user ID and device ID (Ad-
Bind
token).
RPC call Unbind Unbind the user ID and device ID (Ad-
token).

Bind the third-party channel device ID

Report third-party channel devices (Ad-token).

The wmpprush class in the intermediate layer of mPaaS encapsulates all the APIs of MPS,

including the interfaces for binding users, unbinding users, and reporting three-party channel
device information. The API calls are implemented through the mobile gateway SDK.

Bind
¢ Method definition
This method is used to bind user ID and device ID. After the binding is completed,
messages can be pushed in user dimension.
® Note

The interface must be called in the child thread.

public static ResultPbPB bind(Context ctx, String userId, String token)

This method is used to bind the user ID with device ID. Once the user IDs and device IDs
are bound, MPS push messages from user dimension.

e Request parameters

Parameter Type Description

ctx Context It must be a non-empty Context.

The unique identifier of a user. The user ID is not
always the actual identifier in the business
system, but there must be one-to-one mapping
between the user ID and user.

userld String

> Document Version: 20250731 114

© 2852, Message Push Service User Guide+API reference

Parameter Type Description

The device token distributed by the push

token String gateway

¢ Response parameters

Parameter Description

Whether the interface call is successful or not.
success o true: Successful

o false: Failed

Operation result code. For the common operation codes and the

code corresponding description, see the following Result codes table.
name Name of the result code
message Description corresponding to the result code

e Result codes

Code Name Message Description

The parameter
userId is empty

3012 NEED_USERID need userid)
when client calls the
interface.
The parameter
3001 NEED_DELIVERYTOKE need token token is empty
N when client calls the

interface.

e Code sample

private void doSimpleBind() {
final ResultPbPB resultPbPB = MPPush.bind(getApplicationContext (), mUserId, Pus
hMsgService.mAdToken) ;
handlePbPBResult ("Bind users", resultPbPB) ;

Unbind
e Method definition

This method is used to unbind user ID and device ID.

> Document Version: 20250731 115

© 2852, Message Push Service User Guide+API reference

® Note

The interface must be called in the child thread.

public static ResultPbPB unbind(Context ctx, String userId, String token)

¢ Request parameters

Parameter Type Description

ctx Context It must be a non-empty Context.

The unique identifier of a user. The user ID is not
always the actual identifier in the business

userld String system, but there must be one-to-one mapping
between the user ID and user.
token String The device token distributed by the push

gateway.

e Response parameters
Refer to the response parameters of Bind API.
e Code sample
private void doSimpleUnBind () {
final ResultPbPB resultPbPB = MPPush.unbind (getApplicationContext ()

, mUserId, PushMsgService.mAdToken) ;
handlePbPBResult ("Unbind users", resultPbPB);

Report third-party channel devices
¢ Method definition

This method is used to bind the third-party channel device ID and the Ad-token. That is, the
third-party channel device identifier and mPaa$S device identifier (the Ad-token issued by
the MPS gateway) are reported to the mobile push core, and the mobile push core will bind
these two identifiers. After completing this process, you can use third-party channels to
push messages.

® Note

This method will be called once by the framework. To avoid SDK call failure, it is
recommended that you call it again manually.

public static ResultPbPB report (Context context, String deliveryToken, int thirdChann
el, String thirdChannelDeviceToken)

¢ Request parameters

> Document Version: 20250731 116

© 2852, Message Push Service User Guide+API reference

Parameter Type Description

ctx Context It must be a non-empty Context.

The device ID (Ad-token) issued by MPS

deliveryToken String gateway

The third-party channel. Valid values include:
o 2: Apple
o 4: Xiaomi

thirdChannel int o 5: Huawei

4
5

o 6: FCM
7: OPPO
8: vivo

thirdChannelDeviceTo
ken

The ID of a device connected to a third-party

String channel.

* Response parameters
Refer to the response parameters of Bind API.

e Code sample

private void doSimpleUploadToken () {
final ResultPbPB resultPbPB = MPPush.report (getApplicationContext (),
PushMsgService.mAdToken
, PushOsType.HUAWEI.value (), PushMsgService.mThirdToken) ;
handlePbPBResult ("report 3rd-party device ID", resultPbPB);

Troubleshooting

If an exception occurs in the process of initiating RPC requests for resources, refer to Security
guard result codes.

7.2. Server APIs

7.2.1. Overview

Message Push Service (MPS) provides the following OpenAPIs for the server to implement the
functions of message push (simple push, template push, multiple push, and broadcast push),
message revocation, message statistics and analysis, and scheduled push. As for message
push, MPS supports immediate push, timed push, and scheduled push three push strategies
to meet the push requirements in different scenarios and reduce repetitive work. At the same
time, we provide SMS supplementary services, that is, to supplement messages through SMS
channels to improve the message reach rate.

Important

> Document Version: 20250731 117

@ 8888, Message Push Service

User Guide*API reference

e Currently, only non-financial areas in Hangzhou provide SMS supplementary

service.

e Additional operator fees will incurre when using SMS service. For information on
billing methods and pricing for SMS service, please refer to What is Alibaba Cloud

SMS?

Special parameter restrictions of the manufacturer channel are as follows.

Manufacturer Channel

Huawei

Honor

HarmonyOS

Xiaomi

OPPO

vivo

MPS provides the following server-side APIs, which are described in the table below.

API Description

Simple push Push a message to a target ID.

Rules and Restrictions

Limitations Description

Interface Document

Push Quantity Management Rules

Interface Document

Usage Constraints

Interface Document

Push Message Rules

Interface Document

Push Service Limitations Description

Interface Document

Push Message Limitations Description

Interface Document

> Document Version: 20250731

118

https://developer.huawei.com/consumer/cn/doc/HMSCore-Guides/restrictions-0000001050040064
https://developer.huawei.com/consumer/cn/doc/HMSCore-References/https-send-api-0000001050986197#section13271045101216
https://developer.honor.com/cn/docs/11002/guides/notification-push-standards
https://developer.honor.com/cn/docs/11002/reference/downlink-message
https://developer.huawei.com/consumer/cn/doc/harmonyos-references/push-scenariozed-api-intro-0000001727929908
https://developer.huawei.com/consumer/cn/doc/harmonyos-references/push-scenariozed-api-request-struct-0000001775570273
https://dev.mi.com/xiaomihyperos/documentation/detail?pId=1536
https://dev.mi.com/xiaomihyperos/documentation/detail?pId=1558
https://open.oppomobile.com/new/developmentDoc/info?id=13190
https://open.oppomobile.com/new/developmentDoc/info?id=11236
https://dev.vivo.com.cn/documentCenter/doc/695
https://dev.vivo.com.cn/documentCenter/doc/362#s-8ws2h19n

© 2852, Message Push Service User Guide+API reference

'FI)'cjrsr;]plate Push a message to a target ID. The message is created through a template.
Multiole Push different messages to multiple target IDs. Based on templates, configure
ushp different template placeholders for each push ID to achieve personalized message
P push.
Broadcast Push the same message to all network devices. The message is created through a
Push template.
Message Revoke a pushed message. Messages pushed through simplified push or template
revocagtion push can be revoked by message ID. Messages pushed through batch push and mass
push can be revoked by task ID.
Query message push statistics, including total push count, successful push count,
Usage arrival count, message open count, and message ignore count. It also includes batch
analysis push tasks and mass push tasks lists and details created through the console or
triggered by API calls.
Supports querying scheduled push task lists and canceling scheduled push tasks.
Scheduled push tasks are divided into scheduled push and loop push:
e Scheduled Push: Push messages at a specified time. For example, push messages
Scheduled ;
Push Tasks at 8:00 AM on June 19.

e Loop Push: Repeatedly push messages within a specified time range. For example,
push messages every Friday at 8:00 AM from June 1 to September 30. A loop push
task may generate one or more scheduled push tasks.

7.2.2. SDK preparation

MPS supports four programming languages: Java, Python, Node.js, and PHP. Before you call
the preceding APIs for message push, you should make different preparations for different
programming languages. The following examples describe the preparations needed before
implementing the SDK for different programming languages.

Java

® Note

For users outside the financial zone, the latest message push SDK version is 3.0.23. For
users within the financial zone, it is 2.1.11.

> Document Version: 20250731 119

© 2852, Message Push Service User Guide-API reference

<dependency>
<groupId>com.aliyun</groupId>
<artifactId>aliyun-java-sdk-mpaas</artifactId>
<version>3.0.23</version>

</dependency>

<dependency>

<groupId>com.aliyun</groupId>
<artifactId>aliyun-java-sdk-core</artifactId>
<optional>true</optional>
<version>[4.3.2,5.0.0)</version>

</dependency>

Python

Execute the following commands to add SDK-related dependencies.

Alibaba Cloud SDK

pip install aliyun-python-sdk-core
mpaas SDK

pip install aliyun-python-sdk-mpaas

Node.js

Execute the following command to add SDK-related dependencies.

npm i Qalicloud/mpaas20190821

PHP

Execute the following command to add SDK-related dependencies.

composer require alibabacloud/sdk

Environment variable configuration
Configure the environment variables MPAAS_AK_ENV and MPAAS_SK_ENV.
e For Linux and macOS systems, execute the following commands:

export MPAAS AK ENV=<access key id>
export MPAAS SK ENV=<access key secret>

® Note

Replace access key id with your AccessKey ID and access key secret Wwith your
AccessKey Secret.

e For Windows systems:

i. Create new environment variables named MPAAS_AK_ENV and MPAAS_SK_ENV, and
set them with your AccessKey ID and AccessKey Secret, respectively.

ii. Restart the Windows system.

> Document Version: 20250731 120

© 2852, Message Push Service

User Guide*API reference

7.2.3. Simple push

Push a message to a specified push ID.

Before using this API, you must introduce dependencies. For more information, see SDK
Preparation.

Request parameters

Param
eter
name

classific
ation

taskNa
me

title

content

appld

worksp
aceld

deliver
yType

Type

String

String

String

String

String

String

Long

Requir
ed

No

Yes

Yes

Yes

Yes

Yes

Yes

Example

simpleTest

Test

Test

ONEX570DA892117
21

test

Description

Used to pass the message type of the vivo
push channel:

e 0 - Operational message
e 1 - System message

If not filled, the default is 1.

Name of the push task.

Title of the message.

Body of the message.

mPaaS App ID

mPaaS workspace

Target ID type, with the following options:
e 1 - Android device dimension

e 2 -i0S device dimension

e 3 - User dimension

e 5 - Real-time activity pushToken

e 6 - Real-time activity activityld

> Document Version: 20250731

121

@ 8888, Message Push Service

User Guide*API reference

targetM

sgkey

expired
Second
s

pushSt
yle

extend
edPara
ms

pushAc
tion

uri

String

Long

Integer

String

Long

String

Yes

Yes

Yes

No

No

No

{“user1024":"1578
807462788"}

300

{“keyl”:"valuel”}

http:// www

Push target in Map format:

e key: Target, used with deliveryType

o If deliveryType is 1, the key is the
Android device ID.

o If deliveryType is 2, the key is the
iOS device ID.

o If deliveryType is 3, the key is the
user ID, which is the userid value

passed when the user calls the binding
interface.

e value: Message business ID, user-defined,
must be unique.

@ Note

The push target cannot exceed 10,
meaning the targetMsgkey
parameter can contain up to 10 key-
value pairs.

Message validity period in seconds.

Push style:
e 0 - Default
e 1 - Large text

e 2 - Image-text message

Extended parameters in Map format.

Redirection method after clicking the
message:

e 0-Web URL
e 1 - Intent Activity
The default is Web URL.

Redirection address after clicking the
message.

> Document Version: 20250731

122

@ 8888, Message Push Service

User Guide*API reference

silent Long No
notifyT .

Strin No
ype g
imageU String No
rls
;conUrI String No
strateg

Integer No
yType d

{\"defaultUrl\":\"htt
ps://mpaas.oss-cn-
hangzhou.aliyuncs.c
om/tmp/test.png\",\
"oppoUri\":\"https://
mpaas.oss-cn-
hangzhou.aliyuncs.c
om/tmp/test.png\",\
"miuiurl\":\"https://
mpaas.oss-cn-
hangzhou.aliyuncs.c
om/tmp/test.png\",\
"femUrl\":\"https://m
paas.oss-cn-
hangzhou.aliyuncs.c
om/tmp/test.png\",\
"iosUrl\":\"https://m
paas.oss-cn-
hangzhou.aliyuncs.c
om/tmp/test.png\"}

{\"defaultUrl\":\" htt
ps://mpaas.oss-cn-
hangzhou.aliyuncs.c
om/tmp/test.png\",\
"hmsUrl\":\"https://
mpaas.oss-cn-
hangzhou.aliyuncs.c
om/tmp/test.png\",\
"oppoUrl\":\"https://
mpaas.oss-cn-
hangzhou.aliyuncs.c
om/tmp/test.png\",\
"miuiUrl\":\"https://
mpaas.oss-cn-
hangzhou.aliyuncs.c
om/tmp/test.png\"}

Whether silent:
e 1-Silent

e 0 - Non-silent

Indicates the message channel type:
e transparent - MPS self-built channel

o notify - Default channel

Large image links (JSON string), supporting
OPPO, HMS, MIUI, FCM, and iOS push
channels. You can also use defaultUrl

as the default value.

Icon links (JSON string), supporting OPPO,
HMS, MIUI, FCM, and iOS push channels. You
can alsouse defaultUrl as the default

value.

Push strategy type:

e 0 -Immediate

e 1 - Scheduled

e 2-Loop

If not filled, the default is 0.

> Document Version: 20250731

123

https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png%5C%22,%5C%22oppoUrl%5C%22:%5C%22https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png%5C%22,%5C%22miuiUrl%5C%22:%5C%22https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png%5C%22,%5C%22fcmUrl%5C%22:%5C%22https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png%5C%22,%5C%22iosUrl%5C%22:%5C%22https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png%5C%22%7D
https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png%5C%22,%5C%22hmsUrl%5C%22:%5C%22https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png%5C%22,%5C%22oppoUrl%5C%22:%5C%22https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png%5C%22,%5C%22miuiUrl%5C%22:%5C%22https://pre-mpaas.oss-cn-hangzhou.aliyuncs.com/tmp/test.png%5C%22%7D

pusd . Message Push Service

User Guide*API reference

Strateg
yConte
nt

smsStr
ategy

smsSig
nName

smsTe
mplate
Code

smsTe
mplate
Param

thirdCh
annelC
ategory

notifyL
evel

miChan
nelld

String

int

String

String

String

Map

Map

String

No

No

No

No

No

No

No

No

{\"fixedTime\":1630
303126000,\"startTi
me\":16256736000
00,\"endTime\":163
0303126000,\"circle
Type\":1,\"circleVal
ue\":[1,
71.\"time\":\"13:45:
11\"}

mPaaS test

SMS_216070269

{\"code\": 123456}

thirdChannelCatego
ry: {

Ilhmsll: II9II’
//Huawei FINANCE

financial type
message

"ViVO": ||1||

/Ivivo IM type
message

}

notifyLevel:
{"oppo":"2"//OPPO
notification bar +
lock screen}

"123321"

Push strateqy details (ISON string). Required
when strategyType is not equal to O.

For specific parameters, see
StrategyContent field description.

SMS strategy:
e 0 - None (default)
e 1-Resend

e 2 - Concurrent

SMS signature

SMS template ID

Actual value corresponding to the SMS
template variable, in JSON format.

Used to pass vendor message classification.
For details, see Vendor message
classification.

Vendor message notification level, such as
OPPO message level as follows:

e 1 - Notification bar
e 2 - Notification bar + lock screen

e 3 - Notification bar + lock screen +
banner + vibration + ringtone

Channelld of Xiaomi vendor push channel

> Document Version: 20250731

124

@ 8888, Message Push Service User Guide+API reference

Real-time activity event, optional

activity update/end:
Event String No e update - Update event
e end - End event
activity =~ JSONOb The content-state of real-time activity
Conten Ject No messages must remain consistent with the
tState parameters defined by the client.
Expiration time of the real-time activity
dismiss lon No message (timestamp in seconds), optional
alDate 9 field. If not passed, the default expiration
time of the iOS system is 12h.
® Note

Regarding the smsstrategy parameter:

e |f the value of smsStrategy is not 0, smsSignName , smsTemplateCode ,and
smsTemplateParam are required.

