
Ant Technology

Mobile Delivery Service
User Guide

Document Version: 20250731

Ant Technology

Mobile Delivery Service
User Guide

Document Version: 20250731

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Mobile Delivery Service User Guide·Legal disclaimer

> Document Version: 20250731 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Mobile Delivery Service User Guide·Document convent
ions

> Document Version: 20250731 I

Table of Contents
1.Service announcement
2.About Mobile Delivery Service
3.Process of MDS
4.Release management

4.1. Integrate MDS into Android
4.1.1. Quick start
4.1.2. Advanced guide
4.1.3. Default storage path

4.2. Integrate MDS into iOS
4.2.1. Add SDK
4.2.2. Use SDK

4.3. Manage Android release
4.4. Manage iOS release

5.Manage HTML5 offline packages
5.1. Configure HTML5 offline packages
5.2. Generate HTML5 offline packages
5.3. Create HTML5 offline packages
5.4. Release HTML5 offline packages
5.5. Manage HTML5 offline packages
5.6. OpenAPI

5.6.1. Overview and preparation
5.6.2. API description

6.Switch configuration management
6.1. Android
6.2. iOS
6.3. Manage configurations for Android/iOS

06

07

08

09

09

09

10

12

13

13

14

17

19

23

23

23

26

28

29

30

30

33

55

55

56

60

Mobile Delivery Service User Guide·Table of Contents

> Document Version: 20250731 I

7.Manage whitelists
8.Manage release rules
9.Reference

9.1. API
9.2. Code sample

9.2.1. Version update code sample
9.2.2. Hotpatch Code Sample
9.2.3. Switch configuration code sample

62
63

65

65

66

66

67

67

Mobile Delivery Service User Guide·Table of Contents

> Document Version: 20250731 II

To provide a highly-efficient real-time delivery service, starting from 21:00 on July 14, 2022 in UTC+8, the
domain name used by the Mobile Delivery Service (MDS) for delivery was changed from mcube-prod.cn-
hangzhou.oss.aliyuncs.com to mcube-prod.mpaascloud.com . Please use the new domain name to obtain
released packages.
After domain name changing, to use the acceleration capability of the MDS, you must modify the second-level
directory name to mcube-prod.mpaascloud.com .

1.Service announcement
Mobile Delivery Service User Guide·Service announce

ment

> Document Version: 20250731 6

Mobile Delivery Service (MDS for short) is one of the core basic service components of the mPaaS platform. It
provides management and release services for version upgrade packages, hotfix packages, and H5 offline
packages, and supports configurations management, whitelists, release rules functions.
After you integrate Mobile Delivery Service on your client, you can generate a new package in mPaaS plugin
and release the new package on the Mobile Delivery Service console, then the client receives the package and
starts upgrade. Mobile Delivery Service also supports implementing grayscale release through whitelist. You
can use advanced filtering rule to make the grayscale release more accurate, e.g. specifying a device type.

Functions
Grayscale release
Before the official release, a small-scale release through the whitelist (for example, to internal employees)
can be performed to verify whether the new package meets expectations. You can also perform a time
window grayscale release, which is released to a specified number of users within a specified time period. If it
meets expectations, you can push it to the network.
Advanced filter
When performing grayscale releases, you can also use advanced rules to define a more precise whitelist
population. For example, you can send it only to users of Xiaomi phones. Multiple filtering rules can be
superimposed, and the app will only be pushed if all filtering rules are met.
Realtime rollback
Only hotfix is supported. Even if a grayscale release is performed, problems still may occur when the product
is officially launched. At this time, a realtime rollback can be performed to automatically roll back to the
version before the release.
Custom signature verification
To ensure security, hotfix has a custom signature verification process to ensure the correctness of the script
source. The mPaaS plugin provides the function of generating a hotfix resource package and signing the
package.

Advantages
Multi-product, multi-task, multi-dimensional release management
Supports multiple apps, including official upgrades, hotfix, H5 offline packages, and real-time online push.
For more information about using the hotfix,
please search for the group number 41708565 with DingTalk to join DingTalk group for further communication.
Intelligent grayscale capabilities and multiple upgrade strategies
There are many rules to choose from, including internal grayscale, external grayscale, population region,
model network, etc.
Push upgraded capabilities of offline packages only
It helps reduce data redundancy and bandwidth occupied by devices, which can be advantageous when the
mobile devices network is unstable.
High sensitivity and high availability
The client side RPC interface capability has been upgraded, with an availability rate of up to 99.95%,
providing online minute-level reach capabilities.
High performance system
The reach rate is 99.95%, with daily UV support exceeding 200 million.

2.About Mobile Delivery Service
Mobile Delivery Service User Guide·About Mobile Deliv

ery Service

> Document Version: 20250731 7

You can conveniently integrate the function of MDS to your client by installing the client SDK provided by the
MDS platform.
The process of MDS is as follows:

1. Add the corresponding SDK on the client, the capability of integrating MDS upgrade or H5 offline packages.
2. Package and generate version upgrade packages, offline packages, etc. in the mPaaS plugin, and upload

them to the release console.
3. Create a release task on the console for gray release, official release, etc.
4. The client then pulls the new release package for upgrade and offline release.
In addition, you can use the switch configuration service to modify the client-side code processing logic. By
adding the required switch configuration items on the console, targeted distribution can be achieved.

Operation flow
The following diagram shows the process of MDS release of version upgrade packages and offline packages:

Console management
You can perform the following operations on the MDS console:

Version upgrade packages > Manage releases: Manage and release the configuration of new client version.
Offline packages > Manage offline packages: Package different businesses into different offline packages,
and deliver the offline packages through the MDS platform to update the client-side resources.
Switch configuration > Manage configurations: Achieve configuration, modification, and push of various
switches. Targeted delivery can be performed by platform, whitelist, percentage, etc.
Manage whitelists: Manage whitelists so that you can easily create hundreds of thousands of whitelist data for
the use in MDS.
Manage release rules: Pedefine various configuration data required for MDS so that you don't have to
manually input the data every time, with work efficiency improved and error rate decreased.

3.Process of MDS
Mobile Delivery Service User Guide·Process of MDS

> Document Version: 20250731 8

This topic describes how to add the upgrade SDK related to the release management function. After adding the
SDK and complete the necessary configurations, you can release a new version of an App in the mPaaS console,
and the client can detect the new version through the upgrade API and remind users to download and upgrade.
Currently, Upgrade SDK supports integration through Native AAR and Portal & Bundle .
The complete integration process mainly includes the following 4 steps:

1. Add SDK
2. Configure project
3. Initialize mPaaS (only required for Native AAR)
4. Rapid upgrade detection

Prerequisites
If you integrate MDS through Native AAR, ensure that you have completed Prerequisites.
If you integrate MDS through Portal & Bundle, ensure that you have completed General steps.

Add SDK
Native AAR mode
Follow the instructions in Manage component dependencies to install the UPGRADE component in the project
through Component management (AAR) .

Componentized integration mode
Follow the instructions in General steps to install the UPGRADE component in the Portal & Bundle projects
through Component management (AAR) .

Configure project
Configure AndroidManifest

1. Add the following permissions in the AndroidManifest.xml file.

 <uses-permission android:name="android.permission.REQUEST_INSTALL_PACKAGES" />

2. Add the following configuration in the AndroidManifest.xml file.
Replace the wildcard ${applicationId} with the actual package name. For example, replace
 ${applicationId}.fileprovider with com.mpaas.mobiledeliveryservice.fileprovider .

 <provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="${applicationId}.fileprovider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/file_paths" />
 </provider>

Note
For more information about the configuration of AndroidManifest.xml , please see App Manifest
Overview.

3. Create the file_paths.xml file in the src/main/res/xml directory in the main module of the Portal project
with the following content:

4.Release management
4.1. Integrate MDS into Android
4.1.1. Quick start

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 9

https://www.alibabacloud.com/help/en/mobile-platform-as-a-service/latest/prerequisites
https://www.alibabacloud.com/help/en/mobile-platform-as-a-service/latest/general-steps
https://www.alibabacloud.com/help/en/mobile-platform-as-a-service/latest/manage-component-dependencies
https://www.alibabacloud.com/help/en/mobile-platform-as-a-service/latest/general-steps
https://developer.android.com/guide/topics/manifest/manifest-intro

 <?xml version="1.0" encoding="utf-8"?>
 <resources>
 <paths>
 <external-files-path
 name="download"
 path="com.alipay.android.phone.aliupgrade/downloads" />
 <external-path
 name="download_sdcard"
 path="ExtDataTunnel/files/com.alipay.android.phone.aliupgrade/downloads" />
 </paths>
 </resources>

Note
When targetSdkVersion ≥ 24, additional configuration is required. For details, see Default storage path.

Add resources

Note
If you use the native AAR integration method, you need to add the following resources to your App,
otherwise, the upgrade component will not work. Click to get the resource file.

Merge the content of strings.xml , styles.xml , and colors.xml under the values directory.

Initialize mPaaS
If you use the native AAR integration method, you need to initialize mPaaS.
Add the following codes in the object Application :

public class MyApplication extends Application {

 @Override
 public void onCreate() {
 super.onCreate();
 // mPaaS initialization
 MP.init(this);
 }
}

For more details, see Initialize mPaaS.

Rapid upgrade detection
Quickly check for an update, and only the checking result is returned.

MPUpgrade mMPUpgrade = new MPUpgrade();
// The synchronization method, which is called in a subthread.
int result = mMPUpgrade.fastCheckHasNewVersion();
if (result == UpgradeConstants.HAS_NEW_VERSION) {
 // New version available
} else if (result == UpgradeConstants.HAS_NO_NEW_VERSION) {
 // No new version available
} else if (result == UpgradeConstants.HAS_SOME_ERROR) {
 // Error
}

After integrating the SDK, you can set whitelist, use the SDK to detect upgrades and notify users of any
upgrades based on business requirements.

Set whitelist

4.1.2. Advanced guide

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 10

https://gw.alipayobjects.com/os/bmw-prod/9d04c954-5e1a-422f-8483-0f08ee266def.zip
https://www.alibabacloud.com/help/en/mobile-platform-as-a-service/latest/native-aar-mode-initialize-mpaas

Set whitelist user ID:

MPLogger.setUserId("your whitelist ID");

Detect new version
Detect new versions quickly and remind users with a pop-up:

Note
Only the upgrade popup is displayed quickly, and the forced upgrade logic is not included. If you need to
force an upgrade, please use a custom upgrade to implement it.

 MPUpgrade mMPUpgrade = new MPUpgrade();
 mMPUpgrade.fastCheckNewVersion(activity, drawable);

Detect new versions quickly and return the detection result only:

 MPUpgrade mMPUpgrade = new MPUpgrade();
 // The synchronous method, which is called in the subthread.
 int result = mMPUpgrade.fastCheckHasNewVersion();
 if (result == UpgradeConstants.HAS_NEW_VERSION) {
 // A new version is available.
 } else if (result == UpgradeConstants.HAS_NO_NEW_VERSION) {
 // No new version is available.
 } else if (result == UpgradeConstants.HAS_SOME_ERROR) {
 // An error occurs.
 }

Obtain upgrade details
Call the fastGetClientUpgradeRes method to obtain more information.

MPUpgrade mMPUpgrade = new MPUpgrade();
// The synchronization method, which is called in a subthread.
ClientUpgradeRes clientUpgradeRes = mMPUpgrade.fastGetClientUpgradeRes();

The returned example displays information such as the new version number, download address, etc. Some of
the parameters have the following meanings:

 downloadURL : Download address
 guideMemo : Upgrade information
 newestVersion : Latest version number
 resultStatus : Upgrade mode

202: Single reminder
204: Multiple reminders
203/206: Forced update

 fileSize : The size of the file to be downloaded

Other custom detections
For more information about custom detections, see the following example:

Implement the MPaaSCheckCallBack interface to respond to requests created by the upgrade SDK, such as
displaying a pop-up:

 MPUpgrade mMPUpgrade = new MPUpgrade();
 mMPUpgrade.setUpgradeCallback(new MPaaSCheckVersionService.MPaaSCheckCallBack() {

 });

Call the MPUpgrade.checkNewVersion method to detect upgrades.

 MPUpgrade encapsulates the call of MPaaSCheckVersionService . You can also customize the

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 11

 MPUpgrade encapsulates the call of MPaaSCheckVersionService . You can also customize the
implementation method. For information about MPaaSCheckVersionService and MPaaSCheckCallBack , see
API.

