
Ant Technology

Code Scanner
User Guide

Document Version: 20250731

Ant Technology

Code Scanner
User Guide

Document Version: 20250731

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Code Scanner User Guide·Legal disclaimer

> Document Version: 20250731 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Code Scanner User Guide·Document convent
ions

> Document Version: 20250731 I

Table of Contents
1.Code Scanner

1.1. Overview
1.2. Integrate Android SDK

1.2.1. Quick start
1.2.2. Advanced guide
1.2.3. Tutorial

1.2.3.1. Overview
1.2.3.2. Create an Application in Android Studio
1.2.3.3. Create an application in the mPaaS Console
1.2.3.4. Integrate Scan to project through Native AAR
1.2.3.5. Use the scan feature in the standard UI
1.2.3.6. Use the scan feature in custom UI

1.3. Integrate iOS SDK
1.3.1. Quick Start
1.3.2. Advanced guide
1.3.3. Multi-code recognition

1.4. FAQ

05

05

09

10

12

24

24

25

27

27

28

33

59

59

61

65

70

Code Scanner User Guide·Table of Contents

> Document Version: 20250731 I

The Scan component is provided by the mPaaS and is originated from the scan feature in
Alipay. This component inherits the precise and fast scan capability of Alipay. It can quickly
identify barcodes and accurately obtain the information in the barcodes.

Features
The Scan component can scan two-dimensional barcodes (QR codes) and one-dimensional
barcodes (barcodes).

Two-dimensional barcodes (QR codes)
Gen0 (Common QR code):

Gen1 (Visualead custom code):

One-dimensional barcodes (barcodes)
EAN8:

EAN13:

EAN14:

EAN18:

1.Code Scanner
1.1. Overview

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 5

EAN128:

ISBN:

ISSN:

Code39:

Code128:

UPC-A:

UPC-E:

ITF-14:

Benefits

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 6

Compared with similar industry-leading products, the mPaaS has advantages in the code
recognition speed and recognition rate under the same conditions.

Fast recognition
Compared with similar products, the mPaaS Scan recognizes QR codes and barcodes faster in
the case of the same distance and the same light source.

High recognition rate
Based on the unique blur processing and data evaluation and correction features, mPaaS can
recognize photos that cannot be recognized by the scan function in the album of similar
products.

This code can be recognized by the cameras of similar products, but cannot be recognized
by the scan function in their albums.

Codes that cannot be recognized by similar products.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 7

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 8

1.2. Integrate Android SDK

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 9

This article introduces the operation steps of accessing the Scan SDK in Android.

Note
Since June 28, 2020, Alibaba Cloud stopped maintaining the baseline 10.1.32 for mPaaS.
Upgrade your baseline to version 10.1.60, 10.1.68 or 10.2.3. The Scan component
supports two access modes, they are native AAR mode and component-based mode
(Portal & Bundle) . This topic describes how to use the scan function of the baseline
version of 10.1.68, 10.1.60 and 10.2.3. Scan supports multi-code recognition in full-
screen mode starting from the mPaaS baseline version of 10.1.68.33. Scan has added the
function of AI recognizing small codes and automatically zooming in starting from the
mPaaS baseline version of 10.2.3.

Prerequisites
If you want to connect the component to the mPaaS based on the native AAR mode, you
need to first complete the prerequisites and the subsequent steps. For more information,
see Add mPaaS to your project.
If you want to connect the component to the mPaaS based on components, you need to first
complete the Component-based access procedure.

Add the SDK
10.2.3
If you want to use AI to recognize small codes and automatically zoom in, please install the
Scan AI component.

Native AAR mode
In your project, install the Scan/Scan AI component on the Component Management
(AAR) page. For more information, see AAR component management .

Component-based mode
In your Portal and Bundle projects, install the Scan/Scan AI component on the Component
Management page. For more information, see Manage component dependencies.

10.1.68/10.1.60
Native AAR mode
In your project, install the Scan component on the Component Management (AAR) page.
For more information, see AAR component management .

Component-based mode
In your Portal and Bundle projects, install the Scan component on the Component
Management page. For more information, see Manage component dependencies.

Use the scan function
10.2.3/10.1.68
Use the full-screen scan code function

1.2.1. Quick start

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 10

ScanRequest scanRequest = new ScanRequest();
MPScan.startMPaasScanFullScreenActivity(this, scanRequest, new MPScanCallbackAdapter()
{
 @Override
 public boolean onScanFinish(final Context context, MPScanResult mpScanResult, final
MPScanStarter mpScanStarter) {
 Toast.makeText(getApplicationContext(),
 mpScanResult != null ? mpScanResult.getText() : "No code recognized", To
ast.LENGTH_SHORT).show();
 ((Activity) context).finish();
 // Returning true means that the callback has been consumed and no need to call
back again.
 return true;
 }
});

Use the window scan code function
Call the scan function of the baseline 10.1.68 (old standard UI). If it failed, you will directly
return to the scan page. If it succeeded, you will obtain URL information of the QR code.

ScanRequest scanRequest = new ScanRequest();
scanRequest.setScanType(ScanRequest.ScanType.QRCODE);
MPScan.startMPaasScanActivity(this, scanRequest, new ScanCallback() {
 @Override
 public void onScanResult(final boolean isProcessed, final Intent result) {
 if (!isProcessed) {
 // In the scan page, click the physical back button or the back button in t
he upper left corner.
 return;
 }
 // Note: this callback is executed in the child thread.
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (result == null || result.getData() == null) {
 // Scan failed.
 return;
 }
 // Scanned.
 String url = result.getData().toString();
 }
 });
 }
});

10.1.60
Call the scan function of the baseline 10.1.60. If it failed, you will directly return to the scan
page. If it succeeded, you will obtain the URL information of the QR code.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 11

 ScanService service = LauncherApplicationAgent
 .getInstance().getMicroApplicationContext()
 .findServiceByInterface(ScanService.class.getName());

 ScanRequest scanRequest = new ScanRequest();
 scanRequest.setScanType(ScanRequest.ScanType.QRCODE);

 service.scan(this, scanRequest, new ScanCallback() {
 @Override
 public void onScanResult(boolean isProcessed, final Intent result) {
 if (!isProcessed) {
 // In the scan page, click the physical back button or the back button in
the upper left corner.
 return;
 }
 // Note: this callback is executed in the child thread.
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (result == null || result.getData() == null) {
 // Scan failed.
 return;
 }
 // Scanned.
 String url = result.getData().toString();
 }
 });
 }
 });

Window scan code means using the scan code function under the old standard UI. If you need
to use the full-screen code scanning function that supports multi-code recognition, please
upgrade the mPaaS baseline version to 10.1.68.33 or above.

Use the Scan function in the standard UI
Scan code in full screen
If you need to scan the code continuously, that is, continue to recognize without exiting after
the code is scanned successfully, you can implement it according to the following code.

1.2.2. Advanced guide

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 12

ScanRequest scanRequest = new ScanRequest();
 MPScan.startMPaasScanFullScreenActivity(this, scanRequest, new
MPScanCallbackAdapter() {
 @Override
 public boolean onScanFinish(Context context, MPScanResult mpScanResult,
final MPScanStarter mpScanStarter) {
 new android.app.AlertDialog.Builder(context)
 .setMessage(mpScanResult != null ? mpScanResult.getText() : "No
code recognized")
 .setPositiveButton(R.string.confirm, new
DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 mpScanStarter.restart();
 }
 })
 .create()
 .show();
 // Returning false means that the callback is not consumed, and the
callback will continue for the next recognition.
 return false;
 }
 });

Override other methods of MPScanCallbackAdapter to monitor other events:

MPScan.startMPaasScanFullScreenActivity(this, scanRequest, new MPScanCallbackAdapter()
{
 @Override
 public boolean onScanFinish(final Context context, MPScanResult mpScanResult, final
MPScanStarter mpScanStarter) {
 return true;
 }

 @Override
 public boolean onScanError(Context context, MPScanError error) {
 // recognition error
 return super.onScanError(context, error);
 }

 @Override
 public boolean onScanCancel(Context context) {
 // recognition cancelled
 return super.onScanCancel(context);
 }
});

Before starting the full-screen code scanning function, you can set the startup parameters
according to the following code.

ScanRequest scanRequest = new ScanRequest();

// Set the prompt text

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 13

scanRequest.setViewText("prompt text");

// Set the prompt text for turning on the torch
scanRequest.setOpenTorchText("turning on the torch");

// Set the prompt text for turning off the torch
scanRequest.setCloseTorchText("turning off the torch");

// Set the code recognition type
// This setting is only valid when a code is scanned directly. It is invalid when an al
bum picture needs to be recognized.
scanRequest.setRecognizeType(
 ScanRequest.RecognizeType.QR_CODE, // QR code
 ScanRequest.RecognizeType.BAR_CODE, // Barcode
 ScanRequest.RecognizeType.DM_CODE, // DM code
 ScanRequest.RecognizeType.PDF417_Code // PDF417 code
); // If not set, the first three types are scanned by default.