Regarding the activityEvent parameter:

e When activityEvent iS an end event, the expiration time set by dismissalbate
will be effective.

e When activityEvent IS an update event, the expiration time set by
dismissalDate Will not be effective.

o If the end event is specified but dismissalpate is not, the iOS system will default
to ending the real-time activity after 4 hours.

StrategyContent field description

Convert JSON format to a string to pass values.

Parameter

Require Exampl A

name Type d e Description

Scheduled push timestamp (unit: milliseconds,
. i 1630303 accurate to seconds). When the push policy type
fixedTime long No 126000 is scheduled (strategyType valueis 1),

fixedTime is required.

The timestamp for the start of the loop cycle

(unit: milliseconds, accurate to the day). When
startTime long No 1640966

400000 the push policy type is loop (strategyType
value is 2), startTime is required.

> Document Version: 20250731 125

@ 8888, Message Push Service User Guide+API reference

The timestamp of the loop cycle end time (unit:

milliseconds, accurate to the day). The loop end
1672416 time must not exceed 180 days after the current
000000 day. When the push policy type is loop

(strategyType valueis2), endTime is

required.

endTime long No

Loop type:
e 1 - Daily
o 2 - Weekly

circleType int No 3 e 3 - Monthly

When the push policy type is loop
(strategyType Vvalueis?2), circleType Iis
required.

Loop value:

o If the loop type is daily: empty

o If the loop type is weekly: set the weekly loop
time, suchas [1,3] indicating Monday
and Wednesday each week.

circleValue int[] No [1,3] e If the loop type is monthly: set the monthly

loop push time, suchas [1,3] indicating
the 1st and 3rd of each month.

When the push policy type is loop

(strategyType Vvalue is 2) and the loop type

(circleType) is notdaily, the
circlevalue is required.

Loop push time (hour, minute, second, format is
. . . HH:mm:ss). When the push policy tvpe is loop
time String No 09:45:11 (strategyType Vvalueis2),the time is

required.

® Note

e By default, the maximum number of unexecuted scheduled or loop push tasks is
100.

e The loop cycle runs from 00:00 of the start date to 24:00 of the end date.

e The loop start and end times must not be earlier than 00:00 of the current day, and
the end time must not be earlier than the start time.

Return parameters

Paramet

cpanm || U Example Description

> Document Version: 20250731 126

© 2852, Message Push Service User Guide+API reference

Requestl B589F4F4-CD68-3CE5-

d String BDAO- Request ID
6597F33E23916512

(Fj{:sultCo String OK Request result code

ResultMe String param is invalid Request error description

ssage

E:JtShReS JSON Request result

Success boolean true Request status. The Success parameter value
is included in the PushRresult JSON string.
Request error content. The ResultMsg

ResultM parameter value is included in the

gesu S String param is invalid PushRresult JSON string.

Data String 903bf653c1b5442b9b Scheduled push task ID. This field is not empty

a07684767bf9c2 when strategyType is not equal to O.

Code examples

Ensure that your AccessKey has the AliyunMPAASFullAccess permission. For more
information, see Application-Level Access Control for RAM Accounts.

Java code example

Click here to learn how to obtain your AccessKeyld and AccessKeySecret in the code example
below.

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.con");

// Create a DefaultAcsClient instance and initialize it

// The Alibaba Cloud account AccessKey has access to all APIs. It is
recommended to use RAM users for API access or daily operations.

// We strongly recommend that you do not save the AccessKey ID and AccessKey Se
cret in the project code. Otherwise, the AccessKey may be leaked, compromising the secu
rity of all resources in your account.

// This example demonstrates saving the AccessKey ID and AccessKey Secret in en
vironment variables. You can also save them in configuration files based on your busine
ss needs.

// It is recommended to complete the environment variable configuration first

String accessKeyId = System.getenv ("MPAAS AK ENV");

String accessKeySecret = System.getenv ("MPAAS SK ENV");

DefaultProfile profile = DefaultProfile.getProfile(

"cn-hangzhou", // Region ID

accessKevyIld,

> Document Version: 20250731 127

© 2852, Message Push Service User Guide+API reference

accessKeySecret) ;

IAcsClient client = new DefaultAcsClient (profile);

// Create an API request and set parameters
PushSimpleRequest request = new PushSimpleRequest () ;
request.setAppId ("ONEX570DA89211721") ;
request.setWorkspaceId ("test") ;

request.setTaskName ("Test task");

request.setTitle ("Test");

request.setContent ("Test") ;

request.setDeliveryType (3L) ;

Map<String, String> extendedParam = new HashMap<String, String>();
extendedParam.put ("keyl", "valuel");
request.setExtendedParams (JSON.toJSONString (extendedParam)) ;
request.setExpiredSeconds (300L) ;

request.setPushStyle (2);

String imageUrls = "{\"defaultUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\", \"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.al
iyuncs.com/tmp/test.png\", \"miuiUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\", \"fcmUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"10sUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\"}";

String iconUrls = "{\"defaultUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\", \"hmsUrl\":\"https://pre-mpaas.oss—-cn-
hangzhou.aliyuncs.com/tmp/test.png\", \"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.al
iyuncs.com/tmp/test.png\", \"miuiUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\"}";

request.setImageUrls (imageUrls) ;

request.setIconUrls (iconUrls) ;

request.setStrategyType (2) ;

request.setStrategyContent ("
{\"fixedTime\":1630303126000, \"startTime\":1625673600000, \"endTime\":1630303126000,\"circ
Type\":1,\"circlevalue\":[1, 7]1,\"time\":\"13:45:11\"}");

Map<String,String> target = new HashMap<String, String>();
String msgKey = String.valueOf (System.currentTimeMillis());
target.put ("userl1024",msgKey) ;
request.setTargetMsgkey (JSON.toJSONString (target)) ;
// Initiate the request and handle the response or exceptions
PushSimpleResponse response;
try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;
} catch (ClientException e) {

e.printStackTrace() ;

Python code example

> Document Version: 20250731 128

© 2852, Message Push Service User Guide+API reference

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushSimpleRequest

import json

// The Alibaba Cloud account AccessKey has access to all APIs, which is very ri
sky. We strongly recommend that you create and use RAM users for API access or daily op
erations. Please log on to the RAM console to create RAM users

// This example demonstrates saving the AccessKey and AccessKeySecret in
environment variables. You can also save them in configuration files based on your busi
ness needs

// We strongly recommend that you do not save the AccessKey and AccessKeySecret
in the code, as there is a risk of key leakage

// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");

String accessKeySecret = System.getenv ("MPAAS SK ENV");
Initialize AcsClient instance

client = AcsClient(

"cn-hangzhou",

accessKeyId,

accessKeySecret

)i

Initialize a request and set parameters
request = PushSimpleRequest.PushSimpleRequest ()
request.set endpoint ("mpaas.cn-hangzhou.aliyuncs.com")
request.set AppId("ONEX570DA89211721")
request.set WorkspaceId("test")

request.set Title("Python test")

request.set Content ("Test 2")

request.set DeliveryType (3)

request.set TaskName ("Python test task")
request.set ExpiredSeconds (600)

target = {"userl024":str (time.time())}
request.set TargetMsgkey (json.dumps (target))

Print response

response = client.do action with exception (request)

print response

Node.js code example

> Document Version: 20250731 129

© 2852, Message Push Service User Guide+API reference

const sdk = require('@alicloud/mpaas20190821");

const { default: Client, PushSimpleRequest } = sdk;
// Create a client
// The Alibaba Cloud account AccessKey has access to all APIs, which is very risky. We
strongly recommend that you create and use RAM users for API access or daily operations
Please log on to the RAM console to create RAM users
// This example demonstrates saving the AccessKey and AccessKeySecret in environment va
riables. You can also save them in configuration files based on your business needs
// We strongly recommend that you do not save the AccessKey and AccessKeySecret in the
code, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
const client = new Client ({
accessKeyId,
accessKeySecret,
endpoint: 'mpaas.cn-hangzhou.aliyuncs.com',
apivVersion: '2019-08-21"
1) ;
// Initialize request
const request = new PushSimpleRequest () ;
request.appld = "ONEX570DA89211721";

request.workspaceId = "test";
request.title = "Node test";
request.content = "Test";

request.deliveryType = 3;
request.taskName = "Node test task";
request.expiredSeconds=600;
const extendedParam = {
test: 'Custom extended parameter'
}i
request.extendedParams = JSON.stringify (extendedParam) ;
// Value is the business message ID, please keep it unique
const target = {
"useridl024": String(new Date () .valueOf ())
}i
request.targetMsgkey = JSON.stringify (target) ;

// Call the API
try f
client.pushSimple (request) .then (res => ({
console.log('SUCCESS', res);
}) .catch(e => {
console.log ('FAIL', e);
1)
} catch(e) {
console.log ('ERROR', e);

PHP code example

> Document Version: 20250731 130

© 2852, Message Push Service User Guide-API reference

<?php

use AlibabaCloud\Client\AlibabaCloud;

use AlibabaCloud\MPaaS\MPaaS;

AlibabaCloud: :accessKeyClient ('accessKeyId', 'accessKeySecret')
->regionId('cn-hangzhou')
->asDefaultClient () ;

class Demo {
public function run() {
try {
Sthis->simplePush () ;
} catch (\Exception $e) {
}

public function simplePush () {

Srequest = MPaaS::v20190821 () ->pushSimple () ;

Sresult = Srequest->withAppId ("ONEX570DA89211721")
->withWorkspaceId ("test")
->withTitle ("PHP test")
->withContent ("Test 3")
->withDeliveryType (3)
->withTaskName ("PHP test task")
->withExpiredSeconds (600)
->withTargetMsgkey (

json_encode (["useridl1024" => "".time ()]

))
// Endpoint
->host ("mpaas.cn-hangzhou.aliyuncs.com")
// Whether to enable debug mode
->debug (true)

->request () ;

7.2.4. Template push

Template push is the process of sending messages to a single target ID using a predefined
template. The same template can be applied to multiple IDs.

Before using this API, ensure that you have completed the following:

e Create the desired template in the message push console. For more information, see
Create a template.

e Add SDK dependencies. For more information, see SDK preparation.

Request parameters

Param .
eter Type ::quw Example Description
name

> Document Version: 20250731

131

pusd . Message Push Service

User Guide*API reference

classific
ation

taskNa
me

appld
worksp

aceld

deliver
yType

String

String

String

String

Long

No

Yes

Yes

Yes

Yes

Template test

ONEX570DA892117
21

test

Used to pass the message type of the vivo
push channel:

e 0 - Operational message
e 1 - System message
If not filled, the default is 1.

Push task name.

mPaa$S App ID

mPaaS workspace

Target ID type, with the following options:
e 1 - Android device dimension

e 2 -i0S device dimension

e 3 - User dimension

e 5 - Real-time activity pushToken

e 6 - Real-time activity activityld

> Document Version: 20250731

132

@ 8888, Message Push Service

User Guide*API reference

targetM
sgkey

expired
Second
s

templat
eName

templat
eKeyVa
lue

extend
edPara
ms

notifyT
ype

String

Long

String

String

String

String

Yes

Yes

Yes

No

No

No

{“user1024":"1578
807462788"}

300

Test template

{“money”:"200","n
ame”:”John"}

{“keyl”:"valuel”}

Push target, in Map format:

e key: the target, in conjunction with
deliveryType

o If deliveryType is 1, the key is the
Android device ID.

o If deliveryType is 2, the key is the
iOS device ID.

o If deliveryType is 3, the key is the
user ID, which is the userid value

passed when the user calls the binding
interface.

e value: the message business ID, user-
defined, must be unique.

® Note

The push target cannot exceed 10,
meaning the targetMsgkey
parameter can contain up to 10 key-
value pairs.

Message validity period, in seconds.

Template name, created in the console.

® Note

The template name cannot contain
commas.

Template parameters, in map format,
corresponding to the template specified by
templateName . The key is the

placeholder name, and the value is the
value to be replaced. For example, if the
template content is (the placeholder name
is betweentwo #) Congratulations

#name# on winning #money# yuan

Extended parameters, in Map format.

Indicates the message channel type:
e transparent - MPS self-built channel

o notify - Default channel

> Document Version: 20250731

133

pusd . Message Push Service

User Guide*API refere

nce

strateg
yType

Strateg
yConte

smsStr
ategy

smsSig
nName

smsTe
mplate
Code

smsTe
mplate
Param

thirdCh
annelC

ategory

Integer

String

int

String

String

String

Map

No

No

No

No

No

No

No

{\"fixedTime\":1630
303126000,\"startTi
me\":16256736000
00,\"endTime\":163
0303126000,\"circle
Type\”:1,\"circleVal
ue\":[1,
71\"time\":\"13:45:
11\"}

mPaaS test

SMS_216070269

{\"code\": 123456}

thirdChannelCatego
ry: {

Ilhmsll: II9II'
//Huawei FINANCE
financial type
message

"ViVO": II1II

/Ivivo IM type
message

}

Push strategy type:

e 0 - Immediate

e 1-Scheduled

e 2-Loop

If not filled, the default is 0.

Push strateay details (ISON string). Require
when strategyType is not equal to 0.

For specific parameters, see the
StrategyContent field description below.

SMS strategy:
e 0 - None (default)
e 1-Resend

e 2 - Concurrent

SMS signature

SMS template ID

The actual value corresponding to the SMS
template variable, in JSON format.

Used to pass vendor message classification
for details, see Vendor message
classification.

d

’

> Document Version: 20250731

134

Ru%E . Message Push Service User Guide+API reference

Vendor message notification level, such as
the OPPO message level is as follows:

notifyLevel: .
evel notification bar + « 2 - Notification bar + lock screen
lock screen}
e 3 - Notification bar + lock screen +
banner + vibration + ringtone
nme'ﬁgan String No "123321" Xiaomi vendor push channel channelld
Real-time activity event, optional
L update/end:
activity String No
Event e update - Update event
e end - End event
activity JSONOb The content-state of real-time activity
Conten ject No messages must remain consistent with the
tState parameters defined by the client.
Expiration time of the real-time activity
dismiss lon No message (second-level timestamp), optional
alDate 9 field. If not passed, the iOS system defaults
to expire after 12 hours.
® Note

Regarding the smsstrategy parameter:

e |f the smsStrategy value is not 0, then smsSignName , smsTemplateCode , and
smsTemplateParam ale mandatory.

Regarding the activityEvent parameter:

e When activityEvent isthe end event, the expiration time set by
dismissalbate Will be effective.

e When activityEvent IS the update event, the expiration time set by
dismissalDate Will not be effective.

e [fthe enda eventis specified but dismissalbate is not, the iOS system will
default to ending the real-time activity after 4 hours.

StrategyContent field description
Convert JSON format to a String to pass values.

Parame .
ter Type dRequlre Example Description

name

> Document Version: 20250731 135

pusd . Message Push Service

User Guide*API reference

fixedTim
e

startTim

e

endTime

circleTy
pe

circleval
ue

time

long No
long No
long No
int No
int[] No
String No

163030312600
0

164096640000
0

167241600000
0

[1,3]

09:45:11

Scheduled push timestamp (unit:
milliseconds, accurate to seconds). When the
push policy type is scheduled

(strategyType Vvalueisl), fixedTime
is required.

The timestamp for the start of the loop cycle
(unit: milliseconds, accurate to the day).
When the push policy type is loop

(strategyType Valueis2), startTime

is required.

The timestamp for the end of the loop cycle
(unit: milliseconds, accurate to the day). The
loop end time must not exceed 180 days after
the current day. When the push policy type is
loop (strategyType Vvalue is 2),

endTime s required.

Loop type:

e 1-Daily

e 2 - Weekly

e 3 - Monthly

When the push policy type is loop

(strategyType Vvalueis 2),
circleType is required.

Loop value:
o If the loop type is daily: empty.
o If the loop type is weekly: set the weekly

loop time, for example, [1,3] indicates
Monday and Wednesday.

o If the loop type is monthly: set the monthly
loop push time, for example, [1,3]
indicates the 1st and 3rd of each month.

When the push policy type is loop
(strategyType Vvalue is 2) and the loop

type (circleType) is not daily,
circlevalue is required.

The loop push time (hours, minutes, and
seconds, in the format HH:mm:ss). When the
push strategy type is loop (strategyType

value is 2), the time is required.