Customize the download directory of installation package (for 10.1.60 and
later versions)
The configuration is as follows:

File dir = getApplicationContext().getExternalFilesDir("Custom directory");
MPUpgrade mpUpgrade = new MPUpgrade();
mpUpgrade.setDownloadPath(dir.getAbsolutePath());

Add the following configurations in the file_path.xml file:

// external-files-path corresponds to the directory of getExternalFilesDir
// Use the element corresponding to your custom directory. If you are not sure about how to select an el
ement, search for “Adapt FileProvider” on the Internet
<external-files-path
 name="download"
 path="custom directory" />

Handle the SDK package parsing failure upon forced upgrade
Some ROMs may fail to parse the SDK package after forced upgrade. This is because the ROMs need to access
the corresponding App process when installing the package. However, the App process will be forcibly stopped
during forced upgrade. As a result, the package fails to be parsed. Although such custom ROM behavior is
incompliant with the native Android platforms, you can still solve the problem by implementing
 UpgradeForceExitCallback to return false in needForceExit .

1. Implement a callback.

 public class UpgradeForceExitCallbackImpl implements UpgradeForceExitCallback {
 @Override
 public boolean needForceExit(boolean forceExitApp, MicroApplicationContext context) {
 // If false is returned, the app process will not be forcibly stopped, and the installation p
ackage will be parsed successfully. If true is returned, you need to call the doForceExit method below
to stop the process.
 return false;
 }
 @Override
 public void doForceExit(boolean forceExitApp, MicroApplicationContext context) {
 // If you need to stop the process, ensure that the needForceExit method above returns true,
and then stop the process in this method.
 }
 }

2. Set the callback.

 MPUpgrade mpUpgrade = new MPUpgrade();
 mpUpgrade.setForceExitCallback(new UpgradeForceExitCallbackImpl());

Important
Use the same MPUpgrade instance to set a callback or request an upgrade.
After setting the callback, you can avoid the failure of parsing the package, but the upgrade
component will no longer automatically end the process for you. Therefore, when the user does
not click Install but returns to the application, please set an irrevocable pop-up cover layer to
prevent the user from bypassing the forced upgrade.

Since Baselines V10.2.3.3 and V10.1.68.53, the default path to download a component APK of mPaaS is
changed from an external storage path to an internal storage path.
If targetSdkVersion is 24 or later, you must add the following code to the file_paths.xml file:

4.1.3. Default storage path

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 12

If targetSdkVersion is 24 or later, you must add the following code to the file_paths.xml file:

<files-path
 name="files-path"
 path="." />

If you want to keep the original download path unchanged, add the following metadata to the manifest file:

<meta-data android:name="use_external" android:value="yes" />

This topic describes how to add the Release upgrade SDK related to release management function. After
adding the SDK and complete necessary configurations (refer to Use SDK for details), you can release new
versions of an App in the mPaaS console.

When releasing a version in the mPaaS console, you can customize release settings such as update
reminder and release type.
After a new app version is released in the mPaaS console, the client can detect the new version through the
upgrade API and remind users to download the update.

Important
App Store does not allow online apps to contain the built-in upgrade detection function. In this case, do not
release new versions in the mPaaS console when the App is under review.

Prerequisite
You have integrated mPaaS to your project. For more information, refer to Integrate by using CocoaPods based
on the existing project.

Add SDK
Use the cocoapods-mPaaS plugin to add the SDK.
The steps are as follows:

1. In the Podfile file, use mPaaS_pod "mPaaS_Upgrade" to add upgrade release component dependency.

2. Execute pod install to complete integrating the SDK.

What to do next
Use SDK

4.2. Integrate MDS into iOS
4.2.1. Add SDK

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 13

https://www.alibabacloud.com/help/zh/mobile-platform-as-a-service/latest/access-based-on-native-framework-and-using-cocoapods?spm=a2c63.p38356.0.0.7ee0ed69Lhq4cp#topic-2124694

After adding the SDK, perform the following steps to connect the delivery service to the iOS client:
1. Detect new version: Call the SDK API method in the code to check whether new versions are available.
2. Configure grayscale release whitelist: Configure the functions such as the update reminder and grayscale

release.

Important
If the UTDID dependency is removed, the time window grayscale release will not take effect.

3. Online release: Generate an .ipa file in the mPaaS console, and release a new version.

Procedure
Detect new version
The upgrade detection SDK provides an API file to check available App upgrades. The method header file is in
the AliUpgradeCheckService.framework > Headers > MPCheckUpgradeInterface.h file.

typedef NS_ENUM(NSUInteger, AliUpdateType) {
 AliUpgradeNewVersion = 201, /*The latest version is currently in use.*/
 AliUpgradeOneTime, /*A new version of the client is available, and a single remin
der is sent.*/
 AliUpgradeForceUpdate, /*A new version of the client is available, and forced upgrade
is implemented (obsoleted).*/
 AliUpgradeEveryTime, /*A new version of the client is available, and multiple remin
ders are sent.*/
 AliUpgradeRejectLogin, /*Restricted login (obsoleted)*/
 AliUpgradeForceUpdateWithLogin /*A new version of the client is available, and forced upgrade
is implemented.*/
};

/**
 The successful callback of upgrade detection during UI customization

 @param upgradeInfos The upgrade information
 @{upgradeType:202,
 downloadURL:@"itunes://downLoader.xxxcom/xxx",
 message:@"New version available, please upgrade",
 upgradeShortVersion:@"9.9.0",
 upgradeFullVersion:@"9.9.0.0000001"
 needClientNetType:@"4G,WIFI",
 userId:@"admin"
 }
 */
typedef void(^AliCheckUpgradeComplete)(NSDictionary *upgradeInfos);
typedef void(^AliCheckUpgradeFailure)(NSException *exception);

@interface MPCheckUpgradeInterface : NSObject

/**
 The interval between two single reminders, in days. Default value: 3.
 */
@property(nonatomic, assign) NSTimeInterval defaultUpdateInterval;

/**
 Modify the UI proxy of the default pop-up window.
 */
@property (nonatomic, weak) id<AliUpgradeViewDelegate> viewDelegate;

/**
 * Initialize the instance.
 */

4.2.2. Use SDK

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 14

 */
+ (instancetype)sharedService;

/**
 Detect updates proactively. If there is an update, the default prompt of mPaaS is displayed in the pop-
up.
 *
 */
- (void)checkNewVersion;

/**
 Detect updates proactively. No pop-up is displayed. This method is usually used for UI customization, u
pdate detection, and red dot reminder.

 @param complete Callback succeeds, and the upgrade information dictionary is returned.
 @param failure Callback fails.
 */
- (void)checkUpgradeWith:(AliCheckUpgradeComplete)complete
 failure:(AliCheckUpgradeFailure)failure;
@end

Developers can call the corresponding API to detect updates after the App is started. We recommend that you
call the API after the homepage is displayed so that the startup time of the App is not affected. The following
three calling methods are provided for different UI requirements for the display of upgrade prompt information:

Use the default pop-up of mPaaS to display the upgrade prompt information.

 - (void)checkUpgradeDefault {
 [[MPCheckUpgradeInterface sharedService] checkNewVersion];
 }

Customize the pop-up icon, network prompt toast, or progress bar of the network request group based on the
default pop-up of mPaaS.

 - (void)checkUpgradeWithHeaderImage {
 MPCheckUpgradeInterface *upgradeInterface = [MPCheckUpgradeInterface sharedService];
 upgradeInterface.viewDelegate = self;
 [upgradeInterface checkNewVersion];
 }

 - (UIImage *)upgradeImageViewHeader{
 return APCommonUILoadImage(@"ilustration_ap_expection_alert");
 }

 - (void)showToastViewWith:(NSString *)message duration:(NSTimeInterval)timeInterval {
 [self showAlert:message];
 }

 - (void)showAlert:(NSString*)message {
 AUNoticeDialog* alertView = [[AUNoticeDialog alloc] initWithTitle:@"Information" message:message
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil, nil];
 [alertView show];
 }

Call the following API to obtain the upgrade information and customize the UI if the pop-up styles provided by
mPaaS do not meet your requirements.

 - (void)checkUpgradeWIthCustomUI {
 [[MPCheckUpgradeInterface sharedService] checkUpgradeWith:^(NSDictionary *upgradeInfos) {
 [self showAlert:[upgradeInfos JSONString]];
 } failure:^(NSException *exception) {
 }];
 }

Configure grayscale release whitelist

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 15

To use the whitelist grayscale release function in release management, ensure that you have obtained the
unique identity of the client on the server. Configure the unique user identity in category of MPaaSInterface
on the client, and return a unique identity of the App in the userId method, for example, the user name,
mobile phone number, email address, etc.

@implementation MPaaSInterface (Portal)

- (NSString *)userId
{
 return @"mPaaS";
}

@end

For details on how to configure the whitelist in the mPaaS console, see Delivery Service > Manage whitelist.

Online release
Generate an .ipa file

Use Xcode to generate an .ipa installation package.

Alternatively, generate an .ipa installation package with the packaging function provided by the mPaaS
plugin. The generated package will be stored in the product directory under your current project.

Bundle Identifier: It must be consistent with bundle Id in the cloud configuration file.
Bundle Version: It must be consistent with info.plist in the Production Version file for the project.
Provisioning Profile: Signature configuration file. It must be consistent with bundle Id , otherwise the
package generation will fail.
Debug: Specifies whether to generate the debug installation package.
App Store: Specifies whether to generate a package for release in the App Store.

Release a new version
Use the release management function of the release platform to release a new version. For details about the
release process, see Release management.
Upgrade mode:
When creating a release task in the mPaaS console, choose one of the following three upgrade modes:

Single reminder: After a new version is released in the mPaaS console, the client calls the version upgrade
API once and displays the pop-up only once in the silence period to avoid disturbing users.

This upgrade mode is suitable for instructing users to perform an upgrade upon the release of a new
version.

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 16

By default, the silence period is 3 days, during which a user is notified only once. To change the length of
the silence period, set the following attributes before calling the upgrade detection API:

 - (void)checkUpgradeDefault {
 [MPCheckUpgradeInterface sharedService].defaultUpdateInterval = 7;
 [[MPCheckUpgradeInterface sharedService] checkNewVersion];
 }

Multiple reminders: After a new version is released in the mPaaS console, the client displays a pop-up
reminder each time it calls the version upgrade API. This upgrade mode is suitable for instructing users to
upgrade the App to the new version as soon as possible after the new version has been released for a period
of time.
Mandatory reminder: After a new version is released in the mPaaS console, the client displays a pop-up
reminder without the Cancel button each time it calls the version upgrade API. Users can no longer use the
App without an upgrade. This upgrade mode is suitable for forcing users to upgrade the App to the new
version and unpublishing the earlier App version.

Related content
Code sample

Release management is the configuration backend for upgrading the client to a new version, which allows you
to create multi-task and multi-dimensional upgrade configuration.

About this task
Android release management provides the following functions:

Add upgrade resources and provide the QR code of the download link.
Create and modify the task of the new version resource package.
Create multiple types of release tasks for added release packages, such as whitelist grayscale release, time-
window grayscale release, and official release. One upgrade package can have multiple release tasks.
Support upgrade filtering by multiple criteria, such as the city, model, device system version, network, and
release package version.

Add release package
Log in to the mPaaS console and complete the following steps:

1. On the left navigation bar, choose Mobile Delivery Service > Release management. The release
management list is displayed.

2. Click Add a package, and complete the following configuration in the pop-up window:
Platform: Select Android.
Package: Select the release package from the local computer for upload. Only the .apk format is
supported.
Version: Enter the version number of this package, which contains digits and characters.
Release description: Describe this release package.
Download verification: When enabled, after the QR code is scanned, the package can be downloaded
only after the verification code is verified.

3. Click OK to complete the addition. The added release package will appear at the top of the page. After adding
the release package, a QR code for downloading the .apk release package will be generated in the QR Code
column. After scanning the QR code, you can install the release package to your phone.

4. In the release management list, click the plus icon (

) in front of the release package to view the release task of the upgrade package:
If the upgrade package has never been released, the status of the package is To be released, and there is
no release task.
If the upgrade package has been released, the status of the package is the release status of the latest task,
and there are corresponding release tasks.