// Set the Hide Album button
scanRequest.setNotSupportAlbum(true);

// Set a multi-code tagged image
scanRequest.setMultiMaMarker(R.drawable.green_arrow);

// Set a multi-code tip text
scanRequest.setMultiMaTipText("Click the green arrow to select a code");

// Set the dot color after selecting a single code
scanRequest.setMaTargetColor("#32CD32");

// Enable AI recognition of small codes and automatic enlargement, only supported by 10
.2.3 and above baselines, need to integrate the Scan AI component
scanRequest.setEnableAI(true);

// Set the delayed prompt text, only supported by 10.2.3 and above baselines
scanRequest.setDelayTipText("Delay x seconds to pop up toast");

// Set the delayed prompt time, in milliseconds, only supported by 10.2.3 and above bas
elines
scanRequest.setDelayTipTime(5000);

// Enable album recognition for multiple codes (up to 4), only supported by 10.2.3 and
above baselines
scanRequest.setEnableAlbumMultiCode(true);

// Setting up the application process for custom permissions
scanRequest.setPermissionDelegate(new PermissionDelegate() {
 /**
 * Start applying for permissions. You can implement your own permission ap
plication interaction or permission description here
 * Note:
 * 1. You need to apply for permission after you have finished your work,
otherwise the process will be stuck
 * 2. After the user rejects the permission, onPermissionDenied and
MPScanCallbackAdapter.onScanError will be called,

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 14

MPScanCallbackAdapter.onScanError will be called,
 * MPScanCallbackAdapter.onScanError implements the handling of permission
application failure by default, you can override this method to handle the error
 * @param fragment Scan code page
 * @param requestCode 1: Camera permissions
 * @param permissions The applied permissions
 *
 */
 @Override
 public void onRequestPermission(Fragment fragment, final int requestCode,
final String[] permissions) {
 // Process the camera permissions
 if(requestCode == 1){
 // Process your business logic
 showPermissionTipDialog();
 }
 // Must be called to start applying for permissions
 fragment.requestPermissions(permissions, requestCode);
 }

 /**
 * Callback after successful permission application
 */
 @Override
 public void onPermissionGranted(Fragment fragment, int requestCode,
String[] permissions, int[] grantResults) {
 dismissPermissionTipDialog();
 }

 /**
 * Callback after permission application is rejected
 */
 @Override
 public void onPermissionDenied(Fragment fragment, int requestCode, String[]
permissions, int[] grantResults) {
 dismissPermissionTipDialog();
 }

});

Window scan
When using the window scan function, you can set the start-up parameters according to the
following code snippet.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 15

ScanRequest scanRequest = new ScanRequest();

// Set the UI style of the scan page.
scanRequest.setScanType(ScanRequest.ScanType.QRCODE); // The style of the QR code.
scanRequest.setScanType(ScanRequest.ScanType.BARCODE); // The default style of the barc
ode.

// Set the scan page title
scanRequest.setTitleText("Standard Scan")

// Set the prompt text under the scan window.
scanRequest.setViewText("Prompt Text");

// Set the prompt text for turning on the torch, for baseline 10.1.60 and later version
s only.
scanRequest.setOpenTorchText("Turn on the torch");

// Set the prompt text for turning off the torch, for baseline 10.1.60 and later
versions only.
scanRequest.setCloseTorchText("Turn off the torch");

// Set the code recognition type, for the baseline 10.1.60.6 and later veresions and 10
.1.68.2 and later veresions.
// This setting is only valid when a code is scanned directly. It is invalid when an al
bum picture needs to be recognized.
scanRequest.setRecognizeType(
 ScanRequest.RecognizeType.QR_CODE, // QR code
 ScanRequest.RecognizeType.BAR_CODE, // Barcode
 ScanRequest.RecognizeType.DM_CODE, // DM code
 ScanRequest.RecognizeType.PDF417_Code // PDF417 code
); // If not set, the first three types are scanned by default.

// Set the transparent status bar (valid on Android 4.4 and later versions), for the ba
seline 10.1.68.15 and later versions only.
scanRequest.setTranslucentStatusBar(true);

// Set the Hide Album button, for the baseline 10.1.68.22 and later versions only.
scanRequest.setNotSupportAlbum(true);

Use the Scan component in the custom UI
See Sample code.

Upgrade adaptation in the custom UI

Since baseline 10.2.3.35, the Scan SDK adds class MPCustomScanView and related APIs to

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 16

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/mpaas_android_app

Since baseline 10.2.3.35, the Scan SDK adds class MPCustomScanView and related APIs to
replace the original APIs such as MPScanner ,which was previously used for customizing
the scan feature. Compared with MPScanner , the solution of using MPCustomScanView
encapsulates the core processes of the scan service such as camera management, code
recognition, multi-code recognition, screen zoom in and out, and code result analysis. You
don't need to pay attention to related operations when developing, just focus on
implementing your customized UI in MPCustomScanView . You can still continue to use
 MPScanner , but the solution will no longer be maintained and you will not be able to
obtain feature updates consistent with the full-screen UI (such as multi-code recognition) in
subsequent upgrades. It is recommended that you switch to the MPCustomScanView
solution to implement custom UI when the time is right. This solution will remain consistent
with the full-screen UI in subsequent feature upgrades.
Since baseline 10.1.68.5 and 10.1.60.11, the Scan SDK adds class MPScanner and related
APIs to replace the original APIs such as BQCScanCallback and MaScanCallback . These
two APIs were previously used for customizing the scan feature. Compared with the original
APIs, MPScanner provides complete encapsulation, easy-to-use APIs, and support for more
new features such as callbacks for insufficient environmental brightness. If you are still
using original APIs such as BQCScanCallback and MaScanCallback , you may need to
adapt the following changes when you upgrade from an earlier version:

Version 10.1.68.22: Some APIs are added for the MaScanCallback class,
 BQCScanCallback class, and IOnMaSDKDecodeInfo class. You only need to handle these
APIs with empty implementation, among which “false” is returned for the
 MaScanCallback.onMaCodeInterceptor method.
Version 10.1.60.6: Some APIs are added for the BQCScanCallback class. You only need
to handle these APIs with empty implementation.
Version 10.1.60: Some APIs are added for the BQCScanCallback class. You only need to
handle these APIs with empty implementation.
Version 10.1.20: For MaScanCallback class, the interface void onResultMa(MaScanResult
maScanResult) changed to void onResultMa(MultiMaScanResult multiMaScanResult) .
You can obtain MaScanResult in the following code snippet:

MaScanResult maScanResult = multiMaScanResult.maScanResults[0];

API description for the custom UI
MPCustomScanView
To use MPCustomScanView , you need to let Activity inherit MPaasToolsCaptureActivity ,
implement the getCustomScanView method and return the customized MPCustomScanView .

public class MyScanActivity extends MPaasToolsCaptureActivity {

 private MyScanView myScanView;

 @Override
 protected MPCustomScanView getCustomScanView() {
 myScanView = new MyScanView(this);
 // For details, please refer to the github code example.
 return myScanView;
 }

}

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 17

In MPCustomScanView you can implement or call the following methods:

/**
 * Scan start callback
 */
public void onStartScan();

/**
 * Callback for camera first frame display
 *
 * There is no guarantee which one will be executed first between this method and the s
can start callback.
 */
public void onPreviewShow();

/**
 * Scan end callback
 */
public void onStopScan();

/**
 * Grayscale value callback of camera frame
 * Each frame during the scanning process will be called back once.
 *
 * @param gray The average gray value can be used to measure the brightness of the envi
ronment
 */
public void onGetAvgGray(int gray);

/**
 * Callback for successful scanning (code recognized)
 *
 * @param context Current context
 * @param list Recognized code result
 */
public abstract void onScanFinished(Context context, List<MPScanResult> list);

/**
 * Scan failed callback
 *
 * @param context Current context
 * @param list Reason for failure
 */
public abstract void onScanFailed(Context context, MPScanError error);

/**
 * Callback for failure to open camera
 */
public void onCameraOpenFailed();

/**
 * Turn flash on or off
 *
 * @return The status of the flash after calling this method
 */

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 18

 */
public boolean switchTorch();

/**
 * Identification code from file
 *
 * @param path File path
 * @return Recognized code result
 */
public List<MPScanResult> scanFromPath(String path);

MPScanResult
/**
 * Recognize result strings
 */
private String text;

/**
 * Recognized code type
 */
private MPRecognizeType mpRecognizeType;

/**
 * The coordinates of the center point of the recognized code
 */
private Point centerPoint;

Customize the permission application process
If you need to customize the permission application process, please implement the
PermissionDelegate interface:

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 19

public class MyScanActivity extends MPaasToolsCaptureActivity implements
PermissionDelegate{

 /**
 * Start applying for permissions. Users can implement their own permission applica
tion interactions or permission descriptions here.
 * Note: Users need to apply for permissions after completing their tasks,
otherwise the process will be stuck
 * @param fragment Scan code page
 * @param requestCode 1: Camera permissions
 * @param permissions The applied permissions
 */
 @Override
 public void onRequestPermission(Fragment fragment, final int requestCode, final Str
ing[] permissions) {
 // Process the camera permissions
 if(requestCode == 1){
 // Process your business logic
 showPermissionTipDialog();
 }
 // Must be called to start applying for permissions
 fragment.requestPermissions(permissions, requestCode);
 }

 /**
 * Callback after successful permission application
 */
 @Override
 public void onPermissionGranted(Fragment fragment, int requestCode, String[] permis
sions, int[] grantResults) {
 dismissPermissionTipDialog();
 }

 /**
 * Callback after permission application is rejected
 */
 @Override
 public void onPermissionDenied(Fragment fragment, int requestCode, String[] permiss
ions, int[] grantResults) {
 dismissPermissionTipDialog();
 }
}

MPScanner (abandoned)
The settings related to the custom UI are as follows:

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 20

/**
 * Set View to display the camera content.
 * It is recommended to call in the onConfiguration method of {@link MPScanListener}.
 *
 * @param textureView Customize TextureView in the scan page.
 */
public void setDisplayView(TextureView textureView);

/**
 * Set the area to be scanned.
 *
 * @param rect The recognized area.
 */
public void setScanRegion(Rect rect);

/**
 * Set the scan listener.
 */
public void setMPScanListener(MPScanListener mpScanListener);

/**
 * Set the listener for identifying the gray value of the image.
 */
public void setMPImageGrayListener(MPImageGrayListener mpImageGrayListener);

/**
 * Obtain the Camera object.
 *
 * @return Camera object.
 */
public Camera getCamera();

/**
 * Set the code type to be scanned.
 * Only valid for direct scan. Invalid for scanning a code from the bitmap.
 *
 *
 * @param recognizeTypes BAR_CODE Barcode;
 * QR_CODE QR code;
 * DM_CODE DM code;
 * PDF417_CODE PDF417 code;
 * If not set, the first three types are scanned by default.
 */
public void setRecognizeType(MPRecognizeType... recognizeTypes);

The scan content related to the custom UI is as follows:

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 21

/**
 * Open the camera and start scanning.
 *
 * Call the API when entering the page for the first time or the camera exits.
 */
public void openCameraAndStartScan();

/**
 * Open the camera and stop scanning.
 */
public void closeCameraAndStopScan();

/**
 * Start scanning.
 *
 * The camera state will not be changed. The invocation of this method takes effect onl
y when the camera is turned on.
 */
public void startScan();

/**
 * Stop scanning.
 *
 * The camera state will not be changed.
 */
public void stopScan();

/**
 * Scan the code from the bitmap.
 *
 * @param bitmap The bitmap to be scanned.
 * @return: The scan result.
 */
public MPScanResult scanFromBitmap(Bitmap bitmap);

Others:

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 22

/**
 * Turn on or off the torch.
 *
 * @return Whether the torch is turned on after the method is called.
 */
public boolean switchTorch();

/**
 * Turn on the torch.
 */
public void openTorch();

/**
 * Turn off the torch.
 */
public void closeTorch();

/**
 * Play the default "beep" sound.
 */
public void beep();

/**
 * Release the resource.
 *
 * Call in onDestroy.
 */
public void release();

MPScanListener (abandoned)

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 23

/**
 * Scanning parameter configuration completed.
 */
void onConfiguration();

/**
 * Scanning starts.
 */
void onStart();

/**
 * Scanned.
 *
 * @param result The scan result.
 */
void onSuccess(MPScanResult result);

/**
 * Scan error.
 *
 * @param error The error.
 */
void onError(MPScanError error);

MPImageGrayListener (abandoned)
/**
 * Obtain the average gray value of the recognized image.
 *
 * The normal range is from 50 to 140,
 * When the gray value is lower or higher than the normal range, it usually means that
the ambient brightness is too low or too high. The user can be prompted to turn on or o
ff the torch.
 * Note: This method will be called continuously during the scan process.
 *
 * @param gray The average gray value of the image.
 */
void onGetImageGray(int gray);

The Scan component is supported in the native AAR mode, the mPaaS Inside mode, and the
component-based mode. If you want to connect to and use mPaaS as other SDKs, we
recommend that you use the native AAR mode.
The native AAR mode uses the native Android AAR-based packaging solution, and therefore is
closer to the technology stack of Android developers. This access method frees you from the
need to understand mPaaS-related packaging knowledge. You can integrate mPaaS into your
projects by using the mPaaS Android Studio plug-in. This method reduces your access costs
and makes it easier for you to get started with mPaaS.

1.2.3. Tutorial

1.2.3.1. Overview

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 24

To help you get familiar with the native AAR mode, this tutorial describes how to add the
Scan component in the native AAR mode and how to use the scan feature.
This tutorial contains the following five parts:

1. Create an application in Android Studio
2. Create an application in the mPaaS console
3. Access a project in the native AAR mode
4. Use the scan feature in a standard UI
5. Use the scan feature in a custom UI

What you will learn
How to create an Android app that displays Toast when a button is tapped
How to access a project in the native AAR mode.
How to use the scan feature in a standard UI.
How to use the scan feature in a custom UI.

Prerequisites
1. The development environment is configured. In this tutorial, the development environment

in Windows is taken as an example.
2. A web browser is installed. The Chrome browser is recommended.
3. An Android phone and the supporting data cable are prepared. The operating system

version is Android 4.3 or later. You can also use a simulator for debugging. This tutorial
uses a simulator as an example.

In this section, you will create an app that causes a Toast to appear when a user clicks a
button, and obtain the installation package in APK format.
This process mainly includes the following four steps:

1. Create a project
2. Write the code
3. Create a signature file and sign the project
4. Install the application on a mobile phone
If you already have a native Android project and the project has already been signed, skip this
tutorial and directly Create an application in the mPaaS console.

Create a project
1. Start Android Studio and choose File > New > New Project.
2. In the Create New Project dialog box that appears, select Empty Activity and click Next.
3. Enter a name in Name, enter a package name in Package name, and specify a project

location in Save location. Note that the default package name can be used. For example,
enter Scan Application in the Name entry box. From the Minimum SDK drop-down list,
select API 18: Android 4.3 (Jelly Bean) .

1.2.3.2. Create an Application in Android Studio

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 25

Note
API 18: Android 4.3 (Jelly Bean)” is the earliest version that the mPaaS supports. You
can select a version according to the actual production requirements.

4. Click Finish. The Create a project procedure is complete.

Write the code
1. Open the activity_main.xml file and refer to the following code to add a button.

 <Button
 android:id="@+id/button"
 android:layout_width="101dp"
 android:layout_height="50dp"
 android:layout_marginStart="142dp"
 android:layout_marginTop="153dp"
 android:layout_marginBottom="151dp"
 android:text="Button"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

2. Open the MainActivity class and add a click event to the button.

 findViewById(R.id.button).setOnClickListener(new View.OnClickListener(){
 @Override
 public void onClick(View v) {
 Toast.makeText(MainActivity.this, "Hello mPaaS!",
Toast.LENGTH_SHORT).show();
 }
 });

3. Compile the code. After successful compilation, the Write the code procedure is
completed.

Create a signature file and sign the project
1. In Android Studio, choose Build > Generate Signed Bundle / APK.
2. In the dialog box that appears, select APK and click Next.
3. Click Create new.
4. Enter all the required information and click OK. The signature creation is complete. You can

obtain the generated signature file in the path specified in Key store path.
5. After the fields are automatically filled, click Next to start signing the project.
6. Select a build variant in Build Variants as needed. Remember the selected build variant.

You need to select the same variant when you use the encrypted file.
Then select the encrypted version V1 (Jar Signature) . Note that V1 (Jar Signature) is
required while V2 (Full APK Signature) is optional.

7. Click Finish. After the packaging is complete, you can locate the signed APK installation
package in the debug folder under the project directory (~\MyHApplication\app\debug).
In this tutorial, the name of the installation package is app-debug.apk .

Install the application on a mobile phone

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 26

1. Connect a cell phone to the computer and enable the USB Debugging mode of the cell
phone.

2. Run the project.
3. Click BUTTON, pop up Toast. This notification indicates that you have successfully installed

the application with the expected features. Now you complete the installation of the
application on a mobile phone.

1. Open the network browser and log on to the mPaaS console.
2. Create an mPaaS application.
3. Enter an application name and click OK.
4. Click the created application to open the application page.

Choose Overview > Configure now > Download the configuration file > Android >
Download now, in the pop-up dialog box, enter the package name in Package Name, for
example, com.mpaas.scan. Then upload the APK installation package that has been
compiled and signed. Click Download Configuration to download the configuration file.

5. The downloaded file is a package in compressed format. Decompress the package. Then
you will obtain a configuration file and an encrypted image.

This section introduces how to integrate Scan to the project with Native AAR method.

Procedure
1. In Android Studio, choose mPaaS > Native AAR mode.
2. In the dialog box that appears on the right side of the window, click Start Import under

Import App Configuration .
3. In the Import mPaaS Configuration File dialog box that appears, select I have

downloaded the configuration file in the console and get ready to import the
configuration file to the project.

4. Select the Configuration file that is downloaded after you create the mPaaS application in
the console. Click Finish.

5. A success message appears after the configuration file is imported.
6. Click Start Configuration under Access/Upgrade the baseline on the right side of the

window.
7. In the Select an mPaaS baseline version dialog box that appears, select 10.1.68 from

the drop-down list, and click OK to access the mPaaS SDK.

Note
You can click Start Configuration again to upgrade the baseline.

8. Click Start Configuration under Configure/update components on the right side of the
window.

1.2.3.3. Create an application in the mPaaS
Console

1.2.3.4. Integrate Scan to project through Native
AAR

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 27

https://account.alibabacloud.com/login/login.htm?oauth_callback=https%253A%252F%252Fmpaaspub.console.aliyun.com%252F

9. In the component list that appears, select Code Scanner and click OK to add the scan
component to the project.
Now you complete the connection of your project to mPaaS by using the native AAR mode.

What to do next
Use the scan feature in a standard UI: Add the scan feature in a standard UI to the project
and set the title of the scan screen.
Use the scan feature in a custom UI: Add the scan feature in a custom UI to the project.

Note
You can configure your project to support the scan feature in both standard UIs and
custom UIs, or either. Click to download the code sample to be used in the follow-up
steps.

This topic describes how to add the scan feature in a standard UI to a project and how to set
the title of the scan screen.

Use the scan feature in the standard UI
1. Open the activity_main.xml file in Android Studio, reset the Button layout, and set the

Button ID to standard_ui_btn .

 <?xml version="1.0" encoding="utf-8"?>
 <androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <Button
 android:id="@+id/standard_ui_btn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="48dp"
 android:background="#108EE9"
 android:gravity="center"
 android:text="Scan in the standard UI"
 android:textColor="#ffffff"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.498"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 </androidx.constraintlayout.widget.ConstraintLayout>

2. In the MainActivity class, rewrite the click event so that you can click the button to
implement the scan feature. The code is as follows:

1.2.3.5. Use the scan feature in the standard UI

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 28

https://gw.alipayobjects.com/os/bmw-prod/aec8a9a2-1135-4c5b-8dab-1cc9b0a5fcd4.zip

 private ScanRequest scanRequest = new ScanRequest();
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 findViewById(R.id.standard_ui_btn).setOnClickListener(new
View.OnClickListener(){
 @Override
 public void onClick(View v) {
 MPScan.startMPaasScanActivity(MainActivity.this, scanRequest, new Sca
nCallback() {
 @Override
 public void onScanResult(final boolean isProcessed, final Intent
result) {
 if (!isProcessed) {
 // In the scan page, click the physical back button or th
e back button in the upper left corner.
 return;
 }
 // Note: this callback is executed in the child thread.
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (result == null || result.getData() == null) {
 // Scan failed.
 Toast.makeText(MainActivity.this, "Scan failed, tr
y again.", Toast.LENGTH_SHORT).show();
 return;
 }
 // Scanned.
 new AlertDialog.Builder(MainActivity.this)
 .setMessage(result.getData().toString())
 .setPositiveButton(R.string.confirm, null)
 .create()
 .show();
 }
 });
 }
 });

 }
 });
 }

3. In the AndroidManifest.xml file of the project, add the read and write permissions and the
network access permission.

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.INTERNET" />

4. In the build.gradle(:app) file under the main module of the project, add the following
configuration:

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 29

5. Compile and run the project. Then install the application on a mobile phone.
6. Click Scan in the standard UI . Then you can use the scan feature in a standard UI.
7. Scan the following QR code. The information of this QR code appears on the user interface.

