
Ant Technology

Mobile Sync Service
User Guide

Document Version: 20240809

Ant Technology

Mobile Sync Service
User Guide

Document Version: 20240809



Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Mobile Sync Service User Guide·Legal disclaimer

> Document Version: 20240809 I



Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window  command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Mobile Sync Service User Guide·Document convent
ions

> Document Version: 20240809 I



Table of Contents
1.Change history 
2.About Mobile Sync Service 
3.Terminology 
4.Client-side development 

4.1. Android 
4.2. iOS 

4.2.1. Add SDK 
4.2.2. Use SDK 

5.Access the server 
5.1. Integrate into MSS 
5.2. Single data synchronization API 
5.3. Global data synchronization API 
5.4. Verify user consistency 

6.Console operations 
6.1. Console introduction 
6.2. Add configuration 
6.3. Send business data 
6.4. View configuration details 
6.5. Change settings 
6.6. Disable configuration 
6.7. Query configuration pushes 
6.8. Manage services 
6.9. Query MSS operation records 

7.API reference 
7.1. Android API 
7.2. iOS API 

05

06

09

11

11

13

13

14

19

19

19

26

33

36

36

36

37

38

39

39

39

40

40

43

43

48

Mobile Sync Service User Guide·Table of Contents

> Document Version: 20240809 I



Document version Revisions

V20210630
Added the Query data synchronization history
section, which provides instructions on how to
view synchronization records.

1.Change history
Mobile Sync Service User Guide·Change history

> Document Version: 20240809 5

file:///usr/app/34771193/~~257749%20~~


Mobile Sync Service (MSS) is a core basic business component of the mPaaS platform. MSS
originates from the E2E solution SYNC of Ant Financial Group, which is oriented to mobile
Apps and pushes massive data from the server to the client. This component provides a
secure data channel based on the Transmission Control Protocol (TCP) and Secure Sockets
Layer (SSL). This data channel can actively synchronize business data from the server to the
client App on a timely, accurate, and orderly manner.
Traditional RPC has been applied in the Internet industry for decades and can meet most
business scenarios and functional requirements. However, the popularization and
development of the mobile Internet have driven the App scale and users’ requirements for
Apps to a new stage. Traditional RPC requests have many drawbacks due to their own
characteristics.

In certain scenarios, a client needs to call RPC requests to obtain the latest data, but
actually no or only little data on the server (cloud) changes.
As different business modules and functions are designed to be independent of each other,
they need to call RPC requests respectively to obtain their business data when the client
starts.
The client cannot be promptly aware of the data changes on the server but needs to call
RPC APIs in polling mode to update data.
Traditional RPC performs data interactions mostly based on HTTP(S) short connections. This
type of connection cannot be persistent even if by using features such as keep-alive. In
other words, links cannot be reused continuously. Requests for connection creation,
certificate exchange, and encryption/decryption will increase the time consumption and
compromise the network performance.

MSS is introduced to improve or solve these problems.

Features
The core features of MSS are described as follows:

Reliable synchronization
For business scenarios where the quality of service (QoS) level is arrival guarantee, MSS
ensures that the data pushed from your server will be certainly synchronized to the client if
the user is active within the data validity period and meets the push requirements of your
server.

2.About Mobile Sync Service
Mobile Sync Service User Guide·About Mobile Sync

Service

> Document Version: 20240809 6



Orderly and incremental synchronization
MSS ensures that messages transmitted in the same channel arrive at the client in the
same sequence as your server calls the MSS server, and all messages are synchronized to
the client on an incremental basis.
Highly real-time performance
When the network connection of the client is good, MSS can ensure highly real-time push
performance. The time taken for message synchronization almost equals the time taken for
pure data transmission over the network (that is, messages can arrive within 1s).

Basic principles
Similar to the binlog mechanism in MySQL, the basic data unit transmitted between the MSS
server and the client SDK is oplog. To synchronize a piece of changed data to a specified user
or device, your server needs to call the MSS API. Then the MSS server packages the data as
an oplog and stores it in the database. When the client is online, the MSS server synchronizes
the oplog to the client. Each oplog has a unique ID. Oplog IDs are unique and monotonically
increments (based on the call sequence) among certain users and within a certain business
scope. The MSS server synchronizes all oplogs to the client in ascending order of oplog ID.
Both the MSS server and the client record the largest oplog ID received by the client, which is
called the synchronization point (or understood as the data version number).