Create a release task

4.3. Manage Android release

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 17

When creating release task for an added release package, you can create multiple release tasks for the same
version of the release package at the same time. A single upgrade package can support up to 10 release tasks
at the same time.
Rules for delivering release tasks:

When the client request matches multiple tasks, the higher version task takes priority.
If a release package have multiple release tasks, by task type, the priority of the tasks is: Official release >
Whitelist grayscale release > Time window grayscale release.
For a specific version release package, if the task type of the release tasks are same, the latest released task
shall prevail.
For example, a whitelist task A of version 5.0 is released on the console to perform a single upgrade for
version 4.0; then a whitelist task B is released to perform a mandatory upgrade for version 4.0. These two
tasks exist at the same time. When the client of version 4.0 requests an upgrade, task B is delivered first.
After task B is terminated or paused, task A is delivered.
When a version releases both grayscale tasks and official tasks, the release status in list is displayed as
"official release". When the official task is paused or ended, the release status is displayed as "grayscale
release". If all tasks are completed, it will be displayed as "release completed".

The operation steps are as follows:
1. Locate the release package for which you want to create a release task.
2. In the Operation column, click Create release task.
3. On the Create a release task page, select or enter the following information:

Release type: You can select Grayscale release and Official release.
Upgrade mode: You can select Single, Multiple, and Forced upgrade.

Single: After the App is started, it displays an upgrade message based on the silent strategy.

Note
Silent strategy means that after the upgrade reminder pops up, after the user cancelled it, the
reminder will be in Silent state for a period of time, and no longer reminds the upgrade. The default
silent period is 3 days, which can be customized. To customize the silent period, see setIntervalTime.

Multiple: The App displays an upgrade message every time it is started. Users can close the message
window.
Forced upgrade: The App displays an upgrade message each time it is started, and the message
window cannot be closed.

Release model (only when Grayscale release is selected): You can select Whitelist grayscale release
and Time-window grayscale release .

If you select Whitelist grayscale release, you can configure a whitelist below.
Note: You can configure a whitelist on the Whitelist management page. For more information, see
Manage whitelist.
If you select Time-window grayscale release , you can set End time and Users count.

Upgrade prompt message (optional): Specify a message to be displayed when upgrading.
Release description (optional): Describe this release.
Advanced rule (only for grayscale release): For Grayscale release only. Click Add. In the displayed
dialog box, select a rule type such as City, Device model, or Network in Type, set Operation type to
Include or Exclude, and set Resource value corresponding to the type you selected.

4. After completing the configuration, click OK to start releasing. You can click the plus icon (

) on the left of the release package to view the release task that you have created.
5. Repeat the steps above if you need to create multiple release tasks.

Other operations
After the release task is created successfully, you can modify the release task of the upgrade package.

1. In the release management list, click the plus icon (

) in front of the release package to view the release tasks of the upgrade package.

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 18

2. Perform the following operation based on your needs:
Click Pause to suspend the release task. To continue the task, click Continue.
Click End to terminate the release task. After the task is terminated, you can no longer operate it.

Release management is the configuration backend for upgrading the client to a new version, which allows you
to create multi-task and multi-dimensional upgrade configuration.

About this task
iOS release management provides the following functions:

Add upgrade resources and prompt the App download QR code (only for Enterprise distribution).
Create and modify the task of the new version resource package.
Create multiple types of release tasks for added release packages, such as whitelist grayscale release, time-
window grayscale release, and official release. One upgrade package can have multiple release tasks.
Support upgrade filtering by multiple criteria, such as the city, model, device system version, network, and
release package version.

Add release package
Log in to the mPaaS console and perform the following steps:

1. In the left navigation bar, choose Mobile Delivery Service > Release management. The release
management list is displayed.

2. Click Add a package, and complete the following configuration in the pop-up window:
Platform: Select iOS.
Release type: The options include App Store, Enterprise distribution and TestFlight.

App Store: Prompt to upgrade Apps by downloading from the AppStore.
Enterprise distribution: Prompt to upgrade for Apps which are distributed within the enterprise.
TestFlight: Perform grayscale verification before the new version is released to the AppStore.

3. Click OK to complete the addition. The added release package will appear at the top of the page.
4. In the release management list, click the plus icon (

) in front of the release package to view the release task of the upgrade package:
If the upgrade package has never been released, the status of the package is To be released, and there is
no release task.
If the upgrade package has been released, the status of the package is the release status of the latest task,
and there are release tasks.

App Store

Note
To use App Store release, you need to launch your App on Apple's official App Store first.

If you select AppStore, you should provide the following information:
appstore address: Enter the address of your App in the App Store.
Version number: Enter the version number of current release. The version number must keep consistent
with the Product Version in info.plist file in the iOS project.
Release description (optional): Describe this release.

Enterprise distribution
If you select Enterprise distribution, you should provide the following information:

Upload icon (optional): Upload a picture in the .jpg or .png format as icon.
Release package: Select the release package from the local computer for upload. Only the .ipa format is
supported.

4.4. Manage iOS release

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 19

bundleId (optional): App bundleId. If left empty, the bundleId filled in when downloading the configuration
file on the code configuration page will be used.
Version number: Enter the version number of this release. The version number must keep consistent with
the Product Version in info.plist file in the iOS project.
Release description (optional): Describe this release.
Download verification: When enabled, after the QR code is scanned, the package can be downloaded only
after the verification code is verified.

Note
After the Enterprise distribution release package is added, a QR code is generated in the QR code
column in the release management list for users to download the .ipa release package.

TestFlight

Note
To use TestFlight testing features, you must have created and enabled public links in App Store
Connect.
TestFlight is only available in clients with version ≥ 10.1.32.
The Package Expiration Time and Maximum number of testers you enter must match what
you set in App Store Connect.

If you select TestFlight, provide the following information:
Public link address: Enter the public link address that you have created on App Store Connect. Ensure that
the link is enabled.
Package expiration time: The expiration time of the TestFlight package must be consistent with the one
you set in App Store Connect.
Maximum number of testers : The maximum number of testers must match the number you set in App
Store Connect.
Version number: Enter the version number of this release. The version number must keep consistent with
the Product Version in info.plist file in the iOS project.
Release description (optional): Describe this release.

Create a release task
When creating release task for an added release package, you can create multiple release tasks for the same
version of the release package at the same time. A single upgrade package can support up to 10 release tasks
at the same time.
Rules for delivering release tasks:

When the client request matches multiple tasks, the higher version task takes priority.
If a release package have multiple release tasks, by task type, the priority of the tasks is: Official release >
Whitelist grayscale release > Time window grayscale release.
For a specific version release package, if the task type of the release tasks are same, the latest released task
shall prevail.
For example, a whitelist task A of version 5.0 is released on the console to perform a single upgrade for
version 4.0; then a whitelist task B is released to perform a mandatory upgrade for version 4.0. These two
tasks exist at the same time. When the client of version 4.0 requests an upgrade, task B is delivered first.
After task B is terminated or paused, task A is delivered.
When a version releases both grayscale tasks and official tasks, the release status in list is displayed as
"official release". When the official task is paused or ended, the release status is displayed as "grayscale
release". If all tasks are completed, it will be displayed as "release completed".

The operation steps are as follows:
1. Locate the release package for which you want to create a release task.
2. In the Operation column, click Create release task.
3. On the Create a release task page, select or enter the following information:

Release type: You can select Grayscale release and Official release.

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 20

https://appstoreconnect.apple.com/login
https://appstoreconnect.apple.com

Grayscale release: Before the official release, release the package to some of the users to verify
whether the functions of the new package meet expectations.
Official release: Release the package officially to all the users.

Note
TestFlight and enterprise distribution types of distributions only support grayscale release. The
TestFlight release page does not display the release type option, and the release package of the
enterprise distribution type is fixed to the grayscale type and cannot be selected.

Upgrade mode: You can select Single, Multiple, and Forced upgrade.
Single: After the App is started, it displays an upgrade message based on the silent strategy.

Note
Silent strategy means that the reminder will be in silent state for a period of time, and no longer
reminds the upgrade after the user cancelled the pop-up upgrade reminder. The default silent period
is 3 days, which can be customized. To customize the silent period, see Release a new version.

Multiple: The App displays an upgrade message every time it is started.
Forced upgrade: The App displays an upgrade message each time it is started. You cannot close the
message window.

Note
For TestFlight release packages, only Single and Multiple are available.

Release model (only when Grayscale release is selected): You can select Whitelist grayscale release
and Time-window grayscale release .

If you select Whitelist grayscale release, you can configure a whitelist below.

Note
You can configure a whitelist on the Whitelist management page. For more information, see
Manage whitelist.

If you select Time-window grayscale release , you can specify End time and Users count.

Note
For Enterprise distribution release packages, only Whitelist grayscale release is available.

Upgrade prompt message (optional): Specify a message to be displayed when upgrading.
Release description (optional): Describe this release. Optional.
Advanced rule (For Grayscale release only): Click Add. In the displayed dialog box, select a rule type
such as City, Device model, or Network in Type, set Operation type to Include or Exclude, and set
Resource value corresponding to the type you selected.

4. After completing the configuration, click OK to start releasing. You can click the plus icon (

) on the left of the release package to view the release task that you have created.

Other operations
Upload symbol table. In the release management list, upload a symbol table to an added release package.

One .ipa release package corresponds to one symbol table file.
Only symbol tables in the dSYM format are supported. Before uploading a symbol table, compress it into
a .tgz package.

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 21

Change the release task of an upgrade package . Click the plus icon (

) in front of the release package in the release management list to view the release task of the upgrade
package.

Click Pause to suspend the release task. To continue the task, click Continue.
Click End to terminate the release task. After the task is terminated, you can no longer operate it.

Mobile Delivery Service User Guide·Release managem
ent

> Document Version: 20250731 22

You can upload and release offline packages on the MDS platform and quickly deliver offline packages to the
client. For more information about offline packages, see Offline Package overview.
Before adding an offline package, you need to add related configurations of the offline package.

Procedure
Log in to the mPaaS console, and complete the following steps:

1. From the navigation bar on the left, click Mobile Delivery Service > Manage offline packages.
2. On the offline package list page, click the Manage configuration tab.
3. In the Manage domain name section, enter the virtual domain name, for example h5app.com . The virtual

domain name is used as a suffix to bind the file name when the client loads the local offline package file to
standardize the local file address name.

Important
The virtual domain name cannot be a second-level or third-level domain name starting with http or https
and must be a domain name registered by yourself.

4. Check I've confirmed the above information is accurate, and submit without any further change ,
and then click Save.

5. In the Key Management column, upload the key file. The file uploaded here is the RSA private key
generated by OpenSSL, which is used to sign the offline package and use the corresponding public key to
verify the signature on the client. You can generate private key files and public key files as follows:

Generate private key:
 openssl genrsa -out private_key.pem 2048
Generate public key:
 openssl rsa -in private_key.pem -outform PEM -pubout -out public.pem

6. Check I've confirmed the above information is accurate, and submit without any further change ,
and then click Upload. Offline package configuration is completed.

What to do next
Generate HTML5 offline packages

Based on different requirements, you can encapsulate different businesses into an offline package, and then
distribute the package through the release platform to update the client-side resource.
Generating an offline package mainly includes the following two steps:

1. Build a frontend .zip package
2. Generate an .amr package online

Build a frontend .zip package
Depending on the scenario in which the offline package is used, the configuration path is divided into the
following two types:

Global resource package
Normal resource package

Note
Global resource package and normal resource package cannot coexist in the same H5 offline
package.
Offline package ID (namely the top-level directory mentioned below) must be a 8-digit number.

Global resource package

5.Manage HTML5 offline packages
5.1. Configure HTML5 offline packages

5.2. Generate HTML5 offline packages

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 23

You can place the common resource which is referenced by other normal resource packages in the global
resource package. It is required to specify the resource path within the package with following rules:

First-level directory: The ID of the global resource package, such as 77777777 .
Second-level directory: Points to the server domain name address where the resource can be accessed.

For public cloud: In the public cloud, the second-level directory must be fixed as mcube-
prod.mpaascloud.com , otherwise the acceleration capability of MDS docking cannot be used.
For private cloud: Please query the domain name address of the mdsweb server deployed in the private
cloud.

Third-level directory: appId_workspaceId , for example 53E5279071442_test .
The third-level directory and beyond are the business-customized public resource files. Avoid using special
characters in the folder names, file names, and files of public resource files. Special characters are characters
that will be converted by the urlencode function.

After the resource files are organized according to the above rules, you can fast locate the paths of resource
files as in the following formats.