> Document Version: 20250731

136

Ru%E . Message Push Service User Guide+API reference

® Note

e By default, the maximum number of unscheduled or loop push tasks that can
remain unexecuted is 100.

e The loop cycle runs from 0:00 of the start date to 24:00 of the end date.

e The loop start and end times cannot be earlier than 0:00 on the current day, and
the end time must not precede the start time.

Return parameters

Parameter

name Type Example Description

B589F4F4-CD68-
Requestld String 3CE5-BDAO- Request ID

6597F33E23916512
ResultCode String OK Request result code
ResultMessage String param is invalid Request error description
PushResult JSON Request result

Request status. The Success parameter

Success boolean true value is included in the PushResult JSON

string.

Request error content. The ResultMsg

ResultMsg String param is invalid parameter value is included in the
PushResult JSON string.

Scheduled push task ID. This field is not

903bf653c1b5442b9 empty when strategyType is not equal to

Data String ba07684767bfoc2

Code examples

Ensure that your AccessKey has the AliyunMPAASFullAccess permission. For details, see
Application-level access control for RAM accounts.

Java code example

You can click here to learn how to obtain the AccessKeyld and AccessKeySecret in the
following code example.

> Document Version: 20250731 137

© 2852, Message Push Service User Guide+API reference

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com") ;

// Create a DefaultAcsClient instance and initialize

// The Alibaba Cloud account AccessKey has access to all APIs. It is
recommended to use RAM users for API access or daily operations.

// We strongly recommend that you do not save the AccessKey ID and AccessKey Se
cret in the project code. Otherwise, the AccessKey may be leaked, compromising the secu
rity of all resources in your account.

// This example demonstrates saving the AccessKey ID and AccessKey Secret in en
vironment variables. You can also save them in configuration files based on your busine
ss needs.

// It is recommended to complete the environment variable configuration first

String accessKeyId = System.getenv ("MPAAS AK ENV");

String accessKeySecret = System.getenv ("MPAAS SK ENV");

DefaultProfile profile = DefaultProfile.getProfile(

"cn-hangzhou", // Region ID
accessKeyId,

accessKeySecret) ;

IAcsClient client = new DefaultAcsClient (profile);

// Create an API request and set parameters
PushTemplateRequest request = new PushTemplateRequest();
request.setAppId ("ONEX570DA89211721") ;
request.setWorkspaceId("test");
request.setTemplateName ("Test template");

//Hello #name#, congratulations on winning #money# yuan
Map<String,String> templatekv = new HashMap<String, String>();
templatekv.put ("name", "John") ;

templatekv.put ("money", "200") ;

request.setTemplateKeyValue (JSON.toJSONString (templatekv)) ;
request.setExpiredSeconds (600L) ;

request.setTaskName ("Template test");
request.setDeliveryType (3L) ;

Map<String,String> target = new HashMap<String, String>();
String msgKey = String.valueOf (System.currentTimeMillis()) ;
target.put ("useridl024",msgKey) ;

request.setTargetMsgkey (JSON.toJSONString (target)) ;

request.setStrategyType (2) ;

request.setStrategyContent ("
{\"fixedTime\":1630303126000, \"startTime\":1625673600000, \"endTime\":1630303126000,\"circ
Type\":1,\"circlevalue\":[1, 7],\"time\":\"13:45:11\"}");

PushTemplateResponse response;
try {
response = client.getAcsResponse (request) ;

System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;
} catch (ClientException e) {

e.printStackTrace() ;

Python code example

> Document Version: 20250731 138

© 2852, Message Push Service User Guide+API reference

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushTemplateRequest
import json

import time

// The Alibaba Cloud account AccessKey has access to all APIs, which is highly
risky. We strongly recommend that you create and use RAM users for API access or daily
operations. Please log on to the RAM console to create RAM users

// This example demonstrates saving the AccessKey and AccessKeySecret in
environment variables. You can also save them in configuration files based on your busi
ness needs

// We strongly recommend that you do not save the AccessKey and AccessKeySecret
in the code, as there is a risk of key leakage

// It is recommended to complete the environment variable configuration first
Initialize AcsClient instance
String accessKeyId = System.getenv ("MPAAS AK ENV");

String accessKeySecret = System.getenv ("MPAAS SK ENV");
client = AcsClient (

accessKeyId,

accessKeySecret,

"cn-hangzhou"

);

Initialize a request and set parameters

request = PushTemplateRequest.PushTemplateRequest ()
request.set endpoint ("mpaas.cn-hangzhou.aliyuncs.com")
request.set AppId("ONEX570DA89211721")

request.set WorkspaceId("test")

request.set TemplateName ("templatel024")

templatekv = {"name":"John", "money":"200"}
request.set TemplateKeyValue (json.dumps (templatekv))
request.set DeliveryType (3)

request.set TaskName ("Python template test task")
request.set ExpiredSeconds (600)

target = {"useridl024":str (time.time()) }

request.set TargetMsgkey (json.dumps (target))

Print response

response = client.do action with exception (request)

print response

Node.js code example

> Document Version: 20250731 139

© 2852, Message Push Service User Guide+API reference

const sdk = require('@alicloud/mpaas20190821");

const { default: Client, PushTemplateRequest } = sdk;
// Create a client
// The Alibaba Cloud account AccessKey has access to all APIs, which is highly risky. W
e strongly recommend that you create and use RAM users for API access or daily operatio
ns. Please log on to the RAM console to create RAM users
// This example demonstrates saving the AccessKey and AccessKeySecret in environment va
riables. You can also save them in configuration files based on your business needs
// We strongly recommend that you do not save the AccessKey and AccessKeySecret in the
code, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
const client = new Client ({
accessKeyId,
accessKeySecret,
endpoint: 'mpaas.cn-hangzhou.aliyuncs.com',
apivVersion: '2019-08-21"
1) ;
// Initialize request
const request = new PushTemplateRequest () ;
request.appld = "ONEX570DA89211721";
request.workspaceId = "test";
request.templateName= "templatel024";

const templatekv = ({
name: 'John',
money: '300"

}i
request.templateKeyValue = JSON.stringify (templatekv) ;
request.deliveryType = 3;
request.taskName = "Node test task";
request.expiredSeconds=600;
const extendedParam = {

test: 'Custom extended parameter'

}i

request.extendedParams = JSON.stringify (extendedParam) ;
const target = {
"useridl024": String(new Date () .valueOf ())

}i
request.targetMsgkey = JSON.stringify (target);

// Call API
try {
client.pushTemplate (request) .then (res => {
console.log('SUCCESS', res);
}) .catch(e => {
console.log ('FAIL', e);
1) ;
} catch(e) {
console.log ('ERROR', e);

> Document Version: 20250731 140

© 2852, Message Push Service User Guide+API reference

PHP code example
<?php

use AlibabaCloud\Client\AlibabaCloud;

use AlibabaCloud\MPaaS\MPaaS;

AlibabaCloud: :accessKeyClient ('accessKeyId', 'accessKeySecret')
->regionId('cn-hangzhou')
->asDefaultClient () ;

class Demo {
public function run() {
try {
Sthis->templatePush () ;
} catch (\Exception $e) {
}

public function templatePush () {

Srequest = MPaaS::v20190821 () ->pushTemplate () ;

Sresult = S$Srequest->host ("mpaas.cn-hangzhou.aliyuncs.com")
// Enable debug mode
->debug (true)
->withAppId ("ONEX570DA89211721")
->withWorkspaceId ("test")
->withTemplateName ("templatel024")
->withTemplateKeyValue (json_encode (["name" => "John", "money" => "200"]))
->withDeliveryType (3)
->withTaskName ("PHP test task")
->withExpiredSeconds (600)
->withTargetMsgkey (

json_encode (["useridl024" => "".time() 1)

)
->request () ;

7.2.5. Multiple push

Send distinct messages to each push ID by customizing messages with template
placeholders. Unlike template push, each push ID receives unique content.

Important

Scheduled and loop pushes are not supported when the push target is a mobile analytics
audience or a custom tag audience.

Before using this API, ensure you have completed the following:

e Create a target template in the message push console with placeholders to enable
personalized messages. For more information, see Create a Template.

e Add SDK dependencies. For details, see SDK Preparation.

> Document Version: 20250731 141

Ru%E . Message Push Service User Guide+API reference

Request parameters

Param

eter Type Zdequw Example Description
name
Used to pass the message type of the vivo
push channel:
;It?gf\iﬁc String No 1 e 0 - Operational message
e 1 - System message
If not filled, the default is 1.
?ZkNa String Yes Multiple test Push task name.
appld String Yes S?IEX57ODA892117 mPaaS App ID
worksp String Yes test mPaaS workspace
aceld
Target ID type, the values are as follows:
e 1 - Android device dimension
e 2 -i0S device dimension
deli e 3 - User dimension
elver Long Yes 3
yType
® Note
The maximum number of targets for
user dimension and device dimension is
100.
te(T\lrggqut String Yes Test template Template name, created in the console.
targetM . targetMsgs object Target object list. For detailed parameters,
List Yes . . L
sgs list see targetMsgs object description.
expired
Second Long Yes 300 Message validity period, in seconds.
s
extend - .
cdPara String No {"key1”:"valuel”} Unified extended parameters, in Map
ms format.

> Document Version: 20250731 142

pusd . Message Push Service

User Guide*API reference

notifyT
ype

strateg
yType

Strateg
yConte
nt

thirdCh
annelC
ategory

notifyL
evel

miChan
nelld

activity
Event

String

Integer

String

Map

Map

String

String

No

No

No

No

No

No

No

{\"fixedTime\":1630
303126000,\"startTi
me\":16256736000
00,\"endTime\":163
0303126000,\"circle
Type\”:1,\"circleVal
ue\":[1,
71\"time\":\"13:45:
11\"}

thirdChannelCatego
ry: {

Ilhmsll: II9II,
//Huawei FINANCE
type message
"ViVO": Illll

/Ivivo IM type
message

}

notifyLevel:
{"oppo":"2"//OPPO
notification bar +
lock screen}

"123321"

Indicates the message channel type:
e transparent - MPS self-built channel

e notify - Default channel

Push strategy type:

e 0 -Immediate

e 1-Scheduled

e 2-Loop

If not filled, the default is 0.

Push strateqgy details (JSON string).
strategyType is required when it is not

equal to 0. For specific parameters, see
StrategyContent field description.

Used to pass vendor message classification,
for details, see Vendor message
classification.

Vendor message notification level, such as
the OPPO message level is as follows:

e 1 - Notification bar
e 2 - Notification bar + lock screen

e 3 - Notification bar + lock screen +
banner + vibration + ringtone

Xiaomi vendor push channel channelld

Real-time activity event, optional
update/end:

e update - Update event

e end - End event

> Document Version: 20250731

143

Ru%E . Message Push Service User Guide+API reference

activity SONGb Real-time activity message content-
Conten J No tat must b istent with th
ject state , must be consistent wi e

tState parameters defined by the client
Real-time activity message expiration time

dismiss long No (second-level timestamp), optional field. If

alDate not passed, the default expiration time of
the iOS system is 12h.

® Note

Regarding the activityEvent parameter:

e The expiration time set by dismissalbate is effective when activityEvent IS
an end event.

e The expiration time set by dismissalbate is not effective when activityEvent
is an update event.

e |f an end event is sent without @ dismissalbate , the iOS system defaults to
ending the real-time activity after 4 hours.

targetMsgs object description

Param .

eter Type Zdequlr Example Description

name

target String Yes userid1024 Tar.get ID, filled according to the
deliveryType type.

Business message ID, used for message
msgkKe String Yes 1578807462788 troubleshooting. Defined by the user and
Yy cannot be repeated.

Template parameters, in Map format,

corresponding to the template specified by

templateName . The key is the
teKmp\I/at Stri N {“money”:”"200","n placeholder name, and the value is the
le eyva rng 0 ame”:”"Zhang San”} value to be replaced. For example, the
ue template content is (the placeholder name
is betweentwo #) Congratulations

#name# for winning #money# yuan
extend Extended parameters, in map format, for
edPara String No {“keyl”:"valuel”} different extended parameters of each
ms message.

StrategyContent field description

Convert the JSON format to a string before transmission.

> Document Version: 20250731 144

pusd . Message Push Service

User Guide*API reference

Parame
ter
name

fixedTim
e

startTim

e

endTime

circleTy
pe

circleval
ue

time

Type

long

long

long

int

int[]

String

Require
d

No

No

No

No

No

No

Example

163030312600
0

164096640000
0

167241600000
0

[1,3]

09:45:11

Description

Scheduled push timestamp (unit:
milliseconds, accurate to seconds). When the
push strateagy tvpe is scheduled

(strategyType Vvalueisl), fixedTime

is required.

Loop cycle start timestamp (unit:
milliseconds, accurate to days). When the
push strategy type is loop (strategyType

value is 2), startTime is required.

Loop cycle end timestamp (unit: milliseconds,
accurate to days). The loop end time cannot
exceed 180 days after the current day. When
the push strateqgy type is loop

(strategyType Vvalueis?2), endTime is

required.

Loop type:

e 1-Daily

e 2 - Weekly

e 3 - Monthly

When the push strategy type is loop

(strategyType Vvalueis 2),
circleType is required.

Loop value:
o If the loop type is daily: empty
o If the loop type is weekly: set the weekly

loop time. For example, [1,3] means
every Monday and Wednesday.

o If the loop type is monthly: set the monthly
loop push time. For example, [1,3]
means the 1st and 3rd of each month.

When the push strategy type is loop

(strategyType value is 2) and the loop

type (circleType) is not daily,
circlevalue is required.

Loop push time (hour, minute, second, format
is HH:mm:ss). When the push strateqy type is
loop (strategyType Vvalueis?2), time

is required.

> Document Version: 20250731

145

@ 8888, Message Push Service User Guide+API reference

® Note
e The default maximum number of unexecuted scheduled or loop push tasks is 100.
e The loop cycle runs from 0:00 on the start day to 24:00 on the end day.

e The loop start and end times cannot be earlier than 0:00 on the current day, and
the end time cannot be before the start time.

Response parameters

Paramet i
er name Type Example Description
B589F4F4-CD68-3CE5-
(Fj{equestl String BDAO- Request ID
6597F33E23916512
Z{:suItCo String OK Request result code
ResultMe String param is invalid Request error description
ssage
E:JtshRes JSON Request result
Request status. The Success parameter value
is included in the returned PushResult JSON
Success boolean true string.
ResultM Request error content. The ResultMsg
gesu s String param is invalid parameter value is included in the returned
PushResult JSON string.
Data String 903bf653c1b5442b9b Scheduled push task ID. When strategyType

a07684767bfoc2 is not equal to 0, this field is not empty.

Code examples

Ensure your AccessKey has the AliyunMPAASFullAccess permission. For details, refer to
Resource Access Management Account Application-Level Access Control.

Java code example

To see how to retrieve AccessKeyld and AccessKeySecret in the code example below, click
here.