Advantages
Merged push
When the client is successfully initialized, the server can push multiple pieces of business
data at a time to reduce the number of requests.
Incremental push
Only incremental data is synchronized, reducing the transmission of redundant data and
the network costs.
Reduced requests
Data synchronization is not requested when there is no incremental data, reducing
redundant requests.
Improved time efficiency
When the server encounters data changes, the changed data is instantly synchronized to
the client, without the need to wait for requests from the client.
Improved experience
Data is synchronized imperceptibly and is present before the client UI is rendered, reducing
the waiting time of users.

Applicable scenarios

Mobile Sync Service User Guide·About Mobile Sync
Service

> Document Version: 20240809 7



MSS can be applied in business scenarios where data needs to be synchronized in real time to
the client, such as transfer result synchronization, payment result synchronization, and
message center. You can learn more about MSS capabilities through the following scenarios:

In instant messaging Apps, MSS provides incremental and reliable message delivery
capabilities to synchronize chat messages to specified users based on the message sending
order of the sender.
In Apps requiring dynamic configuration updates, MSS dynamically synchronizes
configuration information to all devices. MSS synchronizes information including the app
function switch, dynamic parameters, and dynamic configurations to the specified client in
real time, or dynamically modifies the business parameters and configurations in batches
when the App is running.
For payment Apps, MSS provides a secure data channel for synchronizing transaction data
online, ensuring that the Apps can receive the data in real time when they are online. In
addition, MSS provides the data persistence capability. If data is synchronized when an App
is offline, the App can receive the data when going online.

Mobile Sync Service User Guide·About Mobile Sync
Service

> Document Version: 20240809 8



The terms are listed in ascending alphabetical order.

B
Backend
A client App is running in the backend when the mobile phone displays the Home screen or in
the screen-saving state, or when the user is operating another App.
BizType
A business type, which is the unique identifier of a business scenario. After data is pushed,
the MSS SDK of the client distributes the data to the corresponding business module based on
BizType.
Business dimension
There are two business dimensions: user and device. The MSS server pushes data by user or
device.

F
Frontend
The client App is running.

I
Idempotence
Operations are applied multiple times based on the thirdMsgId field in the SyncOrder
parameter, and succeed only once with the unique combination of bizType, linkToken, and
thirdMsgId. New data will be discarded and not be added to the database. The API returns a
success message with the result code “DUPLICAT ED_BIZ _ID”.

M
Multi-device Sync
A message is synchronized to all client-installed devices of a user. After the user logs in to the
client that is installed on two or more devices, all the devices can receive the message. If the
user uninstalls the client, re-installs it, and goes online again, the message will be pushed
again.
MSS data
MSS data needs to be pushed through the MSS server.
MSS push
The MSS server proactively pushes one copy of data to the client. If the client that calls the
business is online, data push is triggered immediately. Otherwise, the MSS server will push
the data after the client goes online.

O
Online
The client App is connected to the network and maintains a stable TCP connection. When
running in the backend, the client App is still online on most Android mobile phones but online
for only 3 minutes on iPhones due to the iOS restrictions.

P
Persistence

3.Terminology
Mobile Sync Service User Guide·Terminology

> Document Version: 20240809 9



A mechanism that converts program data between the persistent and transient states. In
MSS, the persistence mechanism produces persistent data and non-persistent data.

Persistent data: If a user is offline, the data will be stored in the database permanently.
After the user goes online, the MSS SDK triggers data synchronization to the user.
Non-persistent data: If a user is online, the data is pushed to the user immediately. If the
user is offline, the data is discarded directly and will not be sent to the user after the user
goes online.

Push type
There are two push types: designated push and global push.

Designated push: pushes a piece of data to a designated user or device.
Global push: pushes a piece of data to all online users or devices. Global push uses multi-
device synchronization.