Resource files on public cloud: http://domain name/appID_workspace/resource file path
Resource files on private cloud: http://domain name/mcube/appID_workspace/resource file path

Important
For the resource files on private cloud, you need to add /mcube after the second-level directory (server
domain name) in the file path.

Example:
In private cloud, the second-level directory is the domain name of the mdsweb server deployed in private
cloud. Taking mdsweb-outer.alipay.net as an example, the path of the resource file common.js is
 https://mdsweb-outer.alipay.net/mcube/53E5279071442_test/common.js .

Note
The absolute length of the public resource cannot exceed 100 characters, otherwise the client might
fail to load the resource and the page goes blank.
The server does not control the global resource package version. You can customize the version by
adding a file directory structure after the third-level directory according to actual needs.
In private cloud, if the file storage format used by the server is HDFS or AFS, you need to add a
directory before the third-level directory mentioned above. The new directory name is the name of
the storage space (bucket) in the mdsweb server.
To reference public resources, it means accessing the content of global resource packages via
normal offline packages, so the access path must be absolute path, such as https://mcube-prod.oss-
cn-hangzhou.aliyuncs.com/53E5279071442_test/common.js .

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 24

Normal resource package
You can place the relevant frontend resources such as HTML, CSS, and JavaScript into an offline package based
on your business. The directory structure is as follows:

First-level directory: The ID of the normal resource package, such as 20171228 .
The secondary directory and beyond are business-customized resource files. It is recommended that all front-
end files be saved in a unified directory, such as /www , and set the main entry file opened by default in the
current offline package, such as /www/index.html .

Generate the .zip package
After configuring the path of resource package, you can directly compress the whole directory where the appId
is located into a .zip package.

Generate an .amr package online
Log in to the mPaaS console, navigate to Mobile Delivery Service > Manage offline packages, and upload
the .zip package generated in the previous step to the MDS platform to generate a .amr package. For
detailed steps, see Mobile Delivery Service > Create offline packages.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 25

Important
When you create an offline package, the minimum version of iOS client must be lower than the
Product Version field in the info.plist file. You are recommended to set the minimum version
of iOS client to 1.0.0.
The Product Version in the info.plist file should be consistent with the value of Bundle
versions string, short, otherwise the offline package may not take effect.

When creating an HTML5 offline package, you must complete the basic configuration of the offline package.

Prerequisites
You have configured an offline package on the Manage configurations page. For more information, see
Configure offline packages.

About this task
You can create a single HTML5 offline package, or create multiple offline packages at a time by batch importing
HTML5 offline package files.
When you upload the first offline package for an HTML5 App, you must select the offline package type. Once the
offline package type is selected, it can not be changed. Each HTML5 app has only one type of offline package.

Procedure
Create a single offline package
Go to the mPaaS console, and perform the following steps:

1. On the left navigation bar, click Mobile Delivery Service> Offline package management.
2. On the offline package list page, click Create an HTML5 App . You can skip this step if an HTML5 application

already exists.
3. In the Create an HTML5 App window, enter the HTML5 App ID and HTML5 App name, and then click

OK. You can skip this step if an HTML5 App already exists.

Important
The H5App ID is an 8-digit number.
20000196, 66666692, 68687029, and 68687209 are offline package IDs built into the SDK. It is
recommended not to use the H5App ID, otherwise conflicts will occur.
It is recommended not to use numbers starting with 666666 or 20000 for H5App ID.

4. Select the HTML5 app from the HTML5 app list, and click Add an offline package on the right.
5. Configure the following information in the Basic information section:

Resource package type: Select Global resource package or Normal resource package.

Note
If you use the global resource pack, you need to change the name of the second-level directory in the
global resource pack to mcube-prod.mpaascloud.com, otherwise you will not be able to use the
acceleration capability of real-time release docking.

HTML5 app version : Enter the version of the offline package, for example, 1.0.0.1.
File: Upload the offline package file in .zip format.
Client version: Select the type of the client and set the version range. Only the clients within the version
range can receive the new offline packages.

5.3. Create HTML5 offline packages

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 26

Note
At least one client type is required. If both Android and iOS are selected, you should ensure that
the both clients adopt the same strategy on the latest version. Specifically, the latest versions of
both clients should be either kept empty (system default) or set as the same value.
If the latest version is kept empty, all future versions will be supported. It is recommended to to
set it as default, in case that the offline package becomes ineffective when the version of the
upgraded client is higher than that is previously specified.
The version of the iOS client must be older than the value of Product Version field in the
project's info.plist file.

6. In the Configuration information section, configure the following information:
URL of main entrance: Optional. The homepage of the offline package.

Note
A complete path is required, such as /www/index.html , where /www is the name of second-level
directory you customized.

Virtual domain: The virtual domain name that you enter when you configure the offline package is
automatically displayed.
Extended information: Optional. Enter the page loading parameters in key-value (KV) formats. Separate
multiple KV pairs with commas (,).
On the mPaaS platform, you can configure a request interval for HTML5 offline packages. You can apply the
settings to a single offline package or globally.

Single package configuration: Apply to the current offline package only. In the Extended information
field, you can enter {"asyncReqRate":"1800"} to set the request interval, where 1800 indicates the
interval. The interval is measured in seconds and ranges from 0 to 86400 seconds (0 to 24 hours). Value
0 indicates no limit on request interval.
Global configuration: Apply to all offline packages. This parameter is specified in the client code. For
more information, see Quick Start and Quick start.

Time for download: Select the time when the user downloads the offline package.
If you select Wi-Fi only, the offline package will be automatically downloaded in the background only
with Wi-Fi connection.
If you select All networks, in non-Wi-Fi network, the offline package will still be automatically
downloaded consuming user’s mobile data. Thus, set it with caution.

Time of installation: Select the time to install the offline package.
If you select Not preload, the offline package will be installed only when the offline package is opened.
If you select Preload, the offline package will be automatically installed after the offline package is
downloaded.

7. Check I confirm the above information is accurate, and submit without any further change , then
click Submit.

Batch import offline packages
When creating multiple offline packages, you can choose to import the packages in batch to improve efficiency
and avoid errors during configuration.

After importing, if the app to which the offline package belongs does not exist on mPaaS, an HTML5 app will
be created automatically.
After importing, if the app to which the offline package belongs already exists on mPaaS, the package will be
added to the HTML5 app when configuration is complete.

Log in to the mPaaS console, and perform the following steps:
1. On the left navigation bar, click Mobile Delivery Service> Offline package management, then click

Batch import H5 offline packages .
2. In the popup window, follow the on-screen instructions to upload the ZIP offline package file and the

configuration file.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 27

Note
The file size cannot exceed 300 MB, and the number of offline packages cannot exceed 100.
The offline package resource file must be named after the offline package ID, which must be 8-digit
number.

3. In the import result list, click Edit in the Operation column to edit the offline package. Refer to Create a
single offline package for details about the configurations.
The default version of imported offline packages follow the rules below, and you can edit the versions based
on your needs.

If the app to which the offline package belongs does not exist on mPaaS, the default version of the package
is 0.0.0.1.
If the app to which the offline package belongs already exists on mPaaS, the default version of the package
is to add 1 to the currently highest version number.

4. After completing editing all the packages, check The information can't be modified after submission,
and click Submit.
The submitted offline package information will be verified. If verification fails, error message will appear. If
verification succeeds, the HTML5 offline package appears on the HTML5 offline package management page,
which indicates that the offline package has been created successfully.

What to do next
Release HTML5 offline packages

To release your created offline package, initiate a releasing task and configure the necessary settings. You
have the option to release a single H5 offline package or to batch release multiple packages.

Procedure
Publish a Single Offline Package
Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.
2. On the offline package list page, select the offline package and version to be released, and then click Create

a release task.
3. On the Create a release task page, complete the following configurations:

Release type: You can choose Grayscale release or Official release.
Grayscale release: : Before the official release, a small-scale release is performed to verify whether the
functions of the new package meet expectations. The release targets are some users.
Official release: Release the package officially to all the users.

Release model: Select Whitelist or Time window. Available only when Grayscale release is selected.
If you select Whitelist, select a whitelist in Whitelist Configuration.

Note
About creating whitelists, see Manage whitelists.

If you select Time window, select the End time and Users count.

Release description: Enter the description about the offline package release task.
Advanced rule: You can add one or more advanced rules for the release task. Optional field, available only
when Grayscale release is selected.

Type: Select City, Model, Network or Device system version.
Operation type: Select the operation type.
Resource value: From the drop-down menu, select the resource value that corresponds to the selected
operation type.

4. Click OK.

5.4. Release HTML5 offline packages

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 28

Batch release offline packages
To release multiple offline packages simultaneously, utilize the batch release feature as follows:

1. On the left navigation bar, choose Mobile Delivery Service > Offline package management and click
Batch Release.

2. In the dialog window, select the Apps from the left H5App list to be published, add them to the Selected list
on the right, and then click OK.

Note
The list only displays Apps whose highest version is in the To Be Released and Finished Release
states.

3. On the Create Release Publish page, set parameters such as Release Type and Release Mode. Refer to
Publish a Single Offline Package for details on these parameters.

4. Click OK to complete the batch releasing process.

Result
The offline package list page will display the status of the released package as either Grayscale Releasing or
Official Releasing.

Note
Due to the current server cache refresh mechanism, after the console releases the offline package, the
client will receive it after about 1 minute.

What to do next
Manage Published Offline Packages

You can manage the released HTML5 offline packages. The management operations include viewing,
suspending and ending release tasks, and deleting HTML5 offline packages.

View offline package release task
Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.
2. In the HTML5 app list, select the target H5App, choose the offline package version that you want to view from

the list, and click unfold icon () left to the offline package version.

3. In the unfolded task list, click View to view the release task details.

Suspend offline package release task
Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.
2. In the HTML5 app list, select the target H5App, choose the offline package version that you want to suspend

from the list, and click unfold icon () left to the offline package version.

3. In the unfolded task list, click Pause and then confirm the operation.
To resume releasing the offline package, click Continue.

End offline package release task
Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.
2. In the HTML5 app list, select the target H5App, choose the offline package version that you want to end from

the list, and click unfold icon () left to the offline package version.

3. In the unfolded task list, click End and then confirm the operation.

5.5. Manage HTML5 offline packages

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 29

After the end, if you want to release the offline package again, you need to re-create the release.

Important
After the release is ended, the offline package cannot be downloaded. However, if there are other versions
of the offline package being released, the offline package of the released version can still be downloaded.
For example, if the release of version V1.1 of an offline package is ended, and version V1.0 is still being
released, the client cannot download the offline package of version V1.1, but can still download the offline
package of version V1.0.

Export offline package
MDS allows for the download of individual offline package resource files (.amr) or configuration files (.json).

1. After accessing the mPaaS console, proceed to Real-time Publishing > Offline Package Management via
the left-side navigation pane.

2. In the H5App list, select the desired H5App. Then, in the offline package list on the right, choose the version
and select Download AMR File or Download Configuration File to initiate the download.

Delete H5App
Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.
2. In the H5App list on the left, hover your mouse over the target H5App, click the delete icon, and select

Confirm in the pop-up. Note that deleting the H5App will also remove all associated offline packages and
resource files.

Important
H5App cannot be restored after deletion, so please operate with caution.

MDS provides Java SDK for offline package release, enabling developers to configure, create, release, and
manage offline packages by calling the API.

Preparation
Before using the open API, you need to obtain AccessKey, App ID, Workspace ID and Tenant ID, configure
Maven dependencies and configure file uploading.

Obtain AccessKey
AccessKey includes AccessKey ID and AccessKey Secret. Click here for obtaining method.

AccessKey ID: used to identify users.
AccessKey Secret: the key used to authenticate the user must be kept secret.

Obtain App ID, Workspace ID and Tenant ID
1. Log in to mPaaS console, and enter the App.
2. In Overview page, click Code configurations (choose Android or iOS based on your needs)> Download

configuration file > Download now. You can view App ID and Workspace ID in the Code configurations
panel.

Configure Maven dependencies
Before using the API, you need to complete the following Maven dependency configurations.

5.6. OpenAPI
5.6.1. Overview and preparation

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 30

https://account.alibabacloud.com/login/login.htm?oauth_callback=https%253A%252F%252Fmpaaspub.console.aliyun.com%252F

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-mpaas</artifactId>
 <version>3.0.5</version>
</dependency>

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-core</artifactId>
 <optional>true</optional>
 <version>[4.3.2,5.0.0)</version>
</dependency>

Environment Variable Configuration
Configure environment variable MPAAS_AK_ENV and MPAAS_SK_ENV

Linux and macOS system configuration methods execute the following commands:

export MPAAS_AK_ENV=<access_key_id>
export MPAAS_SK_ENV=<access_key_secret>

Note
 access_key_id is replaced with the prepared AccessKey ID, and access_key_secret is replaced with
the AccessKey Secret.