Set the title of the scan screen
1. In the activity_main.xml file, add a button and set the button ID to btn_title .

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 30

 <Button
 android:id="@+id/btn_title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="128dp"
 android:background="#108EE9"
 android:gravity="center"
 android:text="Set the title of the scan screen on a standard UI"
 android:textColor="#ffffff"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.0"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

2. Create a DialogUtil class in the com.example.scanapplication package.

3. Set the layout of the scan screen in the DialogUtil class.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 31

 public interface PromptCallback {
 void onConfirm(String msg);
 }

 public static void prompt(Activity activity, final PromptCallback callback) {
 final EditText edit = new EditText(activity);
 new AlertDialog.Builder(activity)
 .setTitle("Enter text")
 .setView(edit)
 .setPositiveButton("OK"
 , new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 if (callback != null) {
 String text = edit.getText().toString().trim();
 callback.onConfirm(text);
 }
 dialog.dismiss();
 }
 })
 .setNegativeButton("Cancel", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 dialog.dismiss();
 }
 })
 .create()
 .show();
 }

4. Write code in the MainActivity class. The code allows you to set the title of the scan
screen after you click the btn_title button. The code is as follows:

 findViewById(R.id.btn_title).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 DialogUtil.prompt(MainActivity.this, new DialogUtil.PromptCallback() {
 @Override
 public void onConfirm(String msg) {
 scanRequest.setTitleText(msg);
 }
 });
 }
 });

5. Compile the project and then install the application on a mobile phone.
6. Click Set the scan screen title on a standard UI and enter a title to be displayed, for

example, mPaaS . Then click OK.
7. Click Scan in the standard UI . The title information entered in step 6 is displayed in the

upper left corner of the scan screen. The scan screen title is successfully set in the
standard UI.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 32

This topic describes how to customize a UI and add the scan capability in the custom UI to a
project. This process involves the following four steps:

1. Create a dependency project
2. Create and customize a UI in the dependency project
3. Use the scan feature in the dependency project
4. Call the scan feature in your custom UI in the main project

Procedure
Create a dependency project

1. Choose File > New > New Module.

1.2.3.6. Use the scan feature in custom UI

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 33

2. Select Android Library and click Next.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 34

3. Enter custom in Module name and click Finish.

Create and customize a UI in the dependency project
1. Create a widget package in the com.example.custom package of the custom module.

In the widget package, add the APSurfaceTexture class that inherits from the
 SurfaceTexture class to capture image streams.

public class APSurfaceTexture extends SurfaceTexture {

 private static final String TAG = "APSurfaceTexture";

 public SurfaceTexture mSurface;

 public APSurfaceTexture() {
 super(0);
 }

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN)
 @Override
 public void attachToGLContext(int texName) {
 mSurface.attachToGLContext(texName);
 }

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN)
 @Override
 public void detachFromGLContext() {
 try {
 mSurface.detachFromGLContext();

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 35

 mSurface.detachFromGLContext();
 } catch (Exception ex) {
 try {
 Method nativeMethod =
SurfaceTexture.class.getDeclaredMethod("nativeDetachFromGLContext");
 nativeMethod.setAccessible(true);
 int retCode = (Integer) nativeMethod.invoke(mSurface);
 LoggerFactory.getTraceLogger().debug(TAG, "nativeDetachFromGLContext
invoke retCode:" + retCode);
 } catch (Exception e) {
 LoggerFactory.getTraceLogger().error(TAG, "nativeDetachFromGLContext
invoke exception:" + e.getMessage());
 }
 LoggerFactory.getTraceLogger().error(TAG, "mSurface.detachFromGLContext() ex
ception:" + ex.getMessage());
 }
 }

 @Override
 public boolean equals(Object o) {
 return mSurface.equals(o);
 }

 @Override
 public long getTimestamp() {
 return mSurface.getTimestamp();
 }

 @Override
 public void getTransformMatrix(float[] mtx) {
 mSurface.getTransformMatrix(mtx);
 }

 @Override
 public void release() {
 super.release();
 mSurface.release();
 }

 @Override
 public int hashCode() {
 return mSurface.hashCode();
 }

 @TargetApi(Build.VERSION_CODES.KITKAT)
 @Override
 public void releaseTexImage() {
 mSurface.releaseTexImage();
 }

 @TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1)
 @Override
 public void setDefaultBufferSize(int width, int height) {
 mSurface.setDefaultBufferSize(width, height);
 }

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 36

 }

 @Override
 public void setOnFrameAvailableListener(OnFrameAvailableListener listener) {
 mSurface.setOnFrameAvailableListener(listener);
 }

 @Override
 public String toString() {
 return mSurface.toString();
 }

 @Override
 public void updateTexImage() {
 mSurface.updateTexImage();
 }
}

2. In the widget package of the custom module, add the APTextureView class that
inherits from the TextureView class for the display of image streams.

public class APTextureView extends TextureView {

 private static final String TAG = "APTextureView";

 private Field mSurfaceField;

 public APTextureView(Context context) {
 super(context);
 }

 public APTextureView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 public APTextureView(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 }

 @Override
 protected void onDetachedFromWindow() {
 try {
 super.onDetachedFromWindow();
 } catch (Exception ex) {
 LoggerFactory.getTraceLogger().error(TAG, "onDetachedFromWindow exception:"
+ ex.getMessage());
 }
 }

 @Override
 public void setSurfaceTexture(SurfaceTexture surfaceTexture) {
 super.setSurfaceTexture(surfaceTexture);
 afterSetSurfaceTexture();
 }

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 37

 private void afterSetSurfaceTexture() {
 LoggerFactory.getTraceLogger().debug(TAG, "afterSetSurfaceTexture
Build.VERSION.SDK_INT:" + Build.VERSION.SDK_INT);
 if (Build.VERSION.SDK_INT < 16 || Build.VERSION.SDK_INT > 20) {
 return;
 }

 try {
 if (mSurfaceField == null) {
 mSurfaceField = TextureView.class.getDeclaredField("mSurface");
 mSurfaceField.setAccessible(true);
 }

 SurfaceTexture innerSurface = (SurfaceTexture) mSurfaceField.get(this);
 if (innerSurface != null) {
 if (!(innerSurface instanceof APSurfaceTexture)) {
 APSurfaceTexture wrapSurface = new APSurfaceTexture();
 wrapSurface.mSurface = innerSurface;
 mSurfaceField.set(this, wrapSurface);
 LoggerFactory.getTraceLogger().debug(TAG, "afterSetSurfaceTexture wra
p mSurface");
 }
 }
 } catch (Exception ex) {
 LoggerFactory.getTraceLogger().error(TAG, "afterSetSurfaceTexture
exception:" + ex.getMessage());
 }
 }
}

3. In the com.example.custom package, create a Utils class for the conversion of images.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 38

public class Utils {

 private static String TAG = "Utils";

 public static void toast(Context context, String msg) {
 Toast.makeText(context, msg, Toast.LENGTH_SHORT).show();
 }

 public static Bitmap changeBitmapColor(Bitmap bitmap, int color) {
 int bitmap_w = bitmap.getWidth();
 int bitmap_h = bitmap.getHeight();
 int[] arrayColor = new int[bitmap_w * bitmap_h];

 int count = 0;
 for (int i = 0; i < bitmap_h; i++) {
 for (int j = 0; j < bitmap_w; j++) {

 int originColor = bitmap.getPixel(j, i);
 // Non-transparent area
 if (originColor != 0) {
 originColor = color;
 }

 arrayColor[count] = originColor;
 count++;
 }
 }
 return Bitmap.createBitmap(arrayColor, bitmap_w, bitmap_h,
Bitmap.Config.ARGB_8888);
 }

 public static Bitmap uri2Bitmap(Context context, Uri uri) {
 Bitmap bitmap = null;
 InputStream in;
 try {
 in = context.getContentResolver().openInputStream(uri);
 if (in != null) {
 bitmap = BitmapFactory.decodeStream(in);
 in.close();
 }
 } catch (Exception e) {
 LoggerFactory.getTraceLogger().error(TAG, "uri2Bitmap: Exception " +
e.getMessage());
 }
 return bitmap;
 }
}

4. In the custom module, create an attrs.xml file under the res > values directory,
and add the following code to the file.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 39

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <declare-styleable name="scan">
 <attr name="shadowColor" format="color" />
 </declare-styleable>
</resources>

5. Create a drawable folder under the res directory of the custom module, and copy
the resource files to the drawable folder, as shown in the figure below.