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com");

> Document Version: 20250731 146

© 2852, Message Push Service User Guide+API reference

// Create a DeraultAcsClient instance and 1nitialize
// Alibaba Cloud account AccessKey has access to all APIs, which is very risky.
It is strongly recommended to create and use a RAM user for API access or daily operati
ons. Please log in to the RAM console to create a RAM user
// Here, the AccessKey and AccessKeySecret are stored in environment variables
as an example. You can also save them in the configuration file based on your business
needs
// It is strongly recommended not to save the AccessKey and AccessKeySecret in
the code, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first.
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
DefaultProfile profile = DefaultProfile.getProfile(
"cn-hangzhou", // Region ID
accessKeyId,

accessKeySecret) ;

IAcsClient client = new DefaultAcsClient (profile);

// Create an API request and set parameters

PushMultipleRequest request = new PushMultipleRequest () ;

request.setAppId ("ONEX570DA89211721") ;

request.setWorkspaceId("test");

request.setDeliveryType (3L) ;

request.setTaskName ("Multiple test");

request.setTemplateName ("Test template");

//Hello #name#, congratulations on winning #money# yuan

List<PushMultipleRequest.TargetMsg> targetMsgs = new
ArrayList<PushMultipleRequest.TargetMsg> () ;

PushMultipleRequest.TargetMsg targetMsg = new PushMultipleRequest.TargetMsg() ;

targetMsg.setTarget ("useridl1024") ;

targetMsg.setMsgKey (String.valueOf (System.currentTimeMillis()));

Map<String, String> templatekv = new HashMap<String, String>();

templatekv.put ("name", "Zhang San");

templatekv.put ("money", "200");

targetMsg.setTemplateKeyValue (JSON.toJSONString (templatekv)) ;

//The number of targets should not exceed 100

targetMsgs.add (targetMsqg) ;

request.setTargetMsgs (targetMsgs) ;

request.setExpiredSeconds (600L) ;

request.setStrategyType (2) ;

request.setStrategyContent ("
{\"fixedTime\":1630303126000, \"startTime\":1625673600000, \"endTime\":1630303126000,\"circ
Type\":1,\"circlevalue\":[1, 7],\"time\":\"13:45:11\"}");

PushMultipleResponse response;
try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;
System.out.println (response.getPushResult () .getData()); // Push task ID or
scheduled push task ID
} catch (ClientException e) {
e.printStackTrace () ;

> Document Version: 20250731 147

© 2852, Message Push Service User Guide+API reference

Python code example

-*- coding: utf8 -*-

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushMultipleRequest
import json

import time

// Alibaba Cloud account AccessKey has access to all APIs, which is very risky. It is s
trongly recommended to create and use a RAM user for API access or daily operations. Pl
ease log in to the RAM console to create a RAM user

// Here, the AccessKey and AccessKeySecret are stored in environment variables as an ex
ample. You can also save them in the configuration file based on your business needs

// It is strongly recommended not to save the AccessKey and AccessKeySecret in the code
, as there is a risk of key leakage

// It is recommended to complete the environment variable configuration first

Initialize AcsClient instance

String accessKeyId = System.getenv ("MPAAS AK ENV");

String accessKeySecret = System.getenv ("MPAAS SK ENV");

client = AcsClient (

accessKeyId,

accessKeySecret,

"cn-hangzhou"

)

Initialize a request and set parameters
request = PushMultipleRequest.PushMultipleRequest ()
request.set endpoint ("mpaas.cn-hangzhou.aliyuncs.com")
request.set AppId("ONEX570DA89211721")
request.set WorkspaceId("test")
request.set TemplateName ("templatel024")
request.set DeliveryType (3)
request.set TaskName ("python test task")
request.set ExpiredSeconds (600)
msgkey = str(time.time())
targets = [
{

"Target": "userl024",

"MsgKey": msgkey,

"TemplateKeyValue": {

"name": "Zhang San",

"money": "200"

]

request.set TargetMsgs (targets)

Print response

response = client.do action with exception (request)

print response

> Document Version: 20250731 148

© 2852, Message Push Service User Guide+API reference

Node.js code example

const sdk = require('@alicloud/mpaas20190821");

const { default: Client, PushMultipleRequest,PushMultipleRequestTargetMsg } = sdk;
// Create a client
// Alibaba Cloud account AccessKey has access to all APIs, which is very risky. It is s
trongly recommended to create and use a RAM user for API access or daily operations. Pl
ease log in to the RAM console to create a RAM user
// Here, the AccessKey and AccessKeySecret are stored in environment variables as an ex
ample. You can also save them in the configuration file based on your business needs
// It is strongly recommended not to save the AccessKey and AccessKeySecret in the code
, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
const client = new Client ({
accessKeyId,
accessKeySecret,
endpoint: 'mpaas.cn-hangzhou.aliyuncs.com',
apiVersion: '2019-08-21"
1)
// Initialize request
const request = new PushMultipleRequest () ;
request.appld = "ONEX570DA89211721";
request.workspaceld = "test";

request.templateName= "templatel024";

const templatekv = {
name: 'Zhang San',
money: '300"

}i
//request.templateKeyValue = JSON.stringify (templatekv) ;

request.deliveryType = 3;
request.taskName = "Node test task";
request.expiredSeconds=600;
const extendedParam = {

test: 'Custom extended parameter'
}i

request.extendedParams = JSON.stringify (extendedParam) ;

const targetMsgkey = new PushMultipleRequestTargetMsg() ;
targetMsgkey.target = "useridl024";

targetMsgkey.msgKey = String(new Date () .valueOf());
targetMsgkey.templateKeyValue = JSON.stringify (templatekv) ;;
request.targetMsg = [targetMsgkey];

// Call API
try {
client.pushMultiple (request) .then (res => {
console.log('SUCCESS', res);
}) .catch(e => {
console.log ('FAIL', e);
1)

> Document Version: 20250731 149

© 2852, Message Push Service

User Guide*API reference

} catch(e) {
console.log ('ERROR', e);

PHP code example

<?php

use AlibabaCloud\Client\AlibabaCloud;
use AlibabaCloud\MPaaS\MPaas;
AlibabaCloud: :accessKeyClient ('accessKeyId',

->regionId('cn-hangzhou')

->asDefaultClient () ;

class Demo {
public function run() {

try {

Sthis->multiPush () ;
} catch (\Exception $e)

}

public function multiPush ()
Srequest = MPaaS::v20190821 () ->pushMultiple () ;
Sresult = S$Srequest->host ("mpaas.cn-hangzhou.aliyuncs.com")
// Whether to enable debug mode

->debug (true)

->withAppId ("ONEX570DA89211721")
->withWorkspaceId ("test")
—>withTemplateName ("templatel024")
->withDeliveryType (3)
->withTaskName ("PHP test multiple task")
->withExpiredSeconds (600)
->withTargetMsg (

[

"Target" => "useridl024",
"MSgKey" :> nmn

"TemplateKeyValue" => json_ encode ([

1)

)

->request () ;

7.2.6. Broadcast Push

'accessKeySecret')

"name" => "Zhang San",

"money" => "200",

> Document Version: 20250731

150

© 2852, Message Push Service User Guide+API reference

Push the same message to all devices across the network using a template.

Important

Scheduled and loop pushes are not supported when the target is a mobile analytics group
or a custom tag group.

Before using this API, ensure the following tasks are completed:

¢ Create the target template in the message push console, including placeholders, to enable
personalized message pushes. For more information, see Create Template.

e Add SDK dependencies. For more information, see SDK Preparation.

Request Parameters

Param

eter Type Zdequlr Example Description
Name
Used to pass the message type of the vivo
push channel:
classific ; e 0 - Operational message
ation String No 1
e 1 - System message
If not filled, the default is 1.
tna“sza String Yes Broadcast Test Task Name of the push task.
appld String Yes g{“EX57ODA892117 mPaaS App ID
worksp String Yes test mPaaS Workspace
aceld
Target ID type, value options:
deliver e 1 - Android broadcast push
Tvpe Long Yes 1
ylyp e 2 -i0S broadcast push
e 7 - HarmonyOS broadcast push
msgkey String Yes 1578807462788 Bu;lness message ID, user-defined, must be
unique.
expired
Second Long Yes 300 Message validity period, in seconds.

S

> Document Version: 20250731 151

Ru%E . Message Push Service User Guide+API reference

E;e|\|r2?r:aet String Yes Broadcast Template Template name, created in the console.
Template parameters, in Map format,
templat corresponding to the template specified by
eKeyVa String No {"content™:"Announ templateName , where key is the
lue cement content”} placeholder name and value is the value to
replace.
Push login status during broadcast push:
e 0 - Bound users (default)
pushSt L N 0
atus ong 0 e 1 - All users (including bound and
unbound users)
e 2 - Unbound users
Loagin duration, required when
pushStatus is O:
e 1 - Users bound within 7 days
e 2 - Users bound within 15 days
bindPer e 3 - Users bound within 60 days
. Integer No
iod e 4 - Permanent
® Note
The bindPeriod parameteris only
configurable in non-gold environments.
Logout duration, required when
pushStatus is1lor2:
. e 1 - Users unbound within 7 days
unBlnd Long No o
Period e 2 - Users unbound within 15 days
e 3 - Users unbound within 60 days
e 4 - Permanent
. Android message channel:
android 9
Channe Integer No e 1 - MPS self-built channel
! e 2 - Default channel
Push strategy type:
e 0 -Immediate
strateg 1
yType int No e 1 - Scheduled

e 2-Loop
If not filled, the default is 0.

> Document Version: 20250731 152

@ 8888, Message Push Service

User Guide*API reference

Strateg
yConte
nt

thirdCh
annelC
ategory

notifyL
evel

miChan
nelld

timeMo
de

bindSta
rtTime

bindEn
dTime

unBind
StartTi
me

unBind
EndTim
e

String

Map

Map

String

Integer

Long

Long

Long

Long

No

No

No

No

No

No

No

No

{"fixedTime":16303
03126000,"startTim
e":1625673600000,
"endTime":1630303
126000,"circleType"
:1,"circleValue":[1,
71,"time":"13:45:11"
}

thirdChannelCatego
ry: {

"hms": "9", //
Huawei FINANCE
financial type
message

||Vivoll. ||1||

// vivo IM type
message

}

notifyLevel:
{"oppo":"2"// OPPO
notification bar +
lock screen}

"123321"

1746720000000

1746806219999

1746720000000

1746806219999

Push strateqy details (ISON string). Required
when strategyType is not equal to O.

For specific parameters, see the
StrategyContent field description below.

Used to pass vendor message classification,
for details, see Vendor Message
Classification.

Vendor message notification level, such as
OPPO message level as follows:

e 1 - Notification bar
e 2 - Notification bar + lock screen

e 3 - Notification bar + lock screen +
banner + vibration + ringtone

Xiaomi vendor push channel's channelld

Time mode:
e 0 - Fixed number of days (default)

e 1-Time range

Binding start timestamp

Binding end timestamp

Unbinding start timestamp

Unbinding end timestamp

> Document Version: 20250731

153

© 2852, Message Push Service User Guide+API reference

StrategyContent Field Description

Convert JSON format to a String to pass values.

Parameter Require Exampl

Name Type d e Description

Scheduled push timestamp (unit: milliseconds,
1630303 accurate to seconds). When the push policy type
126000 is scheduled (strategyType Vvalueis 1),

fixedTime is required.

fixedTime long No

The start timestamp of the loop cycle (unit:
1640966 Mmilliseconds, accurate to the day). When the
400000 push strategy type is loop (strategyType
value is 2), startTime is required.

startTime long No

The timestamp for the end of the loop cycle

(unit: milliseconds, accurate to the day). The
1672416 loop end time must not exceed 180 days after
000000 the current day. When the push policy type is

loop (strategyType Vvalueis2), endTime

is required.

endTime long No

Loop type:
o 1- Daily
o 2 - Weekly

circleType int No 3 ¢ 3 - Monthly

When the push policy type is loop
(strategyType valueis2), circleType is
required.

Loop value:
o If the loop type is daily: empty
o If the loop type is weekly: set the weekly loop

time, for example, [1,3] means every
Monday and Wednesday.

circleValue int[] No [1,3] ¢ If the loop type is monthly: set the monthly
loop push time, for example, [1,3] means
the 1st and 3rd of each month.
When the push policy type is loop
(strategyType Vvalue is 2) and the loop type
(circleType) is notdaily, the
circlevalue is required.

> Document Version: 20250731 154

Ru%E . Message Push Service User Guide+API reference

Loop push time (hours, minutes, and seconds,
format is HH:mm:ss). When the push policy type
isloop (strategyType Vvalueis 2), the

time is required.

time String No 09:45:11

® Note
e The default maximum number of unexecuted scheduled or loop push tasks is 100.
e The loop cycle runs from 00:00 of the start time to 24:00 of the end time.

e The loop start and end times cannot be earlier than 00:00 of the current day, and
the end time cannot be before the start time.

Response Parameters

Paramet]
er Name Type Example Description
B589F4F4-CD68-3CE5-
gequestl String BDAO- Request ID
6597F33E23916512
ngsultCo String OK Request result code
ResultMe String param is invalid Request error description
ssage
E:JtShReS JSON Request result
Request status. The value of the Success
Success boolean true parameter is included in the PushResult JSON
string.
Request error content. The value of the
ResultMs String param is invalid ResultMsg parameter is included in the
g PushResult JSON string.
Data String 903bf653c1b5442b9b Scheduled push task ID. This field is not empty

a07684767bf9c2 when strategyType is not equal to 0.

Code Examples

Ensure your AccessKey has AliyunMPAASFullAccess permission. For details, see Application-
Level Access Control for RAM Accounts.

> Document Version: 20250731 155

é

pusE Message Push Service User Guide+API reference

Java Code Example

C

lick here to see how to retrieve AccessKeyld and AccessKeySecret in the code example

below.

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com");
// Create DefaultAcsClient instance and initialize
// Alibaba Cloud account AccessKey has access to all APIs, which is highly
risky. We strongly recommend that you create and use a RAM user for API access or daily
operations. Please log on to the RAM console to create a RAM user
// Here, saving AccessKey and AccessKeySecret in environment variables is used
as an example. You can also save them in the configuration file based on your business
needs
// We strongly recommend that you do not save AccessKey and AccessKeySecret in
the code, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
DefaultProfile profile = DefaultProfile.getProfile(
"cn-hangzhou", // Region ID
accessKeyId,

accessKeySecret) ;

IAcsClient client = new DefaultAcsClient (profile);

PushBroadcastRequest request = new PushBroadcastRequest () ;
request.setAppId ("ONEX570DA89211720") ;
request.setWorkspaceId("test");

request.setDeliveryType (2L) ;
request.setMsgkey (String.valueOf (System.currentTimeMillis ()));
request.setExpiredSeconds (600L) ;

request.setTaskName ("Broadcast Task");

request.setTemplateName ("Broadcast Test");

// This is an announcement: #content#

Map<String, String> templatekv = new HashMap<String, String>();
templatekv.put ("content", "Announcement content");
request.setTemplateKeyValue (JSON.toJSONString (templatekv)) ;

request.setStrategyType (2) ;

request.setStrategyContent ("
{\"fixedTime\":1630303126000, \"startTime\":1625673600000, \"endTime\":1630303126000,\"circ
Type\":1,\"circlevalue\":[1, 7],\"time\":\"13:45:11\"}");

PushBroadcastResponse response;
try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;
System.out.println (response.getPushResult () .getData()) ; // Push task ID or
scheduled push task ID
} catch (ClientException e) {

e.printStackTrace() ;

>

Document Version: 20250731 156

© 2852, Message Push Service User Guide+API reference

Python Code Example

-*- coding: utf8 -*-

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushBroadcastRequest
import json

import time

// Alibaba Cloud account AccessKey has access to all APIs, which is highly risky. We st
rongly recommend that you create and use a RAM user for API access or daily operations.
Please log on to the RAM console to create a RAM user

// Here, saving AccessKey and AccessKeySecret in environment variables is used as an ex
ample. You can also save them in the configuration file based on your business needs

// We strongly recommend that you do not save AccessKey and AccessKeySecret in the code
, as there is a risk of key leakage

// It is recommended to complete the environment variable configuration first

Initialize AcsClient instance

String accessKeyId = System.getenv ("MPAAS AK ENV");

String accessKeySecret = System.getenv ("MPAAS SK ENV");

client = AcsClient(

accessKeyId,

accessKeySecret,

"cn-hangzhou"

) i

Initialize a request and set parameters

request = PushBroadcastRequest.PushBroadcastRequest ()
request.set endpoint ("mpaas.cn-hangzhou.aliyuncs.com")
request.set AppId("ONEX570DA89211720")

request.set WorkspaceId("test")

request.set TemplateName ("broadcastTemplate")
templatekv = {"content":"This is an announcement"}
request.set TemplateKeyValue (json.dumps (templatekv))
request.set DeliveryType (1)

request.set TaskName ("Python Test Broadcast Task")
request.set ExpiredSeconds (600)
request.set Msgkey (str(time.time()))

Print response

response = client.do action with exception (request)

print response

Node.js Code Example

> Document Version: 20250731 157

© 2852, Message Push Service User Guide+API reference

const sdk = require('@alicloud/mpaas20190821");

const { default: Client, PushBroadcastRequest } = sdk;
// Create client
// Alibaba Cloud account AccessKey has access to all APIs, which is highly risky. We st
rongly recommend that you create and use a RAM user for API access or daily operations.
Please log on to the RAM console to create a RAM user
// Here, saving AccessKey and AccessKeySecret in environment variables is used as an ex
ample. You can also save them in the configuration file based on your business needs
// We strongly recommend that you do not save AccessKey and AccessKeySecret in the code
, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
const client = new Client ({
accessKeyId,
accessKeySecret,
endpoint: 'mpaas.cn-hangzhou.aliyuncs.com',
apivVersion: '2019-08-21"
1) ;

// Initialize request

const request = new PushBroadcastRequest();
request.appld = "ONEX570DA89211720";
request.workspaceld = "test";
request.templateName= "broadcastTemplate";
const templatekv = {

content: 'This is an announcement',
}i
request.templateKeyValue = JSON.stringify (templatekv) ;
request.deliveryType = 1;
request.taskName = "Node Test Task";
request.expiredSeconds=600;
const extendedParam = {

test: 'Custom extended parameter'
bi

request.extendedParams = JSON.stringify (extendedParam) ;
request.msgkey = String(new Date () .valueOf ())

// Call API
try {
client.pushBroadcast (request) .then (res => {
console.log('SUCCESS', res);
}) .catch(e => {
console.log ('FAIL', e);
1) ;
} catch(e) {
console.log ('ERROR', e);

PHP Code Example

> Document Version: 20250731 158

© 2852, Message Push Service User Guide-API reference

<?php

use AlibabaCloud\Client\AlibabaCloud;

use AlibabaCloud\MPaaS\MPaaS;

AlibabaCloud::accessKeyClient ('accessKeyId', 'accessKeySecret')
->regionId('cn-hangzhou')
->asDefaultClient () ;

class Demo {
public function run() {
try {
Sthis->broadcastPush () ;
} catch (\Exception $e) {
}

public function broadcastPush () {

Srequest = MPaaS::v20190821 () ->pushBroadcast () ;

Sresult = Srequest->host ("mpaas.cn-hangzhou.aliyuncs.com")
// Enable debug mode
->debug (true)
->withAppId ("ONEX570DA89211720")
->withWorkspaceId ("test")
->withTemplateName ("broadcastTemplate")
->withTemplateKeyValue (

json_encode (["content" => "This is an announcement"])

)
->withDeliveryType (1)
->withTaskName ("PHP Test Broadcast Task")
->withExpiredSeconds (600)
->withMsgkey ("". time())

->request () ;

7.2.7. Message revocation

You can revoke messages sent through simple or template push by using the message ID,
and those sent through batch or group push by using the task ID. Only messages from the
past 7 days are eligible for revocation.