Windows system configuration method
i. Create a new environment variable, add environment variables MPAAS_AK_ENV and MPAAS_SK_ENV,

and write the prepared AccessKey ID and AccessKey Secret.
ii. Restart Windows system.

Code sample
import com.aliyuncs.DefaultAcsClient;
import com.aliyuncs.IAcsClient;
import com.aliyuncs.mpaas.model.v20201028.QueryMcubeVhostRequest;
import com.aliyuncs.mpaas.model.v20201028.QueryMcubeVhostResponse;
import com.aliyuncs.profile.DefaultProfile;

public class MpaasApiDemo {

 /**
 * The corresponding APP ID on the mPaaS console
 */
 private static final String APP_ID = "ALIPUB40DXXXXXXX";

 /**
 * The corresponding workspace id on the mPaaS console
 */
 private static final String WORKSPACE_ID = "default";

 /**
 * The corresponding tenant id on the mPaaS console
 */
 private static final String TENANT_ID = "XVXXXXXF";

 /**
 * Region ID, the default is cn-hangzhou
 */
 private static final String REGION_ID = "cn-hangzhou";

 /**
 * Product name

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 31

 */
 private static final String PRODUCT = "mpaas";

 /**
 * The endpoint to call
 */
 private static final String END_POINT = "mpaas.cn-hangzhou.aliyuncs.com";

 public static void main(String[] args) {
 // Alibaba Cloud account AccessKey has access rights to all APIs. It is recommended that you use
RAM users for API access or daily operation and maintenance.
 // It is strongly recommended not to save the AccessKey ID and AccessKey Secret in the project c
ode, otherwise the AccessKey may be leaked, threatening the security of all resources under your account
.
 // This example uses saving the AccessKey ID and AccessKey Secret in environment variables as an
example. You can also save it to the configuration file according to business needs.
 String accessKeyId = System.getenv("MPAAS_AK_ENV");
 String accessKeySecret = System.getenv("MPAAS_SK_ENV");

 DefaultProfile.addEndpoint(REGION_ID, PRODUCT, END_POINT);
 DefaultProfile profile = DefaultProfile.getProfile(REGION_ID, accessKeyId, accessKeySecret);
 IAcsClient iAcsClient = new DefaultAcsClient(profile);
 QueryMcubeVhostRequest queryMcubeVhostRequest = new QueryMcubeVhostRequest();
 queryMcubeVhostRequest.setAppId(APP_ID);
 queryMcubeVhostRequest.setWorkspaceId(WORKSPACE_ID);
 queryMcubeVhostRequest.setTenantId(TENANT_ID);
 QueryMcubeVhostResponse acsResponse = null;
 try {
 acsResponse = iAcsClient.getAcsResponse(queryMcubeVhostRequest);
 System.out.println(acsResponse.getResultCode());
 System.out.println(acsResponse.getQueryVhostResult());
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

}

Configure file uploading
Since file streaming is not allowed in all APIs, to upload a file, you need to upload it to OSS first by calling the
upload tool class, and then send the returned OSS address as a parameter to the specified API.
You can download the file upload tool class OssPostObject.java.zip.

Code sample
The following shows the code sample of file uploading:

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 32

https://gw.alipayobjects.com/os/bmw-prod/6c545cbb-ed5e-4e71-bdcd-850fe6dfad9d.zip

 GetMcubeFileTokenRequest getMcubeFileTokenRequest = new GetMcubeFileTokenRequest();
 getMcubeFileTokenRequest.setAppId(APP_ID);
 getMcubeFileTokenRequest.setOnexFlag(true);
 getMcubeFileTokenRequest.setTenantId(TENANT_ID);
 getMcubeFileTokenRequest.setWorkspaceId(WORKSPACE_ID);
 GetMcubeFileTokenResponse acsResponse = iAcsClient.getAcsResponse(getMcubeFileTokenRequest);
 System.out.println(JSON.toJSONString(acsResponse));

 GetMcubeFileTokenResponse.GetFileTokenResult.FileToken fileToken =
acsResponse.getGetFileTokenResult().getFileToken();
 OssPostObject ossPostObject = new OssPostObject();
 ossPostObject.setKey(fileToken.getDir());
 ossPostObject.setHost(fileToken.getHost());
 ossPostObject.setOssAccessId(fileToken.getAccessid());
 ossPostObject.setPolicy(fileToken.getPolicy());
 ossPostObject.setSignature(fileToken.getSignature());
 ossPostObject.setFilePath("your/local/file/path");
 String s = ossPostObject.postObject();

Refer to Obtain upload file token for descriptions about GetMcubeFileTokenRequest .

Note
If a parameter is not specified as required in the parameter description table, the parameter is required.

General parameter description
All interfaces contain three parameters: appId , workspaceId and tenantId . The meanings of these three
parameters are as follows. The three parameters will be omitted in subsequent interface descriptions of this
document.

Parameter Type Description

appId String App ID.

workspaceId String Workspace ID.

tenantId String Tenant ID.

General return value description

Parameter Type Description

resultCode String
Normally, the code returned is OK .
Other values indicate that the API
request is abnormal.

requestId String Request ID.

resultMessage String Returned value after query failure.

5.6.2. API description

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 33

Result Object
The objects returned. The actual
meaning varies with the value
returned.

The objects returned include the following fields:

Name Type Description

resultMsg String Returned value after query failure.

success Boolean Whether the query is successful.

Create virtual domain
Request - CreateMcubeVhostRequest

Parameter Type Description

vhost String Virtual domain name.

Return value - CreateMcubeVhostResponse
{
 "createVhostResult":{
 "data":"success",
 "resultMsg":"",
 "success":true
 },
 "requestId":"F9C681F2-6377-488D-865B-1144E0CE69D2",
 "resultCode":"OK"
}

Return value description

Return value name Type Description

data String
If the creation is successful, it returns success. If the
creation fails, the value of the success field is
false.

createVhostResult Object The objects returned, includes general response only.

Query virtual domain
Request - QueryMcubeVhostRequest
Return value - QueryMcubeVhostResponse

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 34

{
 "queryVhostResult":{
 "data":"test.com",
 "resultMsg":"",
 "success":true
 },
 "requestId":"637D5BE0-0111-4C53-BCEE-473CFFA0DBAD",
 "resultCode":"OK"
}

Response description

Return value name Type Description

queryVhostResult Object The objects returned. See the table
below for meanings.

The objects returned include the following fields:

Name Type Description

data String The virtual domain name queried.

resultMsg String The return value after a query fails.

success Boolean Check whether the query is
successful.

Query whether the key file exists
Request - ExistMcubeRsaKeyRequest
Return value - ExistMcubeRsaKeyResponse
{
 "checkRsaKeyResult":{
 "data":"fail",
 "resultMsg":"",
 "success":false
 },
 "requestId":"8F76783A-8070-4182-895D-14E5D66F8BA3",
 "resultCode":"OK"
}

Return value description

Return value name Type Description

checkRsaKeyResult Object The objects returned. See the table
below for meanings.

The objects returned include the following fields:

Name Type Description

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 35

data String

Query result: fail indicates the
key does not exist, and success
indicates the key exists.

resultMsg String The return value after a query fails.

success Boolean Check whether the query is
successful.

Obtain upload file token
Request - GetMcubeFileTokenRequest

Parameter Type Description

onexFlag Boolean The fixed value is true .

Return value - GetMcubeFileTokenResponse
{
 "getFileTokenResult":{
 "fileToken":{
 "accessid":"LTAI****************",
 "dir":"mds/tempFileForOnex/ONEXE9B092D/test/PUQYHL/8b574cb7-3596-403f-a0e9-208660fc2081/",
 "expire":"1584327372",
 "host":"https://mcube-test.oss-cn-hangzhou.aliyuncs.com",
 "policy":"QwM2YtYTBlOS0yMDg2NjBmYzIwODEvIl1dfQ==",
 "signature":"kisfP5YhbPtmES8+w="
 },
 "resultMsg":"",
 "success":true
 },
 "requestId":"8BAA3288-662E-422C-9960-2EEBFC08369F",
 "resultCode":"OK"
}

Return value description

Return value name Type Description

fileToken Object
According to the setting method in the
file upload example, set the
corresponding fields in fileToken
to OssPostObject .

getFileTokenResult Object -

Upload key file
Request - UploadMcubeRsaKeyRequest

Parameter Type Description

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 36

onexFlag Boolean Fixed value, which is true .

fileUrl String The save address of the key file in
OSS.

Return value - UploadMcubeRsaKeyResponse
{
 "requestId":"519E35CF-CC60-4890-8C8E-89A98CEA6BB0",
 "resultCode":"OK",
 "uploadRsaResult":{
 "data":"processed successfully",
 "resultMsg":"",
 "success":true
 }
}

Return value description

Return value name Type Description

data String

If the creation is successful, return
processing success.
If the creation fails, the success
field value is fasle.

uploadRsaResult Object The objects returned.

Obtain offline package App list
Request - ListMcubeNebulaAppsRequest
Includes general parameters only. See General parameter description for details.

Return value - ListMcubeNebulaAppsResponse
{
 "listMcubeNebulaAppsResult":{
 "nebulaAppInfos":[
 {
 "h5Id":"12345678",
 "h5Name":"12345678"
 },
 {
 "h5Id":"12345679",
 "h5Name":"openapiTest"
 }
],
 "resultMsg":"",
 "success":true
 },
 "requestId":"BE728F09-6EBD-4688-9329-896813EAD075",
 "resultCode":"OK"
}

Return value description

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 37

Return value name Type Description

h5Id String Offline package ID.

h5Name String Offline package name.

Create offline package App
Request - CreateMcubeNebulaAppRequest

Parameter Type Description

h5Name String Offline package name.

h5Id String Offline package ID, 8 digits.

Return value - CreateMcubeNebulaAppResponse
{
 "createNebulaAppResult":{
 "resultMsg":"",
 "success":true
 },
 "requestId":"5B588AFE-8D58-4460-B0AA-6A48A9FD0852",
 "resultCode":"OK"
}

Delete offline package app
Request - DeleteMcubeNebulaAppRequest

Parameter Type Description

h5Id String Offline package ID, 8 digits.

Return value - DeleteMcubeNebulaAppResponse
{
 "deleteMcubeNebulaAppResult":{
 "resultMsg":"",
 "success":true
 },
 "requestId":"E24C760E-4849-4341-91C6-6DA97F5B6B76",
 "resultCode":"OK"
}

Upload offline package
Request - CreateMcubeNebulaResourceRequest

Name Type Description

h5Id String ID of the HTML5 App.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 38

h5Name String Name of the HTML5 App.

h5Version String Version of the offline package. Must
be unique in an HTML5 App.

mainUrl String
Main URL of the offline package.
Should satisfy the regular expression
pattern: ^/[\w|/]+\.html$.

vhost String Virtual domain name of the HTML5
app.

extendInfo String Extended fields in JSON format.

autoInstall Integer

Specify the network in which
downloads are allowed.

0: Wi-Fi only (Without Wi-Fi
connection, download starts only
when users use the app).
1: All networks (Consumes cellular
data. Do not choose this mode
unless in special situations.)

resourceType Integer

Resource type. One HTML5 app can
have only one resource type.

0: Global resource.
1: Private resource.

installType Integer

Specify whether to preload the offline
package before installing it.

0: Not preload (install only when the
user enters the offline package
page)
1: Preload (automatically install
after the offline package is
downloaded)

platform String Platform. Includes all, Android, iOS
and Harmony.

clientVersionMin String

Minimum client version. Minimum
version is required when platform is
chosen. The format is aaa;bbb .
 aaa indicates iOS client version,

and bbb indicates Android client
version. The semicolon ; cannot be
omitted. If Android is chosen as the
platform, then the value is ;bbb .

clientVersionMax String
The maximum version of the client.
This field can be left blank. If platform
is set to all, this field must be filled in
for all or not filled in at all.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 39

fileUrl String
The OSS URL of the offline package
file. The package must be a zip
file.

repeatNebula Integer

Whether to reuse the global package.
Required when the resource package
is global resource.

0: No,
1: Yes.

onexFlag Boolean The fixed value is true .