6. In the widget package of the custom module, add the FinderView class that inherits
from the View class. Add the following code to implement the drawing of the scan
window, corners, and border shadows.

public class FinderView extends View {

 private static final int DEFAULT_SHADOW_COLOR = 0x96000000;

 private int scanWindowLeft, scanWindowTop, scanWindowRight, scanWindowBottom;
 private Bitmap leftTopCorner, rightTopCorner, leftBottomCorner, rightBottomCorner;
 private Paint paint;
 private int shadowColor;

 public FinderView(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 init(context, attrs);
 }

 public FinderView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init(context, attrs);
 }

 private void init(Context context, AttributeSet attrs) {
 applyConfig(context, attrs);
 setVisibility(INVISIBLE);
 initCornerBitmap(context);

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 40

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/179437/AntCloud_zh/1599563681752/image.zip

 initCornerBitmap(context);

 paint = new Paint();
 paint.setAntiAlias(true);
 }

 private void applyConfig(Context context, AttributeSet attrs) {
 if (attrs != null) {
 TypedArray typedArray = context.obtainStyledAttributes(attrs,
R.styleable.scan);
 shadowColor = typedArray.getColor(R.styleable.scan_shadowColor,
DEFAULT_SHADOW_COLOR);
 typedArray.recycle();
 }
 }
 //Initialize the corner style of the scan window.
 private void initCornerBitmap(Context context) {
 Resources res = context.getResources();
 leftTopCorner = BitmapFactory.decodeResource(res,
R.drawable.scan_window_corner_left_top);
 rightTopCorner = BitmapFactory.decodeResource(res,
R.drawable.scan_window_corner_right_top);
 leftBottomCorner = BitmapFactory.decodeResource(res,
R.drawable.scan_window_corner_left_bottom);
 rightBottomCorner = BitmapFactory.decodeResource(res,
R.drawable.scan_window_corner_right_bottom);
 }

 @Override
 public void draw(Canvas canvas) {
 super.draw(canvas);
 drawShadow(canvas);
 drawCorner(canvas);
 }
 //Draw the corner styles of the scan window.
 private void drawCorner(Canvas canvas) {
 paint.setAlpha(255);
 canvas.drawBitmap(leftTopCorner, scanWindowLeft, scanWindowTop, paint);
 canvas.drawBitmap(rightTopCorner, scanWindowRight - rightTopCorner.getWidth(), s
canWindowTop, paint);
 canvas.drawBitmap(leftBottomCorner, scanWindowLeft, scanWindowBottom -
leftBottomCorner.getHeight(), paint);
 canvas.drawBitmap(rightBottomCorner, scanWindowRight -
rightBottomCorner.getWidth(), scanWindowBottom - rightBottomCorner.getHeight(), paint
);
 }
 //Draw the border shadows of the scan window.
 private void drawShadow(Canvas canvas) {
 paint.setColor(shadowColor);
 canvas.drawRect(0, 0, getWidth(), scanWindowTop, paint);
 canvas.drawRect(0, scanWindowTop, scanWindowLeft, scanWindowBottom, paint);
 canvas.drawRect(scanWindowRight, scanWindowTop, getWidth(), scanWindowBottom, pa
int);
 canvas.drawRect(0, scanWindowBottom, getWidth(), getHeight(), paint);
 }

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 41

 }

 /**
 * Determine the location of the scan window according to the position of RayView.
 */
 public void setScanWindowLocation(int left, int top, int right, int bottom) {
 scanWindowLeft = left;
 scanWindowTop = top;
 scanWindowRight = right;
 scanWindowBottom = bottom;
 invalidate();
 setVisibility(VISIBLE);
 }

 public void setShadowColor(int shadowColor) {
 this.shadowColor = shadowColor;
 }
 //Set the corner colors of the scan window.
 public void setCornerColor(int angleColor) {
 leftTopCorner = Utils.changeBitmapColor(leftTopCorner, angleColor);
 rightTopCorner = Utils.changeBitmapColor(rightTopCorner, angleColor);
 leftBottomCorner = Utils.changeBitmapColor(leftBottomCorner, angleColor);
 rightBottomCorner = Utils.changeBitmapColor(rightBottomCorner, angleColor);
 }
}

7. In the widget package, add the RayView class that inherits from the ImageView class.
Add the following code to implement the drawing of the scan lines.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 42

public class RayView extends ImageView {

 private FinderView mFinderView;
 private ScaleAnimation scanAnimation;
 private int[] location = new int[2];

 public RayView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 public RayView(Context context) {
 super(context);
 }

 @Override
 protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
 super.onLayout(changed, left, top, right, bottom);

 //Set the position of the scan window in FinderView.
 getLocationOnScreen(location);
 if (mFinderView != null) {
 mFinderView.setScanWindowLocation(location[0], location[1], location[0] + ge
tWidth(), location[1] + getHeight());
 }
 }

 public void startScanAnimation() {
 setVisibility(VISIBLE);
 if (scanAnimation == null) {
 scanAnimation = new ScaleAnimation(1.0f, 1.0f, 0.0f, 1.0f);
 scanAnimation.setDuration(3000L);
 scanAnimation.setFillAfter(true);
 scanAnimation.setRepeatCount(Animation.INFINITE);
 scanAnimation.setInterpolator(new AccelerateDecelerateInterpolator());
 }
 startAnimation(scanAnimation);
 }

 public void stopScanAnimation() {
 setVisibility(INVISIBLE);
 if (scanAnimation != null) {
 this.clearAnimation();
 scanAnimation = null;
 }
 }

 public void setFinderView(FinderView FinderView) {
 mFinderView = FinderView;
 }
}

8. Create a res > layout > File folder, then create a view_scan.xml file under the folder,
and add the following code to draw the layout of the scan page.

 <?xml version="1.0" encoding="utf-8"?>

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 43

 <?xml version="1.0" encoding="utf-8"?>
 <merge xmlns:android="http://schemas.android.com/apk/res/android">

 <com.example.custom.widget.FinderView
 android:id="@+id/finder_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="20dp"
 android:gravity="center_vertical"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/back"
 android:layout_width="48dp"
 android:layout_height="48dp"
 android:scaleType="center"
 android:src="@drawable/icon_back" />

 <TextView
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:gravity="center"
 android:text="@string/custom_title"
 android:textColor="#ffffff"
 android:textSize="16sp" />

 <ImageView
 android:id="@+id/gallery"
 android:layout_width="34dp"
 android:layout_height="34dp"
 android:layout_marginEnd="10dp"
 android:layout_marginRight="10dp"
 android:scaleType="fitXY"
 android:src="@drawable/selector_scan_from_gallery" />

 <ImageView
 android:id="@+id/torch"
 android:layout_width="34dp"
 android:layout_height="34dp"
 android:layout_marginEnd="10dp"
 android:layout_marginRight="10dp"
 android:scaleType="fitXY"
 android:src="@drawable/selector_torch" />
 </LinearLayout>

 <com.example.custom.widget.RayView
 android:id="@+id/ray_view"
 android:layout_width="270dp"
 android:layout_height="280dp"
 android:layout_centerInParent="true"

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 44

 android:layout_centerInParent="true"
 android:background="@drawable/custom_scan_ray" />

 <TextView
 android:id="@+id/tip_tv"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/ray_view"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="10dp"
 android:includeFontPadding="false"
 android:text="@string/scan_tip"
 android:textColor="#7fffffff"
 android:textSize="14sp" />

 </merge>

9. In the widget package, add the ScanView class that inherits from the RelativeLayout
class. Add the following code. This code implements the interaction between the scan-
related view and the scan engine.

public class ScanView extends RelativeLayout {

 private RayView mRayView;

 public ScanView(Context context) {
 super(context);
 init(context);
 }

 public ScanView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init(context);
 }

 public ScanView(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 init(context);
 }

 private void init(Context ctx) {
 LayoutInflater.from(ctx).inflate(R.layout.view_scan, this, true);
 FinderView finderView = (FinderView) findViewById(R.id.finder_view);
 mRayView = (RayView) findViewById(R.id.ray_view);
 mRayView.setFinderView(finderView);
 }

 public void onStartScan() {
 mRayView.startScanAnimation();
 }

 public void onStopScan() {
 mRayView.stopScanAnimation();
 }

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 45

 public float getCropWidth() {
 return mRayView.getWidth() * 1.1f;
 }

 public Rect getScanRect(Camera camera, int previewWidth, int previewHeight) {
 if (camera == null) {
 return null;
 }
 int[] location = new int[2];
 mRayView.getLocationOnScreen(location);
 Rect r = new Rect(location[0], location[1],
 location[0] + mRayView.getWidth(), location[1] + mRayView.getHeight());
 Camera.Size size;
 try {
 size = camera.getParameters().getPreviewSize();
 } catch (Exception e) {
 return null;
 }
 if (size == null) {
 return null;
 }
 double rateX = (double) size.height / (double) previewWidth;
 double rateY = (double) size.width / (double) previewHeight;
 // The size of the crop box = The size of the grid animation box × 1.1
 int expandX = (int) (mRayView.getWidth() * 0.05);
 int expandY = (int) (mRayView.getHeight() * 0.05);
 Rect resRect = new Rect(
 (int) ((r.top - expandY) * rateY),
 (int) ((r.left - expandX) * rateX),
 (int) ((r.bottom + expandY) * rateY),
 (int) ((r.right + expandX) * rateX));

 Rect finalRect = new Rect(
 resRect.left < 0 ? 0 : resRect.left,
 resRect.top < 0 ? 0 : resRect.top,
 resRect.width() > size.width ? size.width : resRect.width(),
 resRect.height() > size.height ? size.height : resRect.height());

 Rect rect1 = new Rect(
 finalRect.left / 4 * 4,
 finalRect.top / 4 * 4,
 finalRect.right / 4 * 4,
 finalRect.bottom / 4 * 4);

 int max = Math.max(rect1.right, rect1.bottom);
 int diff = Math.abs(rect1.right - rect1.bottom) / 8 * 4;

 Rect rect2;
 if (rect1.right > rect1.bottom) {
 rect2 = new Rect(rect1.left, rect1.top - diff, max, max);
 } else {
 rect2 = new Rect(rect1.left - diff, rect1.top, max, max);
 }
 return rect2;
 }

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 46

 }
}

10. Create an activity_custom_scan.xml file under the res > layout folder, and add the
following code to the file. This code draws the main page of the custom scan feature.