Revoke by message ID

This function allows you to revoke messages sent through simple or template push.

Request parameters

Param .
eter Type ::quw Example Description
name

> Document Version: 20250731 159

© 2852, Message Push Service User Guide+API reference

Business message ID, user-defined, used to

chissag String Yes 1578807462788 uniquely identify the message in the
business system.
Target ID. If the original message was
targetl . pushed by device dimension, the target ID is
d String ves userl024 the device ID; if pushed by user dimension,

the target ID is the user ID.

Response parameters

Paramet err
er name Type Example Description
B589F4F4-CD68-3CE5-
Eequestl String BDAO- Request ID
6597F33E23916512
SSSUItCO String OK Request result code
ResultMe String param is invalid Request error description
ssage
E:JtshRes JSON Request result
Request status. The Success parameter value
Success boolean true o .]
isincluded in the PushResult JSON string.
Request error content. The ResultMsg
ResultMs . . . L .
9 String param is invalid parameter value is included in the

PushResult JSON string.

Usage example

> Document Version: 20250731 160

© 2852, Message Push Service User Guide+API reference

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com") ;
// Create DefaultAcsClient instance and initialize
// Alibaba Cloud account AccessKey has access privileges for all APIs, which is
very risky. We strongly recommend that you create and use a RAM user for API access or
daily operations. Please log on to the RAM console to create a RAM user
// This example illustrates saving the AccessKey and AccessKeySecret in
environment variables. You can also save them in the configuration file based on your b
usiness requirements
// We strongly recommend that you do not specify the AccessKey ID and AccessKey
secret in code, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
DefaultProfile profile = DefaultProfile.getProfile(
"cn-hangzhou", // Region ID
accessKeyId,

accessKeySecret) ;
IAcsClient client = new DefaultAcsClient (profile);

RevokePushMessageRequest request = new RevokePushMessageRequest () ;
request.setAppId ("ONEX570DA89211720") ;

request.setWorkspaceId("test");

request.setMessagelId("console 1624516744112"); // Business message ID
request.setTargetId("mpaas_push demo") ; // Target ID

RevokePushMessageResponse response;

try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage());

} catch (ClientException e) ({

e.printStackTrace();

Revoke by task ID

This function allows you to revoke messages sent through batch or group push.

Request parameters

Param .

eter Type :squlr Example Description

name

taskld String Yes 20842863 Push task ID, which can be queried in the

console push task list.

Response parameters

> Document Version: 20250731 161

@ 8888, Message Push Service

User Guide*API reference

Paramet
er name

Requestl
d

ResultCo
de

ResultMe
ssage

PushRes
ult

Success

ResultMs
g

Type

String

String

String

JSON

boolean

String

Usage example

Example

B589F4F4-CD68-3CE5-
BDAO-
6597F33E23916512

OK

param is invalid

true

param is invalid

Description

Request ID

Request result code

Request error description

Request result

Request status. The Success parameter value
is included in the PushResult JSON string.

Request error content. The ResultMsg
parameter value is included in the
PushResult JSON string.

> Document Version: 20250731

162

© 2852, Message Push Service User Guide+API reference

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com");
// Create DefaultAcsClient instance and initialize
// Alibaba Cloud account AccessKey has access privileges for all APIs, which is
very risky. We strongly recommend that you create and use a RAM user for API access or
daily operations. Please log on to the RAM console to create a RAM user
// This example illustrates saving the AccessKey and AccessKeySecret in
environment variables. You can also save them in the configuration file based on your b
usiness requirements
// We strongly recommend that you do not specify the AccessKey ID and AccessKey
secret in code, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
DefaultProfile profile = DefaultProfile.getProfile(
"cn-hangzhou", // Region ID
accessKeyId,

accessKeySecret) ;
IAcsClient client = new DefaultAcsClient (profile);

RevokePushTaskRequest request = new RevokePushTaskRequest () ;
request.setAppId ("ONEX570DA89211720") ;
request.setWorkspaceId("test");
request.setTaskId("20842863") ; // Push task ID

RevokePushTaskResponse response;

try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;

} catch (ClientException e) {

e.printStackTrace() ;

7.2.8. Usage analysis

Query statistical data

Query message push statistics, including total pushes, successful pushes, arrivals, message
opens, and message ignores.

Request parameters

Parame

ter Type L{eqmre Example Description
name
appld String Yes g{\I1E7X25170DA89 mPaaS App ID

> Document Version: 20250731 163

@ 8888, Message Push Service

User Guide*API reference

workspa
celd

startTim
e

endTime

platform

channel

type

taskld

String

long

long

String

String

String

String

Yes

Yes

Yes

No

No

No

test

mPaaS workspace

161979840000 The start timestamp of the time range to

0

query, in milliseconds, accurate to the day.

The end timestamp of the time range to

162435843300 query, in milliseconds, accurate to the day.

Response parameters

Paramete
r name

Requestld

ResultCode

ResultMess
age

ResultCont
ent

Type

String

String

String

JSON

0 The interval between the start time and end
time cannot exceed 90 days.
The platform. If not specified, all platforms are
ANDROID queried. Optional values: 10S, ANDROID
The push channel. If not specified, all
channels are queried. Optional values: I0S,
ANDROID FCM, HMS, MIUI, OPPO, VIVO, ANDROID (self-
built channel)
The push type. If not specified, all types are
SIMPLE queried. Optional values: SIMPLE, TEMPLATE,
MULTIPLE, BROADCAST
20842863 Push task ID
Example Description
B589F4F4-
CD68-
3CE5-
BDAO- Request ID
6597F33E2
3916512
OK Request result code
param is .
invalid Request error description

Response content

> Document Version: 20250731

164

@ 8888, Message Push Service User Guide+API reference

The response content. This parameter value is included

data JSON) inthe ResultContent JSON string.
pushTotal - fioat 100 Push count

pushNum float 100 Successful push count

arrivalNum float 100 Arrival count

openNum float 100 Open count

openRate float 100 Open rate

ignoreNum float 100 lgnore count

ignoreRate float 100 Ignore rate

Usage example

> Document Version: 20250731 165

© 2852, Message Push Service User Guide+API reference

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com") ;
// Create a DefaultAcsClient instance and initialize
// The Alibaba Cloud account AccessKey has access privileges for all APIs, whic
h is highly risky. We strongly recommend that you create and use a RAM user for API
access or routine maintenance. Log on to the RAM console to create a RAM user
// This example shows how to save the AccessKey and AccessKeySecret in
environment variables. You can also save them in the configuration file based on your b
usiness requirements
// We strongly recommend that you do not specify the AccessKey ID or AccessKey
secret in code because the AccessKey pair may be leaked
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
DefaultProfile profile = DefaultProfile.getProfile(
"cn-hangzhou", // Region ID
accessKeyId,

accessKeySecret) ;
IAcsClient client = new DefaultAcsClient (profile);

QueryPushAnalysisCoreIndexRequest request = new
QueryPushAnalysisCoreIndexRequest () ;

request.setAppId ("ONEX570DA89211720") ;

request.setWorkspaceId ("test") ;

request.setStartTime (Long.valueOf ("1617206400000")) ;

request.setEndTime (Long.valueOf ("1624982400000™)) ;

request.setPlatform ("ANDROID") ;

request.setChannel ("ANDROID") ;

request.setType ("SIMPLE") ;

request.setTaskId ("20842863") ;

QueryPushAnalysisCoreIndexResponse response;

try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;

} catch (ClientException e) {

e.printStackTrace() ;

Query push task list

Query batch and mass push tasks created through the console or triggered by API calls.

Request parameters

Param .

eter Type :dequlr Description Description
name

appld String Yes S?IEX57ODA892117 mPaaS App ID

> Document Version: 20250731 166

© 2852, Message Push Service

User Guide*API reference

worksp
aceld

startTi
me

taskld

taskNa
me

pageNu
mber

pageSiz
e

String

long

String

String

int

int

Yes

Yes

No

No

test

1619798400000

20842863

Test task

10

Response parameters

Paramet
er name

Requestl
d

ResultCo
de

ResultMe
ssage

ResultCo
ntent

data

taskld

taskNam
e

Type

String

String

String

JSON

JSONArra

y

String

String

Example

B589F4F4-CD68-3CE5-
BDAO-
6597F33E23916512

OK

param is invalid

20927873

Test task

mPaaS workspace

Start timestamp, in milliseconds, accurate to

the day.

Push task ID

Push task name

The page number. Default value: 1.

The number of pages. Default value: 500.

Description

Request ID

Request result code

Request error description

Response content

The response content. This parameter value is

included in the ResultContent

Task ID

Task name

JSON string.

> Document Version: 20250731

167

@ 8888, Message Push Service

User Guide*API reference

templatel

d String
template

Name String
type long
gthreat long

Usage example

9108

Test template

1630052750000

Template ID

Template name

Push type, where:

e 2 - Batch push
e 3 - Mass push

Creation time

> Document Version: 20250731

168

© 2852, Message Push Service User Guide+API reference

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com") ;
// Create a DefaultAcsClient instance and initialize
// The Alibaba Cloud account AccessKey has access privileges for all APIs, whic
h is highly risky. We strongly recommend that you create and use a RAM user for API
access or routine maintenance. Log on to the RAM console to create a RAM user
// This example shows how to save the AccessKey and AccessKeySecret in
environment variables. You can also save them in the configuration file based on your b
usiness requirements
// We strongly recommend that you do not specify the AccessKey ID or AccessKey
secret in code because the AccessKey pair may be leaked
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
DefaultProfile profile = DefaultProfile.getProfile(
"cn-hangzhou", // Region ID
accessKeyld,

accessKeySecret) ;
IAcsClient client = new DefaultAcsClient (profile);

QueryPushAnalysisTaskListRequest request = new
QueryPushAnalysisTaskListRequest () ;
request.setAppId ("ONEX570DA89211721") ;
request.setWorkspaceId("default") ;
request.setStartTime (Long.valueOf ("1617206400000")) ;
request.setTaskId("20845212") ;
request.setTaskName ("Test task");
request.setPageNumber (1) ;

request.setPageSize (10) ;

QueryPushAnalysisTaskListResponse response;

try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;

} catch (ClientException e) ({

e.printStackTrace() ;

Query push task details

Query details of batch and mass push tasks created through the console or triggered by API
calls.

Request parameters

Param

eter Type :dequlr Example Description
name
appld String Yes S?IEX57ODA892117 mPaaS App ID

> Document Version: 20250731 169

© 2852, Message Push Service User Guide+API reference

worksp String Yes test mPaaS workspace
aceld
taskld String Yes 20842863 Push task ID

Response parameters

Paramet S
er name Type Example Description

B589F4F4-CD68-3CE5-
Sequestl String BDAO- Request ID

6597F33E23916512
ggsultCo String OK Request result code
ResultMe String param is invalid Request error description
ssage
ResultCo JSON Response content
ntent

The response content. This parameter value is

data JSON included in the ResultContent JSON string.
taskld long 20927872 Task ID
pushNum float 10 Push count
pushSuce float 10 Successful push count
essNum
pushArriv float 10 Arrival count
alNum
startTime long 1630052735000 Start time (milliseconds)
endTime long 1630052831000 End time (milliseconds)

> Document Version: 20250731 170

© 2852, Message Push Service User Guide+API reference

00 hours 01 min 36
sec

duration string Duration

Usage example

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com") ;
// Create a DefaultAcsClient instance and initialize
// The Alibaba Cloud account AccessKey has access privileges for all APIs, whic
h is highly risky. We strongly recommend that you create and use a RAM user for API
access or routine maintenance. Log on to the RAM console to create a RAM user
// This example shows how to save the AccessKey and AccessKeySecret in
environment variables. You can also save them in the configuration file based on your b
usiness requirements
// We strongly recommend that you do not specify the AccessKey ID or AccessKey
secret in code because the AccessKey pair may be leaked
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
DefaultProfile profile = DefaultProfile.getProfile(
"cn-hangzhou", // Region ID
accessKeyld,

accessKeySecret) ;
IAcsClient client = new DefaultAcsClient (profile);

QueryPushAnalysisTaskDetailRequest request = new
QueryPushAnalysisTaskDetailRequest () ;

request.setAppId ("ONEXPREF4F5C52081557") ;

request.setWorkspaceId ("default");

request.setTaskId ("20845212") ;

QueryPushAnalysisTaskDetailResponse response;

try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage ()) ;

} catch (ClientException e) {

e.printStackTrace () ;

7.2.9. Scheduled Push Tasks
Query Scheduled Push Task List

Retrieve a list of all created scheduled push tasks, which includes both scheduled and loop
push tasks.

Request parameters

> Document Version: 20250731 171

© 2852, Message Push Service User Guide+API reference

Param Requir

eter Type ed Example Description

name

appld String Yes (Z)i\lEX57ODA892117 mPaaS App ID

worksp String Yes test mPaaS workspace

aceld

StartTi The start timestamp for triggering the

me long Yes 1619798400000 scheduled push, not the creation time of the

scheduled push task.

endtTi long Yes 1630425600000 The end timestamp for triggering the
me scheduled push.
Push method, where:
e 0 -Simple push
type int No 0 e 1 -Template push
e 2 - Batch push
e 3 - Group push
The unique ID of the scheduled push task. If
. the main task ID is provided, information on
gquEI String No ﬁzigggg?j?iiigi%z all subtasks under the main task is returned.
If a subtask ID is provided, information on
the subtask is returned.
?nak?eiNu int No 1 The page number. Default value: 1.
gaQES|Z int No 10 The paging size. Default value: 500.

Response parameters

Paramet o

ername 1YPe Example Description
B589F4F4-CD68-3CE5-

(F;equestl String BDAO- Request ID
6597F33E23916512

> Document Version: 20250731 172

pusd . Message Push Service

User Guide*API reference

ResultCo
de

ResultMe
ssage

ResultCo
ntent

data

totalCou
nt

list

uniqueld

parentld

pushTim
e

pushTitle

pushCont
ent

String OK
String param is invalid
JSON
JSON
int 10
JSONArra
y
. 56918166720e46elbc
String c40195c9ca71db
. 56918166720e46elbc
String 40195c9ca71db
Date 1630486972000
String Test title
String Test body

Request result code

Request error description

Response content

Response content. This parameter value is
contained in the ResultContent JSON string.