Return value - CreateMcubeNebulaResourceResponse
{
 "createMcubeNebulaResourceReslult":{
 "nebulaResourceId":"4154",
 "resultMsg":"",
 "success":true
 },
 "requestId":"DFCA28DF-0F97-4C41-B3D4-351D284B51E7",
 "resultCode":"OK"
}

 nebulaResourceId is the ID of the offline package uploaded.

Obtain resource package list
Request - ListMcubeNebulaResourcesRequest

Parameter Type Description

h5Id String HTML5 app ID.

Return value - ListMcubeNebulaResourcesResponse

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 40

{
 "listMcubeNebulaResourceResult":{
 "nebulaResourceInfos":[
 {
 "appCode":"ONEX97C5D29290957-default",
 "autoInstall":1,
 "clientVersionMax":"100;100",
 "clientVersionMin":"0;0",
 "creator":"demo",
 "debugUrl":"",
 "downloadUrl":"https://pre-mpaas.cn-hangzhou.oss.aliyuncs.com/ONEX97C5D29290957-default/1
2345678/1.0.0.1_all/nebula/12345678_1.0.0.1.amr",
 "extendInfo":"",
 "extraData":"{"resourceType":"1"}",
 "fallbackBaseUrl":"https://pre-mpaas.cn-hangzhou.oss.aliyuncs.com/ONEX97C5D29290957-defau
lt/12345678/1.0.0.1_all/nebula/fallback/;https://pre-mpaas.cn-
hangzhou.oss.aliyuncs.com/ONEX97C5D29290957-default/12345678/1.0.0.1_all/nebula/fallback/",
 "fileSize":"0",
 "gmtCreate":"2021-02-01 14:11:21",
 "gmtModified":"2021-02-01 14:11:21",
 "h5Id":"12345678",
 "h5Name":"12345678",
 "h5Version":"1.0.0.1",
 "id":4154,
 "installType":1,
 "lazyLoad":0,
 "mainUrl":"/test.html",
 "md5":"3b9b7caaea6e5b0cb0db4db551454a33",
 "memo":"https://pre-mpaas.cn-hangzhou.oss.aliyuncs.com/ONEX97C5D29290957-
default/12345678/1.0.0.1_all/nebula/nebula_json/h5_json.json",
 "metaId":7848,
 "modifier":"success",
 "packageType":1,
 "platform":"all",
 "publishPeriod":0,
 "releaseVersion":"20210201141121",
 "resourceType":"1",
 "status":1,
 "vhost":""
 }
],
 "resultMsg":"",
 "success":true
 },
 "requestId":"C88DEB27-FF7E-43F7-97F8-B2AA12FB0A5D",
 "resultCode":"OK"
}

Return value description

Name Type Description

appCode String appId+"-"+workspaceId

autoInstall Integer The same as that in the Upload offline
package.

clientVersionMax String The same as that in the Upload offline
package.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 41

clientVersionMin String
The same as that in the Upload offline
package.

creator String Creator. Currently not in use.

debugUrl String Has no meaning in current response.

downloadUrl String Download address of offline package
ARM file.

extendInfo String The extended fields passed in the
offline package upload request.

extraData String Extended parameters.

fallbackBaseUrl String

Offline package fallback address,
delimited by semicolon (;). The
address before ; is intranet
address, and the address after ; is
internet address.

fileSize String File size

gmtCreate Date Time of creation

gmtModified Date Time of update

h5Id String ID of the HTML5 app.

h5Name String Name of the HTML5 app.

h5Version String Version of the current offline package
package

id Long Primary key.

installType Integer The same as that in the Upload offline
package.

lazyLoad Integer Lazy loading. Currently the value is 0.

mainUrl String The same as that in the Upload offline
package.

md5 String md 5 of the offline package file.

memo String
Download address of the offline
package h5.json file.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 42

metaId Long Has no meaning in current response.

modifier String Modifier. Currently not in use.

platform String The same as that in the Upload offline
package.

publishPeriod Integer

Release status.
0: Initialization
1: Internal gray release
2: External gray release
3: Formal release
4: Rollback release
5: Release task ends

releaseVersion String Release version.

resourceType Integer The same as that in the Upload offline
package.

status Integer Status

Create Offline package release task
Request - CreateMcubeNebulaTaskRequest

Parameter Type Required Description

publishType Integer Yes
Release type.

2: Gray release
3: Official release

publishMode Integer Yes

Release mode. If
publishType is 3 , this
field should be empty.

0: Unknown
1: Whitelist
2: Time window
3: Percentage
4: Full quantity
5: Third party grayscale

memo String No Release description.

id Long Yes
Only 0 is allowed. The ID
indicates creation, and
cannot be modified.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 43

greyEndtimeData String No

End time of time window
grey release. Required
when publishMode is
 2 . Format: YYYY-MM-dd
HH:mm:ss . The time must
be greater than the current
time and less than 7 days
from the current time.

greyEndTime Date No
Date type. The value is
same as that of
 greyEndTimeData .

greyNum Integer No
Number of users in time
window grey release.
Required when
 publishMode is 2 .

whitelistIds String No

Primary key ID of whitelist.
Required when
 publishMode is 1 .

Separate multiple IDs with
comma , .

packageId Long Yes Primary key ID of the
resource package.

greyConfigInfo String No

Advanced rule, JSON string.
See the table below for
meanings.
Example:
[{“ruleElement”:”city”,”ope
ration”:1,”value”:”Shanghai
,Beijing,Tianjin”},
{“ruleElement”:”mobileMod
el”,”operation”:2,”value”:”R
EDMI NOTE 3,VIVO X5M”},
{“ruleElement”:”osVersion”
,”operation”:3,”value2”:”9.
2.1”,”value1”:”9.2.1”,”valu
e”:”9.2.1-9.2.1”}]

Advanced rule description

Name Type Description

ruleElement String

Rule type:
city: City
mobileModel: Mobile phone model
netType: Network
osVersion: Device OS version

value String

Rule value. Separate multiple values
with comma (,). When operation
is 3 or 4 , the value is in aa-
bb format, in which aa is the
smaller value, and bb is the
greater value.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 44

operation Integer

Operation:
1: Include
2: Exclude
3: Within range
4: Out of range

If ruleElement is city ,
 mobileModel and netType ,

operation value can only be 1 or
 2 If ruleElement is
 osVersion , the value of operation

can be any one of the four value.

Return value - CreateMcubeNebulaTaskResponse
{
 "createMcubeNebulaTaskResult":{
 "nebulaTaskId":"6664",
 "resultMsg":"",
 "success":true
 },
 "requestId":"BBDF54E1-2783-4E5A-AE19-F7BC3A1BB3C2",
 "resultCode":"OK"
}

 nebulaTaskId is the created release task ID.

Obtain release task list
Request - ListMcubeNebulaTasksRequest

Parameter Type Description

id Long ID of the offline package
corresponding to the release task.

Return value - ListMcubeNebulaTasksResponse

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 45

{
 "listMcubeNebulaTaskResult":{
 "nebulaTaskInfos":[
 {
 "appCode":"ONEX97C5D29290957-default",
 "bizType":"nebula",
 "creator":"",
 "gmtCreate":"2021-02-01 14:16:58",
 "gmtModified":"2021-02-01 14:16:58",
 "gmtModifiedStr":"2021-02-01 14:16:58",
 "greyConfigInfo":"",
 "greyEndtimeData":"",
 "greyNum":0,
 "greyUrl":"",
 "id":6664,
 "memo":"test",
 "modifier":"",
 "packageId":4154,
 "percent":0,
 "platform":"all",
 "productId":"ONEX97C5D29290957-default-12345678",
 "productVersion":"1.0.0.1",
 "publishMode":4,
 "publishType":3,
 "releaseVersion":"20210201141121",
 "status":1,
 "syncResult":"",
 "taskName":"12345678",
 "taskStatus":1,
 "taskType":0,
 "taskVersion":1612160218556,
 "upgradeNoticeNum":0,
 "upgradeProgress":"",
 "whitelistIds":""
 }
],
 "resultMsg":"",
 "success":true
 },
 "requestId":"B9A07543-4B8B-43D0-AB33-7F2ACB954909",
 "resultCode":"OK"
}

Return value description

Name Type Description

appCode String appId+workspaceId

bizType String The value for offline package is
 nebula .

bundles Array Currently not in use.

creator String Currently not in use.

gmtCreate Date Time of creation.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 46

gmtModified Date Time of update.

gmtModifiedStr String Update time string.

greyConfigInfo String
Advanced rule string, different from
that in the upload request. See
greyConfigInfo explanation for details.

greyEndtime Date End time of time window grey release.

greyEndtimeData String End time string of time window grey
release.

greyNum Integer Number of users in time window grey
release.

id Long Primary key ID of current release task.

memo String Release note.

modifier String Modifier. Currently not in use.

packageId Long ID of the offline package
corresponding to the current task.

percent Integer Grey percent. Currently the value is 0.

platform String Platform of the release task. Includes
all, Android, iOS and Harmony.

productId String Product ID. The format is appId +
workspaceId + h5id .

productVersion String ID of the offline package.

publishMode Integer

Release mode:
0: Default
1: Whitelist
2: Time window

publishType Integer
Release type:

2: Gray release
3: Official release

releaseVersion String Internal release version.

resIds String ID of the corresponding offline
package.

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 47

status Integer
Status:

0: Invalid
1: Valid

syncResult String Currently not in use

taskName String Task name, same as the HTML5 app
name.

taskStatus Integer

Task status:
0: To be released
1: Release in progress
2: Finished
3: Paused

taskType Integer
Task type:

0: Ordinary task.
1: Rollback task.

taskVersion Long Task version, uses the time of task
creation.

upgradeNoticeNum Integer Currently not in use

upgradeProgress String Currently not in use

whitelistIds String Primary key ID of whitelist, delimited
by comma (,).

greyConfigInfo field description

Name Type Description

operator String
Relationship of the rules. and
means all the rules in subRules
must be met at the same time.

defaultResult boolean The default returned result.

subRules List Rule list.

operator String

Rule name:
contains: Include
excludes: Exclude
vLimitIn: Within range
vLimitOut: Out of range

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 48

left List<String>/Object

When operator value is
 contains or excludes , the

value is a list of elements, and each
element represents a rule value.
When operator value is
 vLimitIn or vLimitOut , it is

an object, and lower represents
the smaller value, and upper
represents the greater value.

right String Rule type name.

defaultResult Boolean Default result.

Note
The two operator fields in greyConfigInfo have different meanings.

Obtain release task details by ID
Request - GetMcubeNebulaTaskDetailRequest

Parameter Type Description

taskId Long Primary key ID of the release task.

Return value - GetMcubeNebulaTaskDetailResponse

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 49

{
 "getMcubeNebulaTaskDetailResult":{
 "nebulaTaskDetail":{
 "appCode":"ONEX97C5D29290957-default",
 "appId":"",
 "atomic":0,
 "baseInfoId":0,
 "bizType":"nebula",
 "creator":"",
 "cronexpress":0,
 "downloadUrl":"https://pre-mpaas.cn-hangzhou.oss.aliyuncs.com/ONEX97C5D29290957-default/12345
678/1.0.0.1_all/nebula/12345678_1.0.0.1.amr;https://pre-mpaas.cn-
hangzhou.oss.aliyuncs.com/ONEX97C5D29290957-default/12345678/1.0.0.1_all/nebula/12345678_1.0.0.1.amr",
 "extraData":"{"resourceType":"1"}",
 "fileSize":"0",
 "fullRepair":0,
 "gmtCreate":"2021-02-01 14:16:58",
 "gmtModified":"2021-02-01 14:16:58",
 "gmtModifiedStr":"2021-02-01 14:16:58",
 "greyConfigInfo":"",
 "greyEndtimeData":"",
 "greyNum":0,
 "greyUrl":"",
 "id":6664,
 "issueDesc":"",
 "memo":"test",
 "modifier":"",
 "ossPath":"",
 "packageId":4154,
 "percent":0,
 "platform":"all",
 "productId":"ONEX97C5D29290957-default-12345678",
 "productVersion":"1.0.0.1",
 "publishMode":4,
 "publishPeriod":3,
 "publishType":3,
 "quickRollback":0,
 "releaseVersion":"20210201141121",
 "ruleJsonList":[

],
 "sourceId":"",
 "sourceName":"",
 "sourceType":"",
 "status":1,
 "syncResult":"",
 "syncType":0,
 "taskName":"12345678",
 "taskStatus":1,
 "taskType":0,
 "taskVersion":1612160218556,
 "upgradeNoticeNum":0,
 "upgradeProgress":"",
 "whitelistIds":"",
 "workspaceId":""
 },
 "resultMsg":"",
 "success":true
 },
 "requestId":"072AE251-B9F8-4A44-A621-9F0325EECC1E",
 "resultCode":"OK"
}

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 50

Return value description

Return value name Type Description

appCode String appId+workspaceId

appId String Currently not in use.

atomic Integer

Whether is package is atomic or not.
Currently can be ignored.