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <com.mpaas.aar.demo.custom.widget.APTextureView
 android:id="@+id/surface_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

 <com.mpaas.aar.demo.custom.widget.ScanView
 android:id="@+id/scan_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</FrameLayout>

Use the scan feature in the dependency project
1. In the com.example.custom package of the custom module, add a ScanHelper class

and add the following code. This code calls the scan feature and obtains the callback result
of a scan result.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 47

public class ScanHelper {

 private static class Holder {
 private static ScanHelper instance = new ScanHelper();
 }

 private ScanCallback scanCallback;

 private ScanHelper() {
 }

 public static ScanHelper getInstance() {
 return Holder.instance;
 }

 public void scan(Context context, ScanCallback scanCallback) {
 if (context == null) {
 return;
 }
 this.scanCallback = scanCallback;
 context.startActivity(new Intent(context, CustomScanActivity.class));
 }

 void notifyScanResult(boolean isProcessed, Intent resultData) {
 if (scanCallback != null) {
 scanCallback.onScanResult(isProcessed, resultData);
 scanCallback = null;
 }
 }

 public interface ScanCallback {
 void onScanResult(boolean isProcessed, Intent result);
 }
}

2. In the com.example.custom package of the custom module, add the
 CustomScanActivity class that inherits from the Activity class. Set the UI immersive
mode and create the View and Button corresponding to the resource file.

public class CustomScanActivity extends Activity {
 private final String TAG = CustomScanActivity.class.getSimpleName();
 private static final int REQUEST_CODE_PERMISSION = 1;
 private static final int REQUEST_CODE_PHOTO = 2;
 private ImageView mTorchBtn;
 private APTextureView mTextureView;
 private ScanView mScanView;
 private boolean isFirstStart = true;
 private boolean isPermissionGranted;
 private boolean isScanning;
 private boolean isPaused;
 private Rect scanRect;
 private MPScanner mpScanner;
 @Override
 protected void onCreate(Bundle savedInstanceState) {

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 48

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_custom_scan);

 // Sets the immersive mode.
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 getWindow().setFlags(
 WindowManager.LayoutParams.FLAG_TRANSLUCENT_STATUS,
 WindowManager.LayoutParams.FLAG_TRANSLUCENT_STATUS);
 }

 mTextureView = findViewById(R.id.surface_view);
 mScanView = findViewById(R.id.scan_view);
 mTorchBtn = findViewById(R.id.torch);

 }

 @Override
 public void onPause() {
 super.onPause();

 }

 @Override
 public void onResume() {
 super.onResume();

 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 }

 @Override
 public void onRequestPermissionsResult(int requestCode, @NonNull String[] permission
s, @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 }
 @Override
 public void onBackPressed() {
 super.onBackPressed();

 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 }
}

3. Follow the operations below to realize the function of opening mobile phone gallery.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 49

i. Create a pickImageFromGallery method in CustomScanActivity .

private void pickImageFromGallery() {
 Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
 intent.setType("image/*");
 startActivityForResult(intent, REQUEST_CODE_PHOTO);
}

ii. In the onCreate method in CustomScanActivity , add the click event of gallery ,
and call the pickImageFromGallery method.

 findViewById(R.id.gallery).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 pickImageFromGallery();
 }
 });

4. Follow the operations below to realize the function of turning on or off torch.
i. Create a switchTorch method in CustomScanActivity .

 private void switchTorch() {
 boolean torchOn = mpScanner.switchTorch();
 mTorchBtn.setSelected(torchOn);
 }

ii. In the onCreate method in CustomScanActivity , add the click event of mTorchBtn
and call the switchTorch method.

 mTorchBtn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 switchTorch();
 }
 });

5. In CustomScanActivity, create a notifyScanResult method, and call the
 notifyScanResult method in the onBackPressed method.

 private void notifyScanResult(boolean isProcessed, Intent resultData) {
 ScanHelper.getInstance().notifyScanResult(isProcessed, resultData);
 }

 @Override
 public void onBackPressed() {
 super.onBackPressed();
 notifyScanResult(false, null);
 }

6. In the onCreate method in CustomScanActivity , add the click event of back and call
the onBackPressed method.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 50

 findViewById(R.id.back).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 onBackPressed();
 }
 });

7. Create an initMPScanner method in CustomScanActivity , and use the
 setRecognizeType method in the mpScanner object to set the type of the identification
code.

private void initMPScanner() {
 mpScanner = new MPScanner(this);
 mpScanner.setRecognizeType(
 MPRecognizeType.QR_CODE,
 MPRecognizeType.BAR_CODE,
 MPRecognizeType.DM_CODE,
 MPRecognizeType.PDF417_CODE
);
}

8. Create an onScanSuccess method in CustomScanActivity and implement the following
code:

 private void onScanSuccess(final MPScanResult result) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (result == null) {
 notifyScanResult(true, null);
 } else {
 Intent intent = new Intent();
 intent.setData(Uri.parse(result.getText()));
 notifyScanResult(true, intent);
 }
 CustomScanActivity.this.finish();
 }
 });
 }

9. Create an initScanRect method in CustomScanActivity to initialize the scan feature.

i. Call the getCamera method in the mpScanner object to get the Camera object. Call

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 51

i. Call the getCamera method in the mpScanner object to get the Camera object. Call
the setScanRegion method in the mpScanner object to set scan area.

private void initScanRect() {
 if (scanRect == null) {
 scanRect = mScanView.getScanRect(
 mpScanner.getCamera(), mTextureView.getWidth(),
mTextureView.getHeight());

 float cropWidth = mScanView.getCropWidth();
 LoggerFactory.getTraceLogger().debug(TAG, "cropWidth: " + cropWidth);
 if (cropWidth > 0) {
 // Maximum preview window width = Screen width/Crop box width
 WindowManager wm = (WindowManager)
getSystemService(Context.WINDOW_SERVICE);
 float screenWith = wm.getDefaultDisplay().getWidth();
 float screenHeight = wm.getDefaultDisplay().getHeight();
 float previewScale = screenWith / cropWidth;
 if (previewScale < 1.0f) {
 previewScale = 1.0f;
 }
 if (previewScale > 1.5f) {
 previewScale = 1.5f;
 }
 LoggerFactory.getTraceLogger().debug(TAG, "previewScale: " +
previewScale);
 Matrix transform = new Matrix();
 transform.setScale(previewScale, previewScale, screenWith / 2,
screenHeight / 2);
 mTextureView.setTransform(transform);
 }
 }
 mpScanner.setScanRegion(scanRect);
}

ii. In the initMPScanner method, call the setMPScanListener method in the mpScanner
object to scan the listener.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 52

mpScanner.setMPScanListener(new MPScanListener() {
 @Override
 public void onConfiguration() {
 mpScanner.setDisplayView(mTextureView);
 }

 @Override
 public void onStart() {
 if (!isPaused) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (!isFinishing()) {
 initScanRect();
 mScanView.onStartScan();
 }
 }
 });
 }
 }

 @Override
 public void onSuccess(MPScanResult mpScanResult) {
 mpScanner.beep();
 onScanSuccess(mpScanResult);
 }

 @Override
 public void onError(MPScanError mpScanError) {
 if (!isPaused) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Utils.toast(CustomScanActivity.this,
getString(R.string.camera_open_error));
 }
 });
 }
 }
 });

In the initMPScanner method, call the setMPImageGrayListener method in the

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 53

iii. In the initMPScanner method, call the setMPImageGrayListener method in the
 mpScanner object to listen to the gray value of a recognized image.

 mpScanner.setMPImageGrayListener(new MPImageGrayListener() {
 @Override
 public void onGetImageGray(int gray) {
 // Note: This callback may be executed multiple consecutive times in dark
environments.
 if (gray < MPImageGrayListener.LOW_IMAGE_GRAY) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Utils.toast(CustomScanActivity.this, "The light is too dark, pl
ease turn on the flashlight");
 }
 });
 }
 }
 });
}

10. In CustomScanActivity , create a startScan method to enable the scan feature of the
camera, and create a stopScan method to disable the scan feature of the camera.

private void startScan() {
 try {
 mpScanner.openCameraAndStartScan();
 isScanning = true;
 } catch (Exception e) {
 isScanning = false;
 LoggerFactory.getTraceLogger().error(TAG, "startScan: Exception " +
e.getMessage());
 }
}

private void stopScan() {
 mpScanner.closeCameraAndStopScan();
 mScanView.onStopScan();
 isScanning = false;
 if (isFirstStart) {
 isFirstStart = false;
 }
}

11. In CustomScanActivity , create onPermissionGranted , checkCameraPermission and
 scanFromUri methods.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 54

private void onPermissionGranted() {
 isPermissionGranted = true;
 startScan();
}

private void checkCameraPermission() {
 if (PermissionChecker.checkSelfPermission(
 this, Manifest.permission.CAMERA) !=
PermissionChecker.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this, new String[]
{Manifest.permission.CAMERA}, REQUEST_CODE_PERMISSION);
 } else {
 onPermissionGranted();
 }
}

private void scanFromUri(Uri uri) {
 final Bitmap bitmap = Utils.uri2Bitmap(this, uri);
 if (bitmap == null) {
 notifyScanResult(true, null);
 finish();
 } else {
 new Thread(new Runnable() {
 @Override
 public void run() {
 MPScanResult mpScanResult = mpScanner.scanFromBitmap(bitmap);
 mpScanner.beep();
 onScanSuccess(mpScanResult);
 }
 }, "scanFromUri").start();
 }
}

12. Call the checkCameraPermission method in the onCreate method in
 CustomScanActivity to check camera permissions.

checkCameraPermission();

13. Separately add the following content to the onPause , onResume , onDestroy ,
 onRequestPermissionsResult , and onActivityResult methods in CustomScanActivity :

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 55

@Override
public void onPause() {
 super.onPause();
 isPaused = true;
 if (isScanning) {
 stopScan();
 }
}

@Override
public void onResume() {
 super.onResume();
 isPaused = false;
 if (!isFirstStart && isPermissionGranted) {
 startScan();
 }
}

@Override
public void onDestroy() {
 super.onDestroy();
 mpScanner.release();
}
@Override
public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions
, @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);
 if (requestCode == REQUEST_CODE_PERMISSION) {
 int length = Math.min(permissions.length, grantResults.length);
 for (int i = 0; i < length; i++) {
 if (TextUtils.equals(permissions[i], Manifest.permission.CAMERA)) {
 if (grantResults[i] != PackageManager.PERMISSION_GRANTED) {
 Utils.toast(this, getString(R.string.camera_no_permission));
 } else {
 onPermissionGranted();
 }
 break;
 }
 }
 }
 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if (data == null) {
 return;
 }
 if (requestCode == REQUEST_CODE_PHOTO) {
 scanFromUri(data.getData());
 }
}
}

In the AndroidManifest.xml file in the custom module, set CustomScanActivity as the

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 56

14. In the AndroidManifest.xml file in the custom module, set CustomScanActivity as the
main entry of custom .

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.mpaas.aar.demo.custom">
 <activity
 android:name=".CustomScanActivity"
 android:configChanges="orientation|keyboardHidden|navigation"
 android:exported="false"
 android:launchMode="singleTask"
 android:screenOrientation="portrait"
 android:theme="@android:style/Theme.NoTitleBar"
 android:windowSoftInputMode="adjustResize|stateHidden" />
 </application>

</manifest>

Call the scan feature in your custom UI in the main project
1. In the activity_main.xml file, add a button and set the ID of the button to

 custom_ui_btn .