Total count

Task array

The unique ID of the scheduled push task.

e Ifthe strategyType Vvalueis 1, itindicates
the main ID of the scheduled push task.

e Ifthe strategyType Vvalueis 2, itindicates
the sub ID of the loop task.

The main ID of the scheduled push task.

e Ifthe strategyType valueis 1, itindicates
the main ID of the scheduled push task.

e Ifthe strategyType Vvalueis 2, itindicates
the main ID of the loop task.

Estimated push time

Notification title

Notification content

> Document Version: 20250731

173

@ 8888, Message Push Service User Guide+API reference

Push method, where:

0 - Simple push

type int 0 e 1-Template push
e 2 - Batch push
e 3 - Group push
Push type, where:
. e 1 - Android
deliveryT int 1
ype e 2-i0S
e 3 - Userld
Push strategy type, where:
ig:tegyT int 1 « 1-Scheduled
e 2 -Loop
Execution status, where:
g;(:t(;usted int 0 e 0 - Not executed
e 1 - Executed
Creation method, where:
;reeateTy int 0 ¢ 0-API
e 1-Console
gthreat Date 1629971346000 Creation time

Usage example

> Document Version: 20250731 174

© 2852, Message Push Service User Guide+API reference

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com") ;
// Create a DefaultAcsClient instance and initialize
// The Alibaba Cloud account AccessKey has access privileges for all APIs, whic
h poses a high risk. We strongly recommend that you create and use a RAM user for API a
ccess or routine maintenance. Please log on to the RAM console to create a RAM user
// This example shows how to save the AccessKey and AccessKeySecret in
environment variables. You can also save them in the configuration file based on your b
usiness requirements
// We strongly recommend that you do not save the AccessKey and AccessKeySecret
in the code, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
DefaultProfile profile = DefaultProfile.getProfile(
"cn-hangzhou", // Region ID
accessKeyld,
accessKeySecret) ;

IAcsClient client = new DefaultAcsClient (profile);

QueryPushSchedulerListRequest request = new QueryPushSchedulerListRequest();
request.setAppId ("ONEXPREF4F5C52081557") ;

request.setWorkspaceId("default");
request.setStartTime (Long.valueOf ("1625068800000")) ;
request.setEndTime (Long.valueOf ("1630425600000")) ;

request.setType (0) ;

request.setUniqueld("49%eclOed5az2a642bcbel39%a2d7a419d6d") ;
request.setPageNumber (1) ;

request.setPageSize (10) ;

QueryPushSchedulerListResponse response;

try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;

} catch (ClientException e) {

e.printStackTrace() ;

Cancel Scheduled Push Task

Cancel any unexecuted scheduled push tasks, including loop push tasks, with support for
batch cancellation.

Request parameters

Param

eter Type :gqmr Example Description
name
appld String Yes S{VEXSMDASQZIU mPaaS App ID

> Document Version: 20250731 175

© 2852, Message Push Service

User Guide*API reference

worksp
aceld

type

uniquel
ds

Response parameters

Param
eter
name

Request
Id

ResultC
ode

ResultM
essage

ResultC
ontent

String

int

String

Type

String

String

String

String

Yes

No

Yes

Usage example

test

714613eb,714613e
c,714613ed

Example

B589F4F4-CD68-
3CE5-BDAO-
6597F33E2391651
2

OK

param is invalid

{714613eb=1,7146
13ed=0}

mPaaS workspace

Scheduled push task ID type. Default value:
0.

e 0 - Main task ID, corresponding to
parentId

e 1 - Subtask ID, corresponding to
uniquelId

The unique ID of the scheduled push task.
Multiple IDs are separated by commas, with
a maximum of 30 IDs.

Description

Request ID

Request result code

Request error description

Cancellation result, where 1 indicates
success and 0 indicates failure.

> Document Version: 20250731

176

(8858, Message Push Service User Guide-API reference

ANT GROUP

DefaultProfile.addEndpoint ("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com") ;
// Create a DefaultAcsClient instance and initialize
// The Alibaba Cloud account AccessKey has access privileges for all APIs, whic
h poses a high risk. We strongly recommend that you create and use a RAM user for API a
ccess or routine maintenance. Please log on to the RAM console to create a RAM user
// This example shows how to save the AccessKey and AccessKeySecret in
environment variables. You can also save them in the configuration file based on your b
usiness requirements
// We strongly recommend that you do not save the AccessKey and AccessKeySecret
in the code, as there is a risk of key leakage
// It is recommended to complete the environment variable configuration first
String accessKeyId = System.getenv ("MPAAS AK ENV");
String accessKeySecret = System.getenv ("MPAAS SK ENV");
DefaultProfile profile = DefaultProfile.getProfile(
"cn-hangzhou", // Region ID
accessKeyId,
accessKeySecret) ;
IAcsClient client = new DefaultAcsClient (profile);

CancelPushSchedulerRequest request = new CancelPushSchedulerRequest () ;
request.setAppId ("ONEXPREF4F5C52081557") ;
request.setWorkspaceId("default");
request.setUniquelds ("49ecOed5a2a642bcbel39a2d7a419d6d,

49ecOedbaz2at642bcbel3%9a2d7a419d6c") ;

CancelPushSchedulerResponse response;
try {
response = client.getAcsResponse (request) ;
System.out.println (response.getResultCode()) ;
System.out.println (response.getResultMessage()) ;
} catch (ClientException e) {
e.printStackTrace () ;

7.2.10. Vendor receipt interface code sample

For details on MPS receipt configuration, see Configure Receipt Address.

Common methods

private String extractRequestBody (HttpServletRequest request,String channel) {
StringBuilder builder = new StringBuilder();
BufferedReader reader = null;
try {
reader = request.getReader();
char[] charBuffer = new char([128];
int bytesRead;
while ((bytesRead = reader.read(charBuffer)) != -1) {
builder.append(charBuffer, 0, bytesRead);
}
} catch (IOException e) {
LoggerUtil.error (LOGGER, e, "["+channel+"]extractParameterFromRequest error!");

} finally {

> Document Version: 20250731 177

User Guide*API reference

(@ 8823, Message Push Service

ANT GROUP

if (reader != null) {
try f
reader.close () ;
} catch (IOException e) {
LoggerUtil.error (LOGGER, e,

ose reader error!");

}

}
return builder.toString();

public static Map<String,

t) {
Map<String, String> paramsMap = new HashMap<String, String>();
Map<String, String[]> parameterMap = request.getParameterMap () ;

Iterator var3 = parameterMap.entrySet ().iterator():;

while (var3.hasNext ()) {
Map.Entry<String, String[]> paramEntry = (Map.Entry)var3.next():;

String[] value = (String[])paramEntry.getValue() ;

if (value.length > 0) {

paramsMap.put (paramkEntry.getKey (), value[O0]);

}

return paramsMap;

public static void outData (HttpServletResponse httpServletResponse, String

resJsonString) {
PrintWriter writer = null;

try {
httpServletResponse.setContentType ("application/json") ;

httpServletResponse.setCharacterEncoding ("utf-8");

writer = httpServletResponse.getWriter();
writer.print (resdsonString) ;
writer.flush();

} catch (Exception e) {

LoggerUtil.error (LOGGER, e, "outData error");

} finally {

if (writer != null) {

writer.close () ;

{

private Result createResult (PushResultEnum resultEnum)

Result bindResult = new Result();
bindResult.setReturnCode (resultEnum.getCode()) ;
bindResult.setReturnReason (resultEnum.getReason()) ;

return bindResult;

"["+channel+"]extractParameterFromRequest cl

String> extractParameterFromRequest (HttpServletRequest reques

> Document Version: 20250731

178

© 2852, Message Push Service

User Guide*API reference

HUAWEI
HUAWEI Documentation Center
@ResponseBody
@RequestMapping (value = "/hms", produces = "application/json")

public JSONObject hmsCallback (HttpServlietRequest httpServletRequest) {

String requestBody = extractRequestBody (httpServletRequest, "hms") ;

LoggerUtil.info (LOGGER, "hmsCallback content: {}", requestBody);

JSONObject data = new JSONObject () ;
data.put ("code", "O0");
data.put ("message", "success");

return data;

Input Parameter Sample

{
"statuses": [{
"clientId": "103961659",
"biTag": "O0#5#1.l#console 1730792931023&b89351344a8el£3b",
"requestId": "173079293285270303027401",
"appid": "103961659",
"status": O,
"timestamp": 1730792933696,

"token": "IQAAAACYOf7tAABvr6XzidO61rECNx-1-eoglVNUSyZcIo-1Pc9ehgnEfIyulsxxx"
]
}
HONOR Documentation Center
@ResponseBody
@RequestMapping (value = "/honor", produces = "application/json")

public JSONObject honorCallback (HttpServletRequest httpServletRequest) {

String requestBody = extractRequestBody (httpServletRequest, "honor") ;
LoggerUtil.info (LOGGER, "honorCallback content: {}", requestBody) ;

JSONObject data = new JSONObject () ;
data.put ("code", "O0");
data.put ("message", "success");

return data;

Input Parameter Sample

> Document Version: 20250731

179

https://developer.huawei.com/consumer/cn/doc/HMSCore-References/https-send-receipt-api-0000001051066120
https://developer.honor.com/cn/docs/11002/reference/downlink-message-return

© 2852, Message Push Service User Guide+API reference

{

"statuses": [{
"appid": "104420205",
"biTag": "O0#94#1.1l#console 1730794397675&61db03efcf7fc862",
"requestId": "104420205-4fe376129032981e38b60cfl5ea77154",
"status": 40000002,
"timestamp": 1730794400089,

"token": "BAEAAAAAB.jlTbS5YDOdhYQKfqgri5606iN7CbY5xxx"
]
}
HarmonyOS
HarmonyOS Documentation Center
@ResponseBody
@RequestMapping (value = "/harmonyos", produces = "application/json")

public JSONObject harmonyosCallback (HttpServlietRequest httpServletRequest) {
String requestBody = extractRequestBody (httpServletRequest, "harmonyos") ;
LoggerUtil.info (LOGGER, "harmonyosCallback content: {}", requestBody);
JSONObject data = new JSONObject () ;
data.put ("code", "O0");
data.put ("message", "success");

return data;

Input Parameter Sample

{
"statuses": [{
"biTag": "O#ll#null#console 1730776169529s6e8afeebfc8ad5al",
"requestId": "173077617124367218031101",
"appPackageName": "com.alipay.demo",
"deliveryStatus": {
"result": 5,
"timestamp": 1730776171647
}y
"pushType": 0,
"token": "MAMzLgIkEUIGTtUAstOIywAAAGQAAAAAAAHMQeccAFJF5u8WsIrXbQOuxxxxxx"
}
}

Xiaomi

Xiaomi Surge OS Developer Platform

> Document Version: 20250731 180

https://developer.huawei.com/consumer/cn/doc/harmonyos-references/push-msg-receipt-0000001784628993
https://dev.mi.com/xiaomihyperos/documentation/detail?pId=1558#_21

© 2852, Message Push Service User Guide+API reference

@RequestMapping (value = "/miui", consumes =
{MediaType. APPLICATION FORM URLENCODED VALUE })
public void miuiCallback (HttpServletRequest httpServletRequest, HttpServletResponse htt
pServletResponse) {
Map<String, String> parameterMap = extractParameterFromRequest (httpServletRequest) ;
LoggerUtil.info (LOGGER, "miuiCallback content: {}", parameterMap) ;

outData (httpServletResponse, PushResultEnum.SUCCESS.getReason());

Input Parameter Sample

{
"data": {
"smm67747730775367865gS": {
"param": "O#4#1.l#console 1730775366036&671135c53a89dde2",

"barStatus": "Enable",
"type": 1,
"targets": "oUUOLhUv9qgw2HEtgtWmxEgX91dkWesBHOxxx",

"timestamp": 1730775368258
}

}

}

OPPO
OPPO Open Platform - OPPO Developer Service Center

@ResponseBody

@RequestMapping (value = "/oppo", produces = "application/json")

public Result oppoCallback (HttpServletRequest httpServletRequest) ({
String requestBody = extractRequestBody (httpServletRequest, "oppo") ;
LoggerUtil.info (LOGGER, "oppoCallback content: {}", requestBody);

return createResult (PushResultEnum.SUCCESS) ;

Input Parameter Sample

[{

"appId": "30186722",

"eventTime": "1730776852465",

"eventType": "push arrive",

"messageId": "30186722-1-1-67298eb8f8686b014e6dla83",
"param": "O#7#1.1l#console 1730776758644&282216e3998££0d0",
"registrationIds": "OPPO CN 5e33c42e910xxx"

H]

vivo

vivo Open Platform

> Document Version: 20250731 181

https://open.oppomobile.com/new/developmentDoc/info?id=11239
https://dev.vivo.com.cn/documentCenter/doc/681#s-h7cybqs8

© 2852, Message Push Service User Guide+API reference

@ResponseBody

@RequestMapping (value = "/vivo", produces = "application/json")

public Result vivoCallback (HttpServletRequest httpServletRequest) ({
String requestBody = extractRequestBody (httpServletRequest,"vivo");
LoggerUtil.info (LOGGER, "vivoCallback content: {}", requestBody);

return createResult (PushResultEnum.SUCCESS) ;

Input Parameter Sample

{
"1303318675076815015": {
"param": "O#8#1.l#console 1730776984809&8903e8823304c0bf",

"targets": "v2-CRi5wSCKrfIr7yWs BKTpim6RbPAnEMVah6xxx",
"ackTime": 1730776986789,
"aCkType" : "Oll

7.2.11. Extension parameters

Extension parameters are sent along with the message body to the client for custom
processing.

There are three categories of extension parameters:
e System Extension Parameters
These extension parameters are occupied by the system. Be careful not to modify the value
of such parameters. System extension parameters include notifyType , action ,
silent , pushType , templateCode , channel , and taskId
e System Extension Parameters with Specific Meanings

These system-reserved parameters have distinct meanings and can be configured by you.
For more information on system extension parameters with specific meanings, refer to the

table below.
Key Description
Custom ringtone. The parameter value is configured as the path of the
sound : .
ringtone. This parameter is only effective for Xiaomi and Apple phones.
Application icon badge. The parameter value is configured as a specific
number. This extension parameter accompanies the message body to the
client.
o For Android phones, you need to handle the implementation logic of the
badge badge

o For Apple phones, the phone system will automatically implement the
badge. After the message is pushed to the target phone, the application
icon badge will display the number configured in the parameter value.

> Document Version: 20250731 182

© 2852, Message Push Service

User Guide*API reference

mutable-content

badge add num

badge class

big_text

APNs custom push identity. Carrvina this parameter durinag the push
UNNotificationServiceExtension

configured as 1.

The application entry Activity class corresponding to the Huawei channel

desktop icon.

indicates support for iOS 10's
parameter is not carried, it is a normal push. The parameter value is

Huawei channel push badge increase number.

Big text style. The value is fixed at 1. Other values are invalid. This
parameter is only effective for Xiaomi and Huawei phones.

¢ User-Defined Extension Parameters

In addition to the system and specifically defined system extension parameters, all other

. If this

parameter keys are considered user-defined. These user-defined extension parameters are
included with the message body for custom processing on the client side.

7.2.12. Result codes of API call

Result
Code

100

3001

3002

3003

3007

3008

3009

3012

Result Message

SUCCESS

SIGNATURE_MISMATCH

NEED_DELIVERYTOKEN

NEED_FILE

NEED_APPID_WORKSPACEID

APPID_WRONG

0S_TYPE_NOT_SUPPORTED

DELIVERY_TYPE_NOT_SUPPORTED

NEED_USERID

Description

Success.

The signature does not match.

The deliveryToken is empty.

The file is empty.

The appid or workspace is empty.

The appid or workspace is invalid.

The push platform type is not supported.

The target ID type is not supported.

The Userld is empty.