1: Yes.
0: No.

baseInfoId Long The primary key ID of basic
information. Currently can be ignored.

bizType String The value is nebula for offline
package.

bundles List Currently not in use.

creator String Currently not in use.

cronexpress Integer
0: Execute once.
1: Execute multiple times.

The value is 0 for iOS.

downloadUrl String
Offline package download address.
The address before ; is intranet
address, and the address after ; is
internet address.

extraData String Extended data in JSON format.

fileSize String File size

gmtCreate Date Time of creation

gmtModified Date Time of update

greyConfigInfo String Advanced rule string.

greyEndTime Date End time of time window grey release.

greyEndtimeData String
End time string of time window grey
release.

id Long Primary key ID

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 51

issueDesc String Issue description. Currently not in use.

mds String md 5 of the offline package file.

memo String Release note.

modifier String Modifier. Currently not in use.

ossPath String Currently not in use.

packageId Long Offline package ID.

percent Integer Gray percent. Currently not in use.

platform String Platform, all, iOS, Android and
Harmony.

product_id String appId+workspaceId + H5Appid

productVersion String Offline package version.

resIds String Offline package ID.

ruleJsonList List Release advanced rules. See the
sample above for details.

sourceId String Source ID. Currently not in use for
offline package.

sourceName String Currently not in use for offline
package.

sourceType String Source type. Currently not in use for
offline package.

status Integer
Status.

0: Invalid,
1: Valid.

syncResult String Currently not in use for offline
package.

syncType String Currently not in use for offline
package.

taskName String Task name

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 52

taskStatus Integer

Task status:
0: To be released
1: Release in progress
2: Finished
3: Paused

taskType Integer
Task type:

0: Ordinary task.
1: Rollback task.

taskVersion Long Task version, uses the time of task
creation.

upgradeNoticeNum Integer Currently not in use

upgradeProgress String Currently not in use

vmType String

Android emulator type, separated by
comma.

1: art
2: dalvik
3: lemur
4: aoc

whitelist List
Whitelist information of the offline
package release task. Refer to Manage
whitelists for detalis.

Change offline package task status
Request - ChangeMcubeNebulaTaskStatusRequest

Parameter Type Description

bizType String Pass nebula for offline package.

packageId Long Offline package ID.

taskId Long Release task ID.

taskStatus Integer

The status to change to.
0: To be released
1: Release in progress
2: Finished
3: Paused

Return value - ChangeMcubeNebulaTaskStatusResponse

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 53

{
 "changeMcubeNebulaTaskStatusResult":{
 "resultMsg":"",
 "success":true
 },
 "requestId":"595F4CB4-ACFE-4A5B-AF5B-4ED837CAEF95",
 "resultCode":"OK"
}

Mobile Delivery Service User Guide·Manage HTML5 off
line packages

> Document Version: 20250731 54

This article describes how to integrate the switch configuration function provided by mPaaS.
Switch configuration is the ability to dynamically modify the client code processing logic without releasing a
new version. The client controls related processing based on the switch value pulled from the background
dynamic configuration. Through the switch configuration service, you can configure, modify, and push various
switches. A switch refers to a key-value pair. Currently, switch configuration function integration supports
Native AAR mode or Portal & Bundle mode.
The complete integration process mainly includes the following 3 steps:

1. Add SDK
2. Initialize mPaaS (only required for Native AAR)
3. Use the SDK

Prerequisites
If you integrate switch configuration through Native AAR mode, ensure that you have completed Prerequisites
first.
If you integrate switch configuration through through Portal & Bundle mode, ensure that you have completed
General steps.

Add SDK
Native AAR mode
Follow the instructions in AAR component management to install the switch configuration component
CONFIGSERVICE in the project through Component management (AAR) .

Portal & Bundle mode
Install the switch configuration component CONFIGSERVICE in the Portal and Bundle projects through
Component management (AAR) .
For more information, see Manage component dependencies > Add/delete component dependencies.

Initialize mPaaS
If you integrate MAS through Native AAR, you must initialize mPaaS.
Add the following codes in the object Application :

public class MyApplication extends Application {

 @Override
 public void onCreate() {
 super.onCreate();
 // mPaaS initialization
 MP.init(this);
 }
}

For more details, see Initialize mPaaS.

Use the SDK
mPaaS provides the switch configuration management API MPConfigService to implement switch
configuration.
Complete the following steps to implement switch configuration:

1. In the mPaaS console, go to the Mobile Delivery Service > Manage configuration page, add required
switch configuration items, and set the targeted distribution configuration based on information such as the
platform, whitelist, percentage, version number, model, and Android version. For more information, see
Configuration management.

6.Switch configuration
management
6.1. Android

Mobile Delivery Service User Guide·Switch configurati
on management

> Document Version: 20250731 55

2. After a switch key is released in the console, the client can call the specified API to obtain the value of the
switch key.
The switch configuration management API MPConfigService provides many APIs externally. You can
understand the function of each API based on its name. The following are the interfaces and comments.

Important
The listener will exist as a soft reference, and the system will recycle it when the memory is low.
Therefore, please try to avoid using global listeners, and instead use switch listeners by registering at any
time and removing them after use.

 public class MPConfigService {
 /**
 * Obtain switch configurations
 *
 * @param key
 * @return
 */
 public static String getConfig(String key);
 /**
 * Load switch configurations. The latest switch configurations are obtained every half an hour
by default.
 */
 public static void loadConfig();
 /**
 * Load switch configurations immediately.
 *
 * @param delay Delay after which switch configurations are loaded, in ms. 0 indicates that
switch configurations are loaded immediately.
 */
 public static void loadConfigImmediately(long delay);
 /**
 * Register a listener for listening to switch configuration changes.
 * @param configChangeListener listener
 * @return
 */
 public static boolean addConfigChangeListener(ConfigService.ConfigChangeListener
configChangeListener);
 /**
 * Remove the listener for listening to switch configuration changes
 * @param configChangeListener listener
 */
 public static void removeConfigChangeListener(ConfigService.ConfigChangeListener
configChangeListener);
 }

Switch configuration is the ability to dynamically modify the processing logic in the client code without
releasing a new version. The client controls the relevant processing based on the switch value dynamically
configured by the backend. Through the switch configuration service, you can configure, modify and push
various switches. A switch refers to a key/value pair.
mPaaS provides a configuration management service (ConfigService) to implement switch configuration. The
default pull logic is to pull once during cold start, or when returning to the foreground from the background, if
the time since the last pull is more than half an hour, a pull will also be triggered. At the same time, the
configuration management service also provides an immediate pull interface and a monitoring logic for
configuration item changes, so that the configuration can be refreshed immediately once it changes.
To realize switch configuration management, you need to add the corresponding iOS SDK, configure the project
and read the configuration.
Using switch configuration involves calling the update release interface of MDS, which will cause corresponding
interface call fees. For the billing instructions of interface calls, see the MDS billing item description in Postpaid
mode.

6.2. iOS

Mobile Delivery Service User Guide·Switch configurati
on management

> Document Version: 20250731 56

Prerequisites
The project is connected to mPaaS. For more information, refer to: Access based on native framework and
using Cocoapods.

About this task
This document introduce how to integrate the switch configuration in details based on the switch configuration
code sample.

Add SDK
Use the cocoapods-mPaaS plugin to add the SDK.
The steps are as follows:

1. In the Podfile, use mPaaS_pod "mPaaS_Config" to add the dependencies of the switch configuration
component.

2. Please refer to Cocoapods User Guide, run the pod install or pod update .

Configure a project

Note
This step is applicable to baseline 10.1.32. The project configuration feature is built in baselines 10.1.60
and 10.1.68. Therefore, you can ignore this step when baseline 10.1.60 or 10.1.68 is used.

mPaaS encapsulates the switch configuration capability to a service. and you need to register this service in
service manager before using it, as shown in the following figure.

Mobile Delivery Service User Guide·Switch configurati
on management

> Document Version: 20250731 57

https://github.com/mpaas-demo/ios-configservice
https://guides.cocoapods.org/using/using-cocoapods.html

Read the configurations
Values of switch keys can be dynamically released in the mPaaS console. On the left navigation pane, choose
Mobile Delivery Service > Configuration management. Click Configuration Keys to view the detailed
configurations.

What to do next
Obtain switch value
In the mPaaS Console, add required switch configuration items in Mobile Delivery Service > Configuration
management, and set the targeted distribution configuration based on information such as platform, whitelist,
percentage, version, device model, iOS version and other information. For detailed operations, see Manage
configurations for Android/iOS.
When the switch key is released through the console, the client can get the key value corresponding to the
switch key by calling relevant interface.

+ (void)testStringForKey
{
 id<APConfigService>configService = [DTContextGet() findServiceByName:@"APConfigService"];
 NSString *configValue = [configService stringValueForKey:@"BillEntrance"];
 assert (configValue && [configValue isKindOfClass:[NSString class]]);
}

Note
Switch key values are obtained by calling the RPC API. The call to the RPC API is not necessarily successful.
Therefore, you must consider the local processing logic on the client to deal with failures in obtaining key
values. We recommend that you set a default switch value in the local logic on the client. You can enable
the client to use a new configuration logic when the console delivers a new switch value and use the local
default logic when the client fails to obtain a key value.

Advanced operations
The timing of the client pulls the switch configuration:

During cold start of the application

Mobile Delivery Service User Guide·Switch configurati
on management

> Document Version: 20250731 58

30 minutes later than last pull after the application returns to the foreground

Note
The interval of 30 minutes is the default value. You can modify the interval by adding switch
 Load_Config_Interval on the Configuration Switch Management page under Mobile Delivery
Service in the mPaaS console. For more information about the steps, see Manage configurations for
Android/iOS.

Dynamically monitor switch value changes
You can add an observer for a specified key to dynamically monitor switch value changes.

Mobile Delivery Service User Guide·Switch configurati
on management

> Document Version: 20250731 59

When the client pulls switch configurations, you can obtain the latest switch value of the specified key in
the callback method.

Force pull switch value: SDK provides a method to force pull the latest configuration of the console.

As a developer, you can add necessary switch configuration items in Mobile Delivery Service >
Configuration management in the mPaaS Console and deliver the configuration items by platform, whitelist
or percentage, version, device model, Android or iOS version and other information.

Prerequisite
The SDK for the switch configuration service has been added on the Android or iOS client.

Add switch configuration
You can add configuration items one by one, or import a JSON file to add the configuration items in batches.
The switch configuration list shows information including the configuration keys, creation time, update time,
creator, and modifier. The newly created configuration item is activated by default.

Add a configuration item
Log in to the mPaaS console, and complete the following steps:

1. From the navigation bar on the left, click Mobile Delivery service > Configuration management.
2. Click Add Configuration. On the Create Configuration page, enter the configuration key, remarks,

resource value, and select the corresponding platform and category. The resource value is the configuration
value corresponding to the configuration key. One configuration key can correspond to multiple resource
values. Click the Add button to set multiple resource values.

3. Add advanced rule (Optional). In the resource value configuration box, click the Add button to the right of
Advanced Rules to select the resource type (version number, osVersion, model, city), operation type, and
set the corresponding resource value. You can add multiple advanced rules under each resource value.

6.3. Manage configurations for
Android/iOS

Mobile Delivery Service User Guide·Switch configurati
on management

> Document Version: 20250731 60

4. Click Finished after you complete the configurations, and the new switch configuration will appear in the
configuration list.

Batch import
On the Configuration Switch Management page, click More operations > Import file, and import a JSON
file containing configuration items. The configuration items will appear in the list after import succeeded.

Important
If the configuration item in the file already exists in the file, the item will not be imported.

In addition to batch import function, MDS also supports exporting the configuration items. On the
Configuration Switch Management page, click More Operations> Configuration Export to download the
JSON configuration file to the local.

Query switch configuration
On the Configuration switch management page, enter a keyword to query the switch configuration.