 <Button
 android:id="@+id/custom_ui_btn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="208dp"
 android:background="#108EE9"
 android:gravity="center"
 android:text="Use Scan in the Custom UI"
 android:textColor="#ffffff"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.0"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

2. Edit code in the MainActivity class. Add a click event to the custom_ui_btn button.
Obtain the custom UI and then use the scan feature in the custom UI. The code is as
follows:

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 57

findViewById(R.id.custom_ui_btn).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 ScanHelper.getInstance().scan(MainActivity.this, new
ScanHelper.ScanCallback() {
 @Override
 public void onScanResult(boolean isProcessed, Intent result) {
 if (!isProcessed) {
 // In the scan page, click the physical back button or the ba
ck button in the upper left corner.
 return;
 }

 if (result == null || result.getData() == null) {
 Toast.makeText(MainActivity.this, "Scan failed, try again.",
Toast.LENGTH_SHORT).show();
 return;
 }
 new AlertDialog.Builder(MainActivity.this)
 .setMessage(result.getData().toString())
 .setPositiveButton(R.string.confirm, null)
 .create()
 .show();
 }
 });
 }
 });

3. After you compile and run the project, click Use Scan in the Custom UI to use the scan
feature in the custom UI.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 58

4. Scan the QR code below, then the information about the QR code will be displayed.

The Scan SDK is currently used by Alipay to scan QR codes, barcodes, and other functions.
This topic describes how to use the Scan SDK.

Prerequisites
You have added the Scan SDK to the project according to your access method. For more
information, see the following content: Connect to mPaaS based on an existing project and
CocoaPods.

Add the SDK
Use CocoaPods plugin to add the Scan SDK. Complete the following steps:

In the Podfile file, use mPaaS_pod "mPaaS_ScanCode" to add mobile gateway component

1.3. Integrate iOS SDK
1.3.1. Quick Start

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 59

1. In the Podfile file, use mPaaS_pod "mPaaS_ScanCode" to add mobile gateway component
dependencies.

2. In the terminal, run pod install to complete access.

Using SDK version 10.1.68.17 and later
Procedure

1. Trigger the default scan page and process the scan results.

 @interface MPScanDemoVC()<TBScanViewControllerDelegate>
 @property(nonatomic, strong) TBScanViewController *scanVC;
 @end
 - (void)defaultScan {
 TBScanViewController *vc = [[MPScanCodeAdapterInterface sharedInstance]
createDefaultScanPageWithallback:^(id _Nonnull result, BOOL keepAlive) {
 // Process scan results.
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@""
message:result[@"resp_result"] delegate:self cancelButtonTitle:@"OK"
otherButtonTitles:nil, nil];
 alert.tag = 1999;
 [alert show];
 }];
 [self.navigationController pushViewController:vc animated:YES];
 self.scanVC = vc;
 }

2. Continue to scan the code.

 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex {
 // Continue to scan the code.
 [self.scanVC resumeScan];
 }

Use SDK version 10.1.68.17 and earlier
This topic describes how to use the Scan SDK in baseline version 10.1.68.17 and earlier
based on the official demo of Scan.

Procedure
1. Trigger the scan page.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 60

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas

 @interface MPScanDemoVC()<TBScanViewControllerDelegate>
 @property(nonatomic, strong) TBScanViewController *scanVC;
 @end
 - (void)startDefauleScanViewController
 {
 TBScanViewController *vc = [[TBScanViewController alloc] init];
 vc.scanType = ScanType_All_Code;
 vc.delegate = self;
 [self.navigationController pushViewController:vc animated:YES];
 self.scanVC = vc;
 }

2. Process scan results.

 #pragma mark Process scan results.
 -(void)didFind:(NSArray<TBScanResult*>*)resultArray
 {
 if([resultArray count] > 0) {
 TBScanResult *result = resultArray.firstObject;
 NSString* content = result.data;

 dispatch_async(dispatch_get_main_queue(), ^{
 // Note: The scan results are in the child thread. If there are UI-
related operations, switch to the main thread.
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@""
message:content delegate:self cancelButtonTitle:@"OK" otherButtonTitles:nil, nil];
 [alert show];
 });
 }
 }

3. Continue to scan the code.

 #pragma mark alert
 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex {
 [self.scanVC resumeScan];
 }

This article will introduce how to use the scan feature in conjunction with the official scan
demo.

To use the scan feature in baseline version 10.1.60 and above and before 10.2.3.5, please
refer to Use scan in the default UI and Use Scan in custom UI.
To use the scan feature in baseline version 10.2.3.5 and above, please refer to Multi-code
recognition.

Use scan in the default UI
Modify the parameters on the scan page in the default UI.

1.3.2. Advanced guide

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 61

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas

 - (void)custoDefaultScan {
 TBScanViewController *vc = [[MPScanCodeAdapterInterface sharedInstance]
createDefaultScanPageWithallback:^(id _Nonnull result, BOOL keepAlive) {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@""
message:result[@"resp_result"] delegate:self cancelButtonTitle:@"OK"
otherButtonTitles:nil, nil];
 alert.tag = 1001;
 [alert show];
 }];
 [self.navigationController pushViewController:vc animated:YES];
 self.scanVC = vc;

 // Set the scan page title
 vc.title = @"Standard scan";

 // Set the tooltip "Turn on the torch."
 vc.torchStateNormalTitle = @"Turn on the torch";

 // Set the tooltip "Turn off the torch."
 vc.torchStateSelectedTitle = @"Turn off the torch";

 // Set the type of the object that you want to scan.
 vc.scanType = ScanType_QRCode;

 // Set a Select Album button.
 vc.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
initWithImage:APCommonUILoadImage(@"camera") style:UIBarButtonItemStylePlain target:sel
f action:@selector(selectPhotos)];

 }

 - (void)selectPhotos
 {
 [self.scanVC scanPhotoLibrary];
 }

Use Scan in custom UI
If you want to customize the entire scan UI, you can customize the scan page and make it
inherit TBScanViewController.

Create a scan page and customize the scan area.

 @interface MPScanCodeViewController : TBScanViewController
<TBScanViewControllerDelegate>

 @end

 @implementation MPScanCodeViewController

 - (instancetype)init
 {
 if (self = [super init])
 {
 self.delegate = self;

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 62

 self.delegate = self;
 self.scanType = ScanType_All_Code;
 }
 return self;
 }

 - (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading the view.
 self.title = @"Scan";

 // Customize the size of the scan page.
 CGRect rect = [MPScanCodeViewController constructScanAnimationRect];
 self.rectOfInterest = rect;

 // Customize the Select Album button.
 self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
initWithTitle:@"Select Album" style:UIBarButtonItemStylePlain target:self action:@sel
ector(selectPhoto)];
 }

 + (CGRect)constructScanAnimationRect
 {
 CGSize screenXY = [UIScreen mainScreen].bounds.size;
 NSInteger focusFrameWH = screenXY.width / 320 * 220;//as wx
 int offet = 10;
 if (screenXY.height == 568)
 offet = 19;

 return CGRectMake((screenXY.width - focusFrameWH) / 2,
 (screenXY.height - 64 - focusFrameWH - 83 - 50 - offet) / 2 +
64,
 focusFrameWH,
 focusFrameWH);
 }

 -(void)buildContainerView:(UIView*)containerView
 {
 // Customize the view of the scan box.
 UIView* bg = [[UIView alloc] initWithFrame:containerView.bounds];
 [containerView addSubview:bg];
 CGRect rect = [MPScanCodeViewController constructScanAnimationRect];
 UIView* view = [[UIView alloc] initWithFrame:rect];
 view.backgroundColor = [UIColor orangeColor];
 view.alpha = 0.5;
 [bg addSubview:view];
 }

 - (void)selectPhoto
 {
 [self scanPhotoLibrary];
 }

Process scan results.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 63

 -(void)didFind:(NSArray<TBScanResult*>*)resultArray
 {
 TBScanResult *result = resultArray.firstObject;
 NSString* content = result.data;
 if (result.resultType == TBScanResultTypeQRCode) {
 content = [NSString stringWithFormat:@"qrcode:%@, hiddenData:%@,
TBScanQRCodeResultType:%@", result.data, result.hiddenData, [result.extData objectFor
Key:TBScanResultTypeQRCode]];
 NSLog(@"subType is %@, ScanType_QRCode is %@", @(result.subType),
@(ScanType_QRCode));
 } else if (result.resultType == TBScanResultTypeVLGen3Code) {
 content = [NSString stringWithFormat:@"gen3:%@", result.data];
 NSLog(@"subType is %@, ScanType_GEN3 is %@", @(result.subType),
@(ScanType_GEN3));
 } else if (result.resultType == TBScanResultTypeGoodsBarcode) {
 content = [NSString stringWithFormat:@"barcode:%@", result.data];
 NSLog(@"subType is %@, EAN13 is %@", @(result.subType), @(EAN13));
 } else if (result.resultType == TBScanResultTypeDataMatrixCode) {
 content = [NSString stringWithFormat:@"dm:%@", result.data];
 NSLog(@"subType is %@, ScanType_DATAMATRIX is %@", @(result.subType),
@(ScanType_DATAMATRIX));
 } else if (result.resultType == TBScanResultTypeExpressCode) {
 content = [NSString stringWithFormat:@"express:%@", result.data];
 NSLog(@"subType is %@, ScanType_FASTMAIL is %@", @(result.subType),
@(ScanType_FASTMAIL));
 }
 dispatch_async(dispatch_get_main_queue(), ^{
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"" message:content
delegate:self cancelButtonTitle:@"OK" otherButtonTitles:nil, nil];
 alert.tag = 9999;
 [alert show];
 });
 }

Continue to scan the code.