> Document Version: 20250731

183

1B SRE

ANT GROUP

Message Push Service

User Guide*API reference

3019

3020

3021

3022

3023

3024

3025

3026

3028

3029

3030

3031

3032

3033

3035

3036

3037

3038

TASKNAME_NULL

EXPIREDSECONDS_WRONG

TOKEN_OR_USERID_NULL

TEMPLATE_NOT_EXIST

TEMPLATEKV_NOT_ENOUGH

PAYLOAD NOT_ENOUGH

NEED_TEMPLATE

EXPIREDTIME_TOO_LONG

INVALID_PARAM

SINGLE_PUSH_TARGET TOO_MUCH

BROADCAST ONLY_SUPPORT BY DEVICE

REQUEST_SHOULD_BE_UTF8

REST_API_SWITCH_NOT_OPEN

UNKNOWN_REST SIGN_TYPE

EXTEND_PARAM_TO_MUCH

TEMPLATE_ALREADY_EXIST

TEMPLATE_NAME_NULL

TEMPLATE_NAME_INVALID

The task name is empty.

The message timeout is invalid.

The target is empty.

The template does not exist.

The template parameters do not match.

The title or content is empty.

The template is empty.

The message validity period is too long.

The parameters are invalid.

There are too many push targets.

Only device dimension broadcasting is
supported.

The request body encoding must be UTF-
8.

The push API interface is closed.

The signature type is not supported.

There are too many extension fields, no
more than 20 are allowed.

The template already exists.

The template name is empty.

The template name is invalid.

> Document Version: 20250731

184

1B SRE
ANT GROUP

Message Push Service

User Guide*API reference

3039

3040

3041

3042

3043

3044

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

TEMPLATE_CONTENT_INVALID

TEMPLATE_TITLE_INVALID

TEMPLATE_DESC_INFO_INVALID

TEMPLATE_URI_INVALID

SINGLE_PUSH_CONTENT TOO_LONG

INVALID_EXTEND_PARAM

MULTIPLE_INNER_EXTEND_PARAM_TO_MU
CH

MSG_PAYLOAD TOO_LONG

BROADCAST ALL_USER_NEED_UNBIND P
ERIOD

BROADCAST ALL_USER_UNBIND_PERIOD_
INVALID

BROADCAST_ALL_USER_NOT_SUPPORT_S
ELFCHANNEL_ANDROID

DELIVERYTOKEN_INVALID

MULTIPLE_TARGET_NUMBER_TOO_MUCH

TEMPLATE_NUM_TOO_MUCH

ANDROID_CHANNEL_PARAM_INVALID

BADGE_ADD_NUM_INVALID

BADGE_ADD_NUM_NEED_BADGE_CLASS

The template content is invalid.

The template title is invalid.

The template description is invalid.

The template URI is invalid.

The message body is too long.

The extension parameters are invalid.

The batch push internal extension
parameters must be less than 10.

The message body is too long.

For broadcasting to all users (logged-in
users or logged-out users), the detach
parameter must be provided.

The broadcast detach parameter is
invalid.

Broadcasting to all users does not support
self-built channel broadcasting.

The self-built channel token is invalid.

There are too many batch push targets.

There are too many templates.

The androidChannel parameteris
invalid.

The badge parameter is invalid.

The Dbadge add num parameter
requires the badge class parameter.

> Document Version: 20250731

185

Ru%E . Message Push Service User Guide+API reference

The account has no permission. Please
8014 ACCOUNT_NO_PERMISSION check whether the AK/SK is consistent
with the appld and workspaceld.

BROADCAST ALL USER_TIME RANGE INv When using time range mode for mass

8018 push, the time range is invalid, please
ALID
check.
9000 SYSTEM_ERROR A system error occurs.

> Document Version: 20250731 186

User Guide-Message content r

© 2852, Message Push Service estrictions

8.Message content
restrictions

To ensure effective message delivery, you should create message push tasks with reference
to the message content limits for different push channels in the process of pushing
messages.

To ensure effective message delivery, you should create message push tasks with reference
to the message content limits for different push channels in the process of pushing
messages.

Android push channel

Push channel Message title length limit Message body length limit
MPS self-built channel No limit No limit
Mi 50 characters 128 characters
Huawei 40 characters 1024 characters
OPPO 32 characters 200 characters
vivo 40 characters 100 characters
® Note
e Pushes through vendor channels will fail if corresponding length limits are
exceeded.

e Pushes through vendor channels will fail if the message title or content is empty.

e For the pushes through Android push channel (no matter vendor channels or MPS
self-built channel), the size of the pushed message cannot exceed 2 KB.

iOS push channel

Push channel Message title length limit Message body length limit

> Document Version: 20250731 187

@ 8888, Message Push Service

User Guide-Message content r
estrictions

40 characters, excess parts
APNs will be displayed as an
ellipsis.

® Note

For the pushes through iOS push channel, the size of the pushed message cannot exceed

2 KB.

e Up to 110 characters will be displayed in the
Notification Center, and excess parts will be
displayed as an ellipsis.

e Up to 110 characters will be displayed when
the phone screen is locked, and excess parts
will be displayed as an ellipsis.

e Up to 62 characters will be displayed in the
top pop-up window, and excess parts will be
displayed as an ellipsis.

> Document Version: 20250731

188

(@ £8%8, Message Push Service User Guide-FAQ

9.FAQ

This topic summarizes the common problems that may appear in the process of integrating
and using Message Push Service, and provides the corresponding solutions to solve those
problems.

General questions
Description on permissions

For Android 6.0 and later versions, users need to manually grant permissions to the phone,
such as reading/writing SD cards. To send messages more precisely, we recommend that
developers provide a guide to users on how to grant the required permissions for the
notifications.

Logs cannot be printed

For Meizu phones, if 10g.d and 1og.i cannot be printed, you can choose Settings >
Accessibility Options > Developer Options and turn on Advanced Log Output.

In case of development issues, you can set tag=mpush to filter logs.
Android related questions

Port resolution problems in baseline versions 10.1.60.5 ~
10.1.60.7

In private cloud environments, for the message push using ports other than 443, the
resolution of server configurations will fail, and cause connection errors.

Solution:

e If you use the config file for packaging, modify the config file as follows:

//Ignore the rest of the config file and add \\{white space} before the custom port
number.

{
"pushPort":"\\ 8000",

}

¢ If you do not use the config file for packaging, change the value of rome.push.port in
AndroidManifest.xml as follows:

//Add \{white space} before the port number.
<meta-data
android:name="rome.push.port"

android:value="\ 8000" />

Failed to push messages after accessing Huawei, Xiaomi and
other third-party channels

You need to turn on the settings for the corresponding channels in the mPaaS Message Push
Service console. Refer to Code sample for sample code, usage and notes.

Notes on the generation of push ad-token (deviceld)

The server generates deviceld with dependency on IMSI and IMEI. So, you are suggested
guide the users to grant the “READ_PHONE_STATE" permission.

> Document Version: 20250731 189

https://github.com/mpaas-demo/android-push

(@ £8%8, Message Push Service User Guide-FAQ

Does message push on the notification bar have version
restrictions for EMUI and Huawei mobile services?

There are version restrictions for Emotion Ul and Huawei mobile services. Emotion Ul, EMUI
for short, is an emotional operating system based on Android and is developed by Huawei.

For detailed version requirements, see Conditions for devices to receive Huawei notifications.

Cannot print logs for Huawei phones

In the dialing Ul of the phone, enter *#*#2846579#*#* to enter Project menu >
Background settings > LOG settings and select AP Logs. After the phone restarts, Logcat
will start to take effect.

What should | do when my Huawei phone receives a push error
code?

For more information about error codes, see Client error code description and Server error
code description on Huawei official website.

Models and system versions supported by OPPO Push

Currently, OPPO phone models running ColorOS 3.1 and newer systems, OnePlus 5/5T and
newer phone models, and all realme phone models are supported.

ColorOS is a highly-customized, efficient, intelligent, and richly-designed Android-based
mobile OS by OPPO.

What should | do when my OPPO phone receives a push error
code?

When OPPO push does not work, you can search for “OPPO onRegister error =" in client logs
to obtain the error code. Then find the corresponding causes by referring to OPPO error
codes.

Models and system versions supported by vivo Push

The models and oldest system versions supported by vivo Push are listed in the following
table. For other questions on vivo push, see vivo Push FAQs.

> Document Version: 20250731 190

https://developer.huawei.com/consumer/cn/doc/development/HMS-Guides/push-faq-v4
https://developer.huawei.com/consumer/en/doc/development/HMSCore-References-V5/error-code-0000001050255690-V5
https://developer.huawei.com/consumer/en/doc/development/HMSCore-References-V5/https-send-api-0000001050986197-V5#EN-US_TOPIC_0000001134031085__section13968115715131
https://open.oppomobile.com/wiki/doc#id=10196
https://dev.vivo.com.cn/documentCenter/doc/156#w1-08608733

© 2852, Message Push Service

User Guide*FAQ

Device model

Android version Version for system test Minimum version supported

Android 9.0 and later versions are supported by default

Ya3 Android 81
Ya1 Android 81
Y93 Standard Androd 8.1
Y935 Androd 8.1
vivo Z1Youth Androd 8.1
Yar7 Androd 8.1
73 Android 81
Y81 Android 81
®23 Android 81
H21s Android 81
H23 Androd 8.1
MEX S Android 8.1
MEX A Android 8.1
MEX A Android 8.1
#2110 Androd 8.1
H21 Androd 8.1
X20 Android 81
Y8ls Androd 8.1
Y834 Androd 8.1
x9sp 81 Android 8.1
x5 81 Android 81
71 Android 81
Y71 Androd 8.1
Y73 Androd 8.1
¥20 Plus Android 81
Y85 Android 81
®8 81 Android 81
*9Plus 8.1 Androd 8.1
YT5A Androd 7.1
Y794 Androd 7.1
Y661 A Androd 7.1
#a Android 71
%93 Android 71
3P Android 71
x95p Androd 7.1
xplayt Androd 7.1
YEIA Android 70
Y53 Android6.0
YETA Android6.0
Y55 Android6.0
Y66 Android6.0

PD1818 A 1896
PD1818E A 175
PD1818E A 15.25
PD1818C A 1910
PD1730E_A 11327
PD1813 A 1106
PD1813B A 15189
PD1732D A_1.145
PD1816_A 1102
PD1B814 A 154
PD1809_A 1140
PD1805 A 1183
PD1806B A_2171
PD1806_A_216.0
PD1801 A 1150
PD1728 A 1210
PD1709_A 881
PD1732 A 1122
PD1803_A 1205
PD1635 A 815.0 Beta
PD1616B_A_8150 Bsta
PD1730C_ A 196
PD1731 A 195
PD1731C A 180
PD1710_A 830
PD1730_A_113.10
PD1616 D 86.15
PD1619 A 8121
PD1718 A 1126
PD1708 A 1.23.10
PD1621BA A 185
PD1616 D 7155
PD1616BA_A_1.135
PD1618_A_7.14.10
PD1635 A 1215
PD1610 D 7111
PD1705 A 111.15
PD1628_A_116.20
PD1612 A 11127
PD1613 A 11911
PD1621 A 112.36

PD1818_A_ 1896
PD1B18SE A_175
PD1818E A_15.25
pD1818C A 19.10
PD1730E_A_113.27
PD1813 A 1106
PD1813B A 1519
PD1732D_A_1145
PD1816_A_ 1102
PD1814 A 154
PD1809 A 1141
PD1805 A 1184
PD18B0O6B A 2171
PD1806_A 2171
PD1801 A 1151
PD1728 A 1217
PD1709_A 882
PD1732 A 1129
PD1803 A 12010
PD1635 A 8150 Beta
PD1616B_A_8150 Beta
PD1730C_A_193
PD1731 A 195
PD1731C A 18.0
PD1710_A 8B40
PD1730_A_ 11311
PD1616_ D _86.16
PD1619 A 8121
PD1718 A 1126
PD1708 A 12310
PD1621BA A 185
PD1616 D 7155
PD1616BA A 1.135
PD1619_A_ 71410
PD1635 A 1216
PD161C D 7111
PD1705 A 11115
PD1628_A_116.20
PD1612 A 11127
PD1613 A 11911
PD1621 A 11236

What should | do when my vivo phone receives a push error

code?

When vivo Push does not work, you can search for "fail to turn on vivo Push state =" in client
logs to obtain the status code and find the specific causes by referring to Public status codes.

Troubleshooting procedure for common Android problems

1. Check whether the Manifest

2. Check whether the appld (Huawei, Xiaomi, or vivo), appSecret (Xiaomi or OPPO), appKey

file is configured correctly.

(OPPO or vivo), and ALIPUSH_APPID (mPaa$S) are consistent with the app registration
information on the corresponding development platform.

3. Check the Logcat logs tagged as mpush.
iOS related questions

Whether there will be a banner or sound alert for messages
when the app runs in the foreground

> Document Version: 20250731

191

https://dev.vivo.com.cn/documentCenter/doc/232

(@ £8%8, Message Push Service User Guide-FAQ

The default mechanism for Apple is that when an app is in foreground, the messages can
arrive but will be not shown. In order to show messages in foreground, you need to
implement it manually.

Message status is NoBindinfo

NoBindIinfo means the user pushes messages by Userld, but no corresponding information is
found based on the Userld. Please check if the client has called the binding API, and if the
corresponding appld and workspaceld are consistent.

Message status is BadDeviceToken

This status will only appear for iOS pushes, indicating that the actually pushed token is
invalid. First, check if the environment of the certificate is correct.

e If the app is packaged with a development certificate, the push console configuration
requires a development environment certificate, while Xcode requires a developer
certificate for debugging in real devices.

e If the app is packaged with a production certificate, the push console configuration requires
a production environment certificate.

Message status is DeviceTokenNotForTopic

This status will only appear for iOS pushes, indicating that the token is inconsistent with the
Bundleld of the certificate used in the push. Please check if the certificate is correct and if the
Bundleld of the certificate is consistent with the Bundleld used in client packaging.

The i0S phone cannot receive messages, but the message
status is ACKED

For iOS pushes, if the message status is ACKED, it means that the message has been
successfully pushed to Apple Push Notification service. Please check if the push permission is
enabled and whether you have switched the app to the background.

The default mechanism for Apple is that when an app is in foreground, the messages can
arrive but will be not shown. In order to show messages in foreground, you need to
implement it mannually.

RPC call exceptions

If an exception occurs when you call a resource through a remote procedure call (RPC)
request, troubleshoot the problem with reference to Security Guard error codes or Gateway
result codes.

> Document Version: 20250731 192

@ 8888, Message Push Service User Guide-Appendix

10.Appendix

10.1. Create an iOS push
certificate

To send messages to an iOS device, you need to configure the iOS push certificate in the
Message Push Service (MPS) console. iOS push certificate is used for message push. This
topic describes types of certificates supported by the Message Push Service and the method
of preparing a certificate.

Certificate types

Message Push Service only supports the Apple Push Service certificate. To learn more about
Apple certificate types and related description, see Certificate type.

It is easy to confuse the Apple Push Service certificate with iOS Development certificate.
Using iOS Development certificate may cause message push failure. The following sections
describe how to distinguish between the two certificates through Key Store MAC and Message
Push Service console.

Certificate type Purpose

It is the Apple push certificate for production environment. It is
Apple Push Service used to establish connectivity between your notification service
and APNs to deliver remote notifications to your app.

It is the Apple push certificate for development environment. It is

10S Development used during development and testing.

MAC Key Store

Double-click the existing .p12 certificate and import the certificate into the MAC Keychain.
The certificate information such as the name is displayed.

Among the certificates:

¢ iPhone Developer: Apple development certificate that is not supported by Message Push
Service.

e Apple Push Services: Apple push certificate for the production environment that is
supported by Message Push Service.

e Apple Development 10S Push Services: Apple push certificate for the development
environment that is supported by Message Push Service.

MPS console

After the certificate is imported into the Message Push Service console, the following
certificate information is displayed.

> Document Version: 20250731 193

https://help.apple.com/xcode/mac/current/#/dev80c6204ec

@ 8888, Message Push Service User Guide-Appendix

Attribute Value

certPort 443

issuerDN CN=Apple Worldwide Developer Relations Certification Authority, OU=Apple Worldwide Developer Relations, O=Apple Inc., C=US
certFilename 123.p12

alias demo

bundleName com.mpaas.demo

notAfter Jan 21, 2022, 11:36:59 AM

notBefore Jan 21, 2021, 11:36:59 AM

certHost api.development.push.apple.com

subjectDN C=CN, OU=NWNC462525, CN%App\e Development 105 Push Services| com.mpaas.demo, UID=com.

Check the subjectDN attribute.

e Apple Development IOS Push Services: Apple push certificate for the development
environment that is supported by Message Push Service.

e Apple Push Service: Apple push certificate for the production environment that is
supported by Message Push Service.