Modify switch configuration
Complete the following steps to modify switch configuration:

1. On the Configuration Switch Management page, select the target configuration item and click Modify.
2. Edit the Note, Resource value, Platform, Type or Advanced rule field based on your needs, and click

Finished. The configuration key cannot be modified once added.

Activate/deactivate switch configuration
The newly created switch configuration is activated by default. If you don't need a configuration, you can click
deactivate to deactivate the configuration item. Likewise, for disabled configuration items, click Activate to
make them take effect again.

What to do next
After the switch key is released through the console, the client can obtain the key value corresponding to the
switch key by calling interfaces:

Android client
iOS client

Mobile Delivery Service User Guide·Switch configurati
on management

> Document Version: 20250731 61

Whitelist management is a basic function of Mobile Delivery Service, which provides a whitelist management
platform where you can easily create hundreds of thousands of whitelist data for the use by MDS.
On the whitelist management page, you can perform the following operations:

Create a whitelist
Add user information to a whitelist
Delete a whitelist

Create a whitelist
1. Log in to the mPaaS console, and click Mobile Delivery Service > Whitelist management on the left

navigation bar.
2. On the Whitelists page, click Add a whitelist, and enter a whitelist name, select a whitelist type and click

OK in the dialog box to create a whitelist.
Normal mode: Contents of the whitelist are user IDs. The whitelist is hit only when there is an exact
match.
Regular expression mode: Contents of the whitelist are multiple regular expressions. The whitelist is hit
if any of the regular expressions is matched.

Add user information to a whitelist
1. Click Add right to the target whitelist in the whitelist list, and then enter the user IDs or regular expressions

to be added to the whitelist in the dialog box.
Adding common type whitelist user IDs requires client configuration.

Note
To add a user ID on Android, refer to Tracking of active user report.
To add a user ID on iOS, refer to Configure user ID.

Multiple user IDs must be separated by commas or line breaks. You can also upload a whitelist file
containing user information to add whitelist users in batch.
Add users to a whitelist in regular expression mode
Enter regular expressions. Separate with line breaks.

2. Click OK after you have entered the information.

Delete a whitelist
Click Delete right to the target whitelist in the whitelist list to delete it.

7.Manage whitelists
Mobile Delivery Service User Guide·Manage whitelists

> Document Version: 20250731 62

Resource configuration management is a basic function of Mobile Delivery Service. With this function, you can
predefine various configuration data required for Mobile Delivery Service and don't have to manually input the
data every time, with work efficiency improved and error occurrence decreased.
The configuration data, such as city and device model, is also referred to as resources. When adding
configuration data, the resource name is shown to users. Only the resource value is used to match request
parameters of clients.
On the resource configuration management page, you can perform the following operations:

Add resource
Modify resource configurations
Delete resource

Add resource
1. Log in to the mPaaS console, and click Mobile Delivery Service > Release rule management from the

navigation bar on the left to go to the resource configuration list page.
2. On the resource configuration list page, click Add resource. In the pop-up window, select resource type and

platform type, enter the resource name and resource value, and then click OK to create the resource.
Resource type: The type of the resource. City, Device Model, Network, and Device System Version are
supported.
Platform type: Select a mobile platform. You can choose Android, iOS, or All.
Resource name: The name of the resource. You can define the name as needed. The resource name is
shown to users and generally consistent with the resource value.
Resource value: Only one resource value is supported. The following content describes the values of
various types of resources:

City: The name of the city at the prefecture and city level. The name must contain the administrative
unit, such as the city, region, autonomous prefecture, league. For example, the name can be Shanghai
Municipality, Haidong District, Qiannan Buyi and Miao Autonomous Prefecture, and Xing’an League.
Model: The model of the mobile device, such as VIVO X5M and iPhone 6S.
Network: The type of the network. Valid values: 2G, 3G, 4G, 5G, Wi-Fi, and WLAN.
Device system version: The system version of the mobile device, such as 10.0.1 and 5.1.1.

If you do not know the model, network, and device system version of the mobile device, you can query the
information about the mobile client by calling the specified API. For more information, see Call API operations
to query resource configurations.

Modify resource configurations
To modify resource configurations, find the resource and click Modify in the Operations column. Edit the
resource configurations as required. Click OK to save the modification.

Delete resource
To delete a resource, find the resource and then click Delete in the Operation column. To delete multiple
resources, select multiple resources, click Batch delete, and then click OK.

Call API operations to query resource configurations
When you add a resource, if you do not know the resource values of the network, device model, and device
system version, you can call the API to query configurations of the resource.
Perform the following steps:

1. Open a local project and call the following API to obtain the information of the mobile client:
Android clients

8.Manage release rules
Mobile Delivery Service User Guide·Manage release ru

les

> Document Version: 20250731 63

DeviceInfo deviceInfo = DeviceInfo.createInstance(context);
 AppInfo appInfo = AppInfo.createInstance(context);

 deviceInfo.getOsVersion(); //The version of the device system.
 deviceInfo.getmMobileModel(); //The model of the device.
 appInfo.getmProductVersion(); //The version of the device.

 int networkType = NetworkUtils.getNetworkType(context);//The network type of the device.
 networkType = 1 (2G)
 networkType = 2 (3G)
 networkType = 3 (Wi-Fi)
 networkType = 4 (4G)

iOS clients

Type Network Device system version
(system API)

Device model (mPaaS-
encapsulated API)

Switch configuration None [[UIDevice currentDevice]
systemVersion]

Baseline version before
10.1.68.32:
[APMobileIdentifier
shareIdentifier].deviceM
odel
Baseline version
10.1.68.32 and later:
[MPaaSDVInfo
sharedInstance].deviceM
odel

Upgrade detection
Wireless networks: Wi-Fi
Mobile networks: WWAN

[[UIDevice currentDevice]
systemVersion]

Baseline version before
10.1.68.32:
[APMobileIdentifier
shareIdentifier].deviceM
odel
Baseline version
10.1.68.32 and later:
[MPaaSDVInfo
sharedInstance].deviceM
odel

Hotfix management
Offline package
management
Mini Program management

[DTReachability
networkName]

[[UIDevice currentDevice]
systemVersion]

Baseline version before
10.1.68.32:
[APMobileIdentifier
shareIdentifier].deviceM
odel
Baseline version
10.1.68.32 and later:
[MPaaSDVInfo
sharedInstance].deviceM
odel

2. Report the client resource information to the server by uploading the log, and then view the resource
configuration information on the server.

Mobile Delivery Service User Guide·Manage release ru
les

> Document Version: 20250731 64

Learn about how to use the relevant APIs of Android update SDK.
Learn about how to use the relevant APIs of Android update SDK.

MPaaSCheckVersionService API
MPaaSCheckCallBack API

MPaaSCheckVersionService API
checkNewVersion
Check if a new version is available. This method starts an asynchronous task to check the updates and calls the
relevant callback method of MPaaSCheckCallBack whether or not a new version is available.

void checkNewVersion(Activity activity)

setIntervalTime
Set the interval of single reminder:

void setIntervalTime(long interval202)

3 days by default, in milliseconds.

setMPaasCheckCallBack
Set an instant of the callback to be called when setting the update SDK for checking updates.

void setMPaaSCheckCallBack(MPaaSCheckCallBack mPaaSCheckCallBack)

installApk
To install the package of the new version, in MPaaSCheckCallBack.alreadyDownloaded method, you can call:

void installApk(String filePath)
void installApk(ClientUpgradeRes res)

update
To download the package of the new version, in MPaaSCheckCallBack.showUpgradeDialog method, you can call:

void update(ClientUpgradeRes res)

MPaaSCheckCallBack API
startCheck
Call this API after calling the update checking interface. In this method, you can prompt the users that the
checking is in loading:

void startCheck()

isUpdating
Call this API when the update checking interface is repeatedly called:

void isUpdating()

onException
Call this API when exceptions occur in update checking:

9.Reference
9.1. API

Mobile Delivery Service User Guide·Reference

> Document Version: 20250731 65

void onException(Throwable throwable)

dealDataInValid
Call this API if the returned update information is valid:

void dealDataInValid(Activity activity, ClientUpgradeRes result)

dealHasNoNewVersion
Call this API if the returned update information is invalid:

void dealHasNoNewVersion(Activity activity, ClientUpgradeRes result)

alreadyDownloaded
Call this API if the new version package has already been downloaded. You can prompt users to install this
package at this time. If users choose to install, then MPaaSCheckVersionService.installApk method is called
for installation:

void alreadyDownloaded(Activity activity, ClientUpgradeRes result)

showUpgradeDialog
Call this API when a new version is available, but the package is not downloaded. You can prompt and ask users
whether to update, if users choose to update, then MPaaSCheckVersionService.update method is called for
triggering download:

void showUpgradeDialog(Activity activity, ClientUpgradeRes result)

onLimit
Call this API when a new version is available, but the time from the last checking is less than the set interval. It
is valid only when the configuration is Single reminder.

void onLimit(Activity activity, ClientUpgradeRes result, String reason)

Android code sample
To check the style and interaction effect of this function in mobile device, download Android code sample, then
compile bundle in local Android Studio and install .apk file in your mobile device. See Get code sample for
more information.

iOS code sample
Check for updates
mPaaS automatically connect the release function by calling update check interface to check whether a new
version is available. If a new version is available, a update window automatically pop up to remind user for
update. User tap Update to start auto update, no other encoding is required. To custom update prompt
window, see UI of custom update prompt below.

- (void)checkUpdate
{
 UpgradeCheckService *service = [UpgradeCheckService sharedService];
 service.delegate = self;
 [service checkUpgradeAndShowAlertWith:YES];
}

9.2. Code sample
9.2.1. Version update code sample

Mobile Delivery Service User Guide·Reference

> Document Version: 20250731 66

https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/mpaas_android_app

Note
When you add SDK, the dependency on release service gateway mPaaS > Targets > MPHttpClient >
 DTRpcInterface+upgradeComp.m is automatically added, thus you only need to call
 checkUpgradeAndShowAlertWith method, the release component automatically connect the release service
in background.

Custom update prompt UI
You can custom the update prompt UI by implementing delegate.

pragma mark UpgradeViewDelegate
- (UIImage *)upgradeViewHeader
{
 return [UIImage imageNamed:@"FinancialCloud"];
}
- (void)showProgressHUD:(BOOL)animation
{
 self.toast = [APToastView presentToastWithin:self.view withIcon:APToastIconLoading text:nil];
}
- (void)hideProgressHUD:(BOOL)animation
{
 [self.toast dismissToast];
}

- (void)showToastViewWith:(NSString *)message duration:(NSTimeInterval)timeInterval
{
 [self showAlert:message];
}

Android code sample
mPaaS framework based
See Get Code Sample to obtain code sample.

Native framework based
Demo address
See Get Code Sample to obtain code sample.

Download the code sample depending on your client type.
Download the code sample depending on your client type:

iOS: Switch configuration code sample (For integrating through Cocoapods)
Android: Switch configuration code sample (For integrating through mPaaS Inside and Native AAR)

For more information, refer to Get code sample.

9.2.2. Hotpatch Code Sample

9.2.3. Switch configuration code sample

Mobile Delivery Service User Guide·Reference

> Document Version: 20250731 67

https://github.com/mpaas-demo/android-hotpatch
https://github.com/mpaas-demo/android-hotpatch
https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/eu95_for_mPaas
https://github.com/alipay/mPaaS/tree/master/mPaaS_Demo_Code/mpaas_android_app

	1.Service announcement
	2.About Mobile Delivery Service
	3.Process of MDS
	4.Release management
	4.1. Integrate MDS into Android
	4.1.1. Quick start
	4.1.2. Advanced guide
	4.1.3. Default storage path

	4.2. Integrate MDS into iOS
	4.2.1. Add SDK
	4.2.2. Use SDK

	4.3. Manage Android release
	4.4. Manage iOS release

	5.Manage HTML5 offline packages
	5.1. Configure HTML5 offline packages
	5.2. Generate HTML5 offline packages
	5.3. Create HTML5 offline packages
	5.4. Release HTML5 offline packages
	5.5. Manage HTML5 offline packages
	5.6. OpenAPI
	5.6.1. Overview and preparation
	5.6.2. API description

	6.Switch configuration management
	6.1. Android
	6.2. iOS
	6.3. Manage configurations for Android/iOS

	7.Manage whitelists
	8.Manage release rules
	9.Reference
	9.1. API
	9.2. Code sample
	9.2.1. Version update code sample
	9.2.2. Hotpatch Code Sample
	9.2.3. Switch configuration code sample