 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex{
 // Continue to scan the code.
 [self resumeScan];
 }

Set a callback that is triggered when the local album fails to be identified.

 - (void)scanPhotoFailed
 {
 // The callback that is triggered when the album fails to be identified
 NSLog(@"scanPhotoFailed");
 }

Other callback processing

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 64

 - (void)cameraPermissionDenied
 {
 [self.navigationController popViewControllerAnimated:YES];
 }

 - (void)cameraDidStart
 {
 NSLog(@"started!!");
 }

 -(void)setTorchState:(TorchState)bState
 {
 NSLog(@"TorchState:%lu", (unsigned long)bState);
 }

 -(void)userTrack:(NSString*)name
 {
 NSLog(@"userTrack:%@", name);
 }

 -(void)userTrack:(NSString*)name args:(NSDictionary*)data
 {
 NSLog(@"userTrack:%@, args:%@", name, data);
 }

 - (void)scanPhotoFailed
 {
 // The callback that is triggered when the album fails to be identified
 NSLog(@"scanPhotoFailed");
 }

This topic describes how to use the multi-code recognition feature of the scan SDK in the
custom baseline cp_change_28238 or baseline version 10.2.3.5 or later. You can integrate
multi-code recognition SDK to iOS client based on native project with CocoaPods.

Prerequisites
You have connected your project to mPaaS. For more information, see Access based on
native framework and using Cocoapods.

Add the SDK
Use CocoaPods plugin to add the multi-code recognition SDK. Complete the following steps:

1. Open the Podfile file, change mPaaS_baseline to cp_change_28238 or baseline version
10.2.3.5 or later.

2. Run mPaaS_pod "mPaaS_ScanCode" to add dependencies for the scan component.

1.3.3. Multi-code recognition

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 65

3. Click here to learn how to use CocoaPods. In the CLI, run pod install or pod update to
add the SDK.

Use the SDK
This section describes how to use the multi-code recognition feature of the scan SDK in the
customized baseline cp_change_28238 or baseline version 10.2.3.5 or later. The official
demo of the scan component is used for reference.

Open the default scan page

Note
The multi-code recognition feature is available only in a standard UI.

Trigger the default scan page and process the scan results.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 66

https://guides.cocoapods.org/using/using-cocoapods.html
https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas

 #import <TBScanSDK/TBScanSDK.h>

 @interface MPScanDemoVC()

 @property(nonatomic, strong) TBScanViewController *scanVC;

 @end

- (void)defaultScan {

 // Define whether to display the entry to the album.
 [MPScanCodeAdapterInterface sharedInstance].shoulShowAlbum = NO;

 TBScanViewController *vc = [[MPScanCodeAdapterInterface sharedInstance]
createDefaultScanPageWithallback:^(id _Nonnull result, BOOL keepAlive) {
 // Process the scan results.
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@""
message:result[@"resp_result"] delegate:self cancelButtonTitle:@"OK"
otherButtonTitles:nil, nil];
 alert.tag = 1999;
 [alert show];
 }];

 // Set the type of the scan.
 vc.scanType = ScanType_Default_Code;

 [self.navigationController pushViewController:vc animated:YES];
 self.scanVC = vc;
}

Perform multi-code recognition and continuous code scan.

- (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex {
 // Enable continuous code scan.
 [self.scanVC resumeCaptureSession];
}

How to use the custom UI
This article will introduce how to use the multi-code recognition feature SDK under the custom
UI in conjunction with the scan official demo.

Customize the ViewController that inherits
TBScanViewController

Plaintext

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 67

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas

Initialize custom scan ViewController

Important
The ViewController that initializes the custom scan code can only use the -
(instancetype)initWithConfig:(NSDictionary *)config; method.

Customize the scan box

#import <UIKit/UIKit.h>

NS_ASSUME_NONNULL_BEGIN

@interface MPScanCodeViewController :
TBScanViewController<TBScanViewControllerDelegate>

@end

NS_ASSUME_NONNULL_END

//Custom scan entrance
- (void)customScanAction
{
 MPScanCodeViewController *vc = [[MPScanCodeViewController alloc]
initWithConfig:@{}];
 [self.navigationController pushViewController:vc animated:YES];
}

Plaintext

@implementation MPScanCodeViewController

- (instancetype)initWithConfig:(NSDictionary *)config
{
 if (self = [super initWithConfig:config])
 {
 self.delegate = self;
 self.scanType = ScanType_All_Code;
 }
 return self;
}

Plaintext

Plaintext

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 68

Handle scan results
Users handle it according to their own business scenarios.

- (void)buildContainerView:(UIView*)containerView
{
 // Customize the scan box view
 UIView* bg = [[UIView alloc] initWithFrame:containerView.bounds];
 [containerView addSubview:bg];
 CGRect rect = [MPScanCodeViewController constructScanAnimationRect];
 UIView* view = [[UIView alloc] initWithFrame:rect];
 view.backgroundColor = [UIColor orangeColor];
 view.alpha = 0.5;
 [bg addSubview:view];
}

Plaintext

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 69

This topic describes the common issues that may occur when integrating the Scan
component.

Is there a charge to use the Scan component?
Integrating the Scan component is free of charge. However, the log tracking and log reporting
functions in the Scan component rely on the billing component Mobile Analysis Service. For
example, if you configure log tracking and enable the log reporting function in the Scan
component, you can collect logs to obtain the number of scans, the number of successful
scans, the number of failed scans, etc. during use to monitor and analyze the scanning
performance. According to the billing rules of the MAS component, certain fees will be
incurred. For the billing rules, please refer to Pricing details for legacy mPaaS billable items; if
you turn off this function, no fees will be incurred. If you need to turn it off, please refer to the
document Log Reporting.

#pragma mark TBScanViewControllerDelegate

-(void)didFind:(NSArray<TBScanResult*>*)resultArray
{
 TBScanResult *result = resultArray.firstObject;
 NSString* content = result.data;
 if (result.resultType == TBScanResultTypeQRCode) {
 content = [NSString stringWithFormat:@"qrcode:%@, hiddenData:%@,
TBScanQRCodeResultType:%@", result.data, result.hiddenData, [result.extData
objectForKey:TBScanResultTypeQRCode]];
 NSLog(@"subType is %@, ScanType_QRCode is %@", @(result.subType),
@(ScanType_QRCode));
 } else if (result.resultType == TBScanResultTypeVLGen3Code) {
 content = [NSString stringWithFormat:@"gen3:%@", result.data];
 NSLog(@"subType is %@, ScanType_GEN3 is %@", @(result.subType),
@(ScanType_GEN3));
 } else if (result.resultType == TBScanResultTypeGoodsBarcode) {
 content = [NSString stringWithFormat:@"barcode:%@", result.data];
 NSLog(@"subType is %@, EAN13 is %@", @(result.subType), @(EAN13));
 } else if (result.resultType == TBScanResultTypeDataMatrixCode) {
 content = [NSString stringWithFormat:@"dm:%@", result.data];
 NSLog(@"subType is %@, ScanType_DATAMATRIX is %@", @(result.subType),
@(ScanType_DATAMATRIX));
 } else if (result.resultType == TBScanResultTypeExpressCode) {
 content = [NSString stringWithFormat:@"express:%@", result.data];
 NSLog(@"subType is %@, ScanType_FASTMAIL is %@", @(result.subType),
@(ScanType_FASTMAIL));
 }
 dispatch_async(dispatch_get_main_queue(), ^{
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"" message:content del
egate:self cancelButtonTitle:@"OK" otherButtonTitles:nil, nil];
 alert.tag = 9999;
 [alert show];
 });
}

1.4. FAQ

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 70

There is no charge for the integrating the Scan component. However, in the process of using
the Scan component, logs will be collected to obtain the number total scans, successful
scans, failed scans, and other information, so as to realize monitoring and analysis on the
scan performance. The log collection process relies on the Mobile Analysis Service which is
chargeable, so certain fees may arise. Log tracking of the Scan component is configured at
the initial stage. By default, log reporting is enabled. If you need to disable log reporting, see
Upload based on the switch.

How to initialize mPaaS in case of integrating Scan to project
through native AAR or mPaaS Inside?
You need to add the following code to the Application class.

public class MyApplication extends Application {

 @Override
 public void onCreate() {
 super.onCreate();
 // mPaaS initialization
 MP.init(this);
 }
}

For more details, see Initialize mPaaS.

In Android 10.1.68 baseline, how to fix the issue of stuck when
starting to scan?
In AAR and mPaaS Inside mode, if you reference other components besides the Scan
component, please initialize mPaaS; otherwise, the main thread may get stuck.

Code Scanner User Guide·Code Scanner

> Document Version: 20250731 71

	1.Code Scanner
	1.1. Overview
	1.2. Integrate Android SDK
	1.2.1. Quick start
	1.2.2. Advanced guide
	1.2.3. Tutorial
	1.2.3.1. Overview
	1.2.3.2. Create an Application in Android Studio
	1.2.3.3. Create an application in the mPaaS Console
	1.2.3.4. Integrate Scan to project through Native AAR
	1.2.3.5. Use the scan feature in the standard UI
	1.2.3.6. Use the scan feature in custom UI

	1.3. Integrate iOS SDK
	1.3.1. Quick Start
	1.3.2. Advanced guide
	1.3.3. Multi-code recognition

	1.4. FAQ