In the preceding figure, the subjectDN attribute is iPhone Developer, indicating that it is
an Apple development certificate, which is not supported by Message Push Service.

Prepare a certificate

Create an iOS app ID

1. On Apple Developer, click App IDs in the left navigation pane, and click + in the upper
right corner.

2. Enter the basic information.

o App ID Description > Name

o App ID Suffix > Bundle ID (The Bundle ID must be unique.)
3. Check Push Notifications.
4. Click Continue, and click Register. An iOS app ID is created.

Prepare a .certSigningRequest file
1. Access the MAC Keychain.

2. Request a certificate, choose Keychain Access > Certificate Assistant > Request a
Certificate From a Certificate Authority....

3. In the Certificate Information window, enter relevant information, such as the email
address and name, based on actual situations.

4. A .certsigningRequest file is successfully generated.

Create a certificate
1. On the iOS App IDs page, select your iOS app ID and click Edit.

> Document Version: 20250731 194

@ 8888, Message Push Service User Guide-Appendix

| i0S, tvOS, watchOS - I iOS App IDs + || a
Certificates 68 App IDs Total
2 Name & ID
Pending Apple Pay Payment Processing) Disabled O Disabled
Development A ated D i Disabled Disabled
Production
AutoFill Credential Provider Disabled Disabled
Keys
ClassKit Disabled Disabled
Al
Data Protection Disabled Disabled
Identifiers
App IDs Game Center @ Enabled @ Enabled
Pass Type IDs HealthKit Disabled Disabled
Websita Push IDs HomeKit) Disabled) Disabled
iCloud Containers
Hotspot Disabled Disabled
App Groups
Merchant IDs iCloud Digablad Disabled
e ks In-App Purchase ® Enabled ® Enabled
Devices Inter-App Audio Disabled Disabled
All
Muttipath Disabled Disabled
Apple TV
Apple Watch Network Extensions Disabled O Disabled
iPad NFC Tag Reading Disabled Disabled
iPhone
Personal VPN Disabled Disabled
iPod Touch
Push Notifications 3 Disabled Disabled
Provisioning Profiles
SiriKit Disabled Disabled
Development Wallet Disabled Disabled
Distribation A - ed o Disablod

2. Click Create Certificate under Development SSL Certificate or Production SSL
Certificate to create a certificate for the development or production environment.

N} h_:IFG Tag .Reading

Personal VPN
D Push Notifications
b

Apple Push Notification service SSL Certificates

To configure push notifications for this iOS App ID, a Client SSL Certificate that allows your notification server
to connect 1o the Apple Push Notification Service is required, Each 05 App ID requires its own Client SSL
Certificate. Manage and generate your certificates below.

! ﬂr.l_ Development S5L Certificate]

Create an additional certificate to use for this App 1D. Create Certificate

=] IProduction S5L Certificate I

Create an additional certificate to use for this App ID. Create Certificate

£ SirKit
3. Upload the . certsigningrequest file that you have prepared.

> Document Version: 20250731 195

@ 8888, Message Push Service User Guide-Appendix

When your CSR file is created, a public and private key pair is automatically generated. Your
private key is stored on your computer. On a Mac, it is stored in the login Keychain by default
and can be viewed in the Keychain Access app under the "Keys" category. Your requested
certificate is the public half of your key pair.

Upload CSR file.
Select .certSigningRequest file saved on your Mac.

Choose File... 7 CertificateSigningRequest.certSigningRequest

4. After a certificate is created successfully, the following page is displayed. Click Download
to download the .cer file.

@ Your certificate is ready.

Download, Install and Backup
Download your certificate to your Mac, then double click the .cer file to install in Keychain Access.
Make sure to save a backup copy of your private and public keys somewhere secure.

Name: Apple Development iOS Push Services: voiiimarivaccoc
Type: APNs Development iOS

Expires: Dec 07, 2019

Documentation
For more information on using and managing your certificates read:

=] Create certificates
5. Convertthe .cer fileintoa .p12 file.

i. Double-click the .cer file toimportitinto the MAC Key Store.

ii. Right-click the file that you have imported, and export it. The file is exported as a
p12 file.

6. After obtaining the .pi12 iOS push certificate, go to the mPaa$S console, select the target
App > Message Push Service > Push configuration to configure it.

10.2. Create i10S P8 Real-time
Activity Certificate

Log on to Apple Developer Account
1. Go to the Apple Developer website.

> Document Version: 20250731 196

https://developer.apple.com/

@ 8888, Message Push Service User Guide-Appendix

2. Log in with your Apple ID and ensure that you have the necessary management
permissions, typically Team Agent or App Manager roles.

Access the Certificate Page
1. Select Account from the navigation bar.

2. Click Certificates, Identifiers & Profiles in the left menu.

¢ B B B @ B

PrEqram resources Emails Membarship detals Dewvics resat dats Conpa-beval SLDDOTt AQTESTIS

Program resources

A 2
App Store Connect Certificates, IDs & Profiles Services
& Ao ra
i App Analyt 2 C

I Trends L P
#] nd Financi O c &
5 B & P - thert
au ¥

Create API Key
1. On the Certificates, Identifiers & Profiles page, select Keys from the left side.

2. Click the + icon in the upper right corner to create a new Key.

Certificates, Identifiers & Profiles

Certificates Ke y4 o

Identifiers
KEY ID SERVICES MNAME CREATED AT ~
Devices
b]
Profiles
Keys
Services

3. Enter the Key Name, for example, Push Notification Key .
4. Check the box for Apple Push Notifications Service (APNs) to enable push notifications.

5. Click Continue. After confirming the details, click Register.

> Document Version: 20250731 197

@ 8888, Message Push Service User Guide-Appendix

Certificates, Identifiers & Profiles

Register a New Key

‘ Key Hame ‘

Push MNatification Key

Key Usage Description (optianal)

Estatish cani
Netification se

l Y appie Push Netifications senvice |A.F‘N<||

Download .p8 Certificate
1. Upon successful Key generation, a Download button will appear on the page.

2. Click Download to obtain the .ps file, which will be named similarly to
AuthKe Y XXXXXXXXXX.p 8

3. Ensure to securely store the downloaded .ps file as it cannot be downloaded again once
the download is complete.
Record Key Information
After the .ps file is generated, record the following details for server-side integration of the
push notification service:
e Key ID: The Key ID is displayed to the right of your Key on the Keys page.

Certificates, Identifiers & Profiles

Certificates KeyS a

Identifiers
KEY ID SERVICES NAME CREATED AT ~ UPDATED AT

Devices

Profiles

Keys

e Team ID: The Team ID is displayed under Membership on your Apple Developer account
page.

dDeveIoper News Discover Design Develop Distribute Support Account 2

Account

@ B

Program resources Emails Membership details Device reset date Code-level support Agresments

«@
X

> Document Version: 20250731 198

@ 8888, Message Push Service User Guide-Appendix

Membership details

Team ID

Official Documentation Address

For additional details, please refer to Official documentation of Apple.

10.3. Message push status codes

The following tables list the common status codes and the possible status codes for various
push channels.

e Common status codes
e Apple Push

e Huawei Push

e MiPush

e OPPO Push

e vivo Push

e FCM

Common status codes

Status -
code Message Description
-1 WaitingForVerify Waiting for verification.
Waiting for the device to go online (the persistent
0 DeviceNotOnlineOrNoResp connection between the target device and the message

onse push gateway is closed) or waiting for delivery
confirmation.

There is no binding relationship. When you push a
1 NoBindInfo message based on the user ID, make sure that the target
user ID has been bound with a device ID.

When you use an MPS self-built channel to push a
message, this status indicates that the message has
been successfully pushed to the client.

2 Acked
When you use a vendor push channel to push a message,
this status indicates that the vendor’s push gateway has
been successfully called.

99999999 NONE Unknown status.

> Document Version: 20250731 199

https://developer.apple.com/help/account/manage-keys/create-a-private-key/

Ru%E . Message Push Service User Guide-Appendix

Apple Push

Status -

code Message Description

2001 PayloadEmpty The message payload is empty.

2002 PayloadToolLarge The message payload is too large.

2003 BadTopic Incorrect bundleid in the certificate.

2004 TopicDisallowed Illegal bundleid in the certificate.

2005 BadMessageld Incorrect messageld.

2006 BadExpirationDate Invalid expiration date.

2007 BadPriority Invalid priority.

2008 MissingDeviceToken Device token missed.
The device token is invalid or in incorrect format, or it
does not exist. When you push a message based on the
user dimension and receive this status code, you need to
check whether the token used for binding is correct or
not. We recommend that you create a simple push

) message in the MPS console as a test after completing

2009 BadDeviceToken the binding.
In the development environment (the console is
configured with a development environment certificate),
you need to use your personal development certificate to
package the app for testing. Otherwise, BadDeviceToken
will appear.

2010 DeviceTokenNotForTopic The device token doesn't match the specified topic.

2011 Unregistered Invalid token.

2013 BadCertificateEnvironment = The client certificate is for the wrong environment.

2014 BadCertificate The certificate is invalid.

2023 MissingTopic No topic is specified.

> Document Version: 20250731 200

Ru%E . Message Push Service User Guide-Appendix

APNS disconnected. This status may caused by the
following reasons:

e The iOS push environment configured in the console
and the pushed device token do not match.

e The certificate packaged in the app's installation
2024 ConnClosed package and the certificate configured in the console
do not match.

e The Bundleld in the project is different from the
Bundleld configured in the console.

For more information about how to configure the iOS
push certificate, environment and Bundleld in the
console, see Channel configuration.

2025 ConnUnavailable APNS connection is unavailable.

For more message push statuses of Apple Push, see Handling Notification Responses from
APNs.

Huawei Push

Status code Description

100 Invalid unknown parameter.

101 Invaid API_KEY.

102 Invaid SESSION_KEY.

106 The app or session has no permission to call the current service.

107 Obtai_n the client and secret again (e.g., in case of an updated
algorithm).

109 Excessive nsp_ts difference

110 Interface internal exception.

111 Server is busy.

80000003 Terminal is not online.

80000004 The app has been uninstalled.

> Document Version: 20250731 201

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/handling_notification_responses_from_apns?spm=a2c4g.11186623.2.21.1dcb3ca8SiPhwL

pusd . Message Push Service

User Guide-Appendix

80000005

80000006

80000007

80000008

80100000

80100002

80100003

80100004

80300002

80300007

81000001

80300008

MiPush

Status code

1001

10002

10003

10004

Response timed out.

No routing. No connection has been established between the
terminal and Push.

The terminal is in other region, and doesn't use Push in Chinese
mainland.

Incorrect routing. It may because that the terminal has switched
the Push server.

Some parameters are incorrect.

llegal token list.

llegal payload.

Invalid timeout period.

No permission to send messages to the tokens listed in the
parameter.

All tokens in the request are illegal tokens.

Internal error.

Authentication error (the request message body is too large).

Description

System error.

Service suspended.

Error in remote service.

Cannot request this resource due to IP restriction.

> Document Version: 20250731

202

pusd . Message Push Service

User Guide-Appendix

10005

10008

10009

10012

10013

10014

10017

10018

10022

10023

10024

10026

10027

10029

21301

22000

22001

22002

22003

This resource requires authorized appkey.

Incorrect parameters.

The system is busy.

llegal request.

llegal user.

Access to the app interface is restricted.

llegal parameter value.

The request exceeds the length limit.

Requests to the IP exceed the frequency limit.

User's requests exceed the frequency limit.

User's requests for special interface exceed the frequency limit.

The app is in the blacklist, and cannot call any APIs.

The app APl is called too frequently.

lllegal device.

Authentication failed.

lllegal app.

The app doesn't exist.

The app has been revocated.

Failed to update the app.

> Document Version: 20250731

203

1B SRE
ANT GROUP

Message Push Service

User Guide-Appendix

22004

22005

22006

22007

22008

22020

22021

22022

22100

22101

22102

22103

20301

App information missed.

Invalid app name.

Invalid app ID.

Invalid app Key.

Invalid app Secret .

lllegal app description.

The app hasn't been authorized by users.

Invalid app package name.

Incorrect data format for the app notification.

Too many app notifications.

Failed to send the app notification.

Invalid app notification ID.

Invalid target.

OPPO Push

Status
code

11

Message

Service Currently
Unavailable

Service in Flow Control

Invalid Auth Token

Description

The service is unavailable, please try again later.

The service is under traffic control.

Invalid AuthToken.

> Document Version: 20250731

204

Ru%E . Message Push Service User Guide-Appendix

App calling counts exceed limit, including the calling

13 App Call Limited frequency limit.
14 Invalid App Key Invalid AppKey.
15 Missing App Key AppKey missed.
16 Invalid Signature Invalid signature. Failed to pass signature verification.
17 Missing Signaturel? Signature missed. Failed to pass signature verification.
28 App Disabled The app is unavailable.
29 Missing Auth Token AuthToken missed.
30 Api Permission Denied The app has no permission to perform API push.
10000 Invalid Registrationld registration_id is in incorrect format.
vivo Push
Status code Description
10000 Permission authentication failed.
10040 The resource has reached the upper limit, please try again later.
10050 Both alias and regld cannot be empty.
10055 The title cannot be empty.
10056 The title cannot exceed 40 characters in length.
10058 The content cannot exceed 100 characters in length.
10066 The number of custom key/value pairs cannot exceed 10.
10067 Invalid custom key/value pair.

> Document Version: 20250731 205

pusd . Message Push Service

User Guide-Appendix

10070

10071

10072

10101

10102

10103

10110

10302

10303

10104

FCM

Status
code

90000002

90000003

90000004

90000007

90000009

90000011

The total number of messages sent exceeds the limit.

The sending time is out of the allowable time range.

Message push is too fast, please try again later.

The message content is unapproved.

Unknown exception occured in vivo server.

Pushed content contains sensitive information.

Please set the frequency of sending commercial messages.

Invalid regld.

requestld already exists.

Please send a formal message. Please check the content, and do
not send test text. The content in a formal message should not be
numbers only, letters only, symbols plus numbers, and cannot
contain "test", braces, and square brackets.

Message

InvalidRegistration

NotRegistered

InvalidPackageName

MessageTooBig

InvalidTtl

InternalServerError

Description

Invalid target.

The target is unregistered.

Invalid package name.

Message body is too large.

Invalid offline time-to-live.

FCM service exception

> Document Version: 20250731

206

Re%s . Message Push Service User Guide-Appendix

90000401 Authentication Failed to pass permission verification.

> Document Version: 20250731 207

	1.About Message Push Service
	2.Terminology
	3.Message push process
	4.Client-side development
	4.1. Android
	4.1.1. Quick start
	4.1.2. Process notification clicks
	4.1.3. Integrate third-party push channels
	4.1.3.1. Integrate HUAWEI Push
	4.1.3.2. HONOR Push
	4.1.3.3. OPPO Push
	4.1.3.4. Integrate vivo Push
	4.1.3.5. Integrate MiPush
	4.1.3.6. Integrate FCM push channel

	4.1.4. Vendor Message Classification
	4.1.5. Advanced features

	4.2. iOS

	5.Server-side configuration
	6.Console operations
	6.1. Data overview
	6.2. Message management
	6.2.1. Create a message - Simple push
	6.2.2. Create a message – Multiple push
	6.2.3. Manage simple push messages
	6.2.4. Manage multiple push messages
	6.2.5. Manage scheduled push task

	6.3. Message templates
	6.3.1. Create a message template
	6.3.2. Manage message templates

	6.4. Message revocation
	6.5. User tag management
	6.6. Device status query
	6.7. Channel configuration
	6.8. Communication configuration
	6.9. Key management

	7.API reference
	7.1. Client APIs
	7.2. Server APIs
	7.2.1. Overview
	7.2.2. SDK preparation
	7.2.3. Simple push
	7.2.4. Template push
	7.2.5. Multiple push
	7.2.6. Broadcast Push
	7.2.7. Message revocation
	7.2.8. Usage analysis
	7.2.9. Scheduled Push Tasks
	7.2.10. Vendor receipt interface code sample
	7.2.11. Extension parameters
	7.2.12. Result codes of API call

	8.Message content restrictions
	9.FAQ
	10.Appendix
	10.1. Create an iOS push certificate
	10.2. Create iOS P8 Real-time Activity Certificate
	10.3. Message push status codes