S
Single-device push
A message is pushed only to the device which a user uses for the latest login to the client.
The message is pushed only once. If the user uninstalls the client, re-installs it, and goes
online again, the message will not be pushed again. If the user logs in to the client from
another device, the message will not be pushed to the device.
Sync
Sync refers to the MSS data synchronization service that the MSS server synchronizes data to
the client App.

T
Threshold
If a user is offline for a long time and the server keeps on generating data, it may lead to a
data backlog in MSS. The threshold specifies the upper limit of the amount of backlog data.
When a data backlog occurs, only the latest data within the threshold is retained. Earlier data
beyond the threshold will be discarded.

Mobile Sync Service User Guide·Terminology

> Document Version: 20240809 10



This topic briefly describes how to fast integrate MSS to the Android client. You can access
MAS through Native AAR or Portal & Bundle.

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or 10.1.60,
see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

The complete access process mainly includes the following 2 steps:
1. Add SDK
2. Use SDK

Prerequisites
You have integrated mPaaS to your project.

If you access MSS through Native AAR, ensure that you have added mPaaS to project.
If you access MSS in componentized access mode (through Portal & Bundle projects),
ensure that you have completed the componentized access process.

Add SDK
Native AAR mode
Follow the instructions in AAR component management to install the SYNC component in the
project through Component management (AAR) .

Componentized access mode
Install the SYNC component in the Portal and Bundle projects through Component
management (AAR).
For more information, see Manage component dependencies > Add/delete component
dependencies.

Use SDK
In baseline 10.1.32 or later version, the  MPSync  class at the mPaaS middle layer
encapsulates all APIs of MSS. You can have a quick glance of these APIs in the following table.
For more information about the APIs, see Android API reference.

API Description

setup(Application application)

Initializes basic services on which MSS depends.
Call this API before you call the  initialize 
method. This API is available only in baseline
10.1.60 and later versions.

initialize(Context context) Initializes APIs and MSS.

4.Client-side development
4.1. Android

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20240809 11



appToForeground()
Notifies the client SDK that the App has been
switched to the foreground and it needs to
connect to the server. Call this API every time the
App is switched to the foreground.

appToBackground()
Notifies the client SDK that the 128344 has been
switched to the background and it needs to
disconnect from the server. Call this API every
time the App is switched to the background.

updateUserInfo(String sessionId)
Call this API when the login information (userId or
sessionId) is changed. This API is called at least
once.

clearUserInfo() Clears user information when a user logs out.

registerBiz(String bizType, ISyncCallback
syncCallback)

You can call this API to register a  callback  to
receive business data. If this API is called, the
client SDK will call the  syncCallback  class
after receiving synchronized data.

unregisterBiz(String bizType)
Unregisters a specified synchronization
configuration. If this API is called, the client SDK
will not call the  syncCallback  class when
receiving synchronized data.

reportMsgReceived(SyncMessage syncMessag)

After the data is received in the 
 syncCallback  implementation class, this API

is called to notify MSS that the sync data has
been received. Before receiving the 
 reportMsgReceived  message, MSS attempts

to resend the data for a maximum of six times. If
all resending attempts fail, the data will be
permanently deleted.

isConnected() Checks whether MSS is running properly.

Code sample
This sample is based on the mPaaS SDK 10.1.32 baseline. The example App provides a
button. When a user taps this button, MSS obtains the device ID, and pushes the sync data to
the target device specified in the console based on the device ID. In this sample, the sync ID
is  bizType .
Note: This sample is only intended for demonstrating how to call MSS APIs, and is not the
best practice of MSS. You can get the best practice code of MSS from Obtain code samples.

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20240809 12

https://github.com/mpaas-demo/android-sync


    public void button1Clicked(View view)
    {
        // Obtain the device ID using the getUtdid method.
        String utdid =UTDevice.getUtdid(MainActivity.this);
        // Print mobile sync data in Logcat.
        Log.e("=========",utdid);
        // Initialize the API and MSS.
        MPSync.initialize(MainActivity.this);
        // Register a callback for receiving service data. If this API is called, the c
lient SDK will call the syncCallback class after receiving synchronized data.
        MPSync.registerBiz("bizType",new SyncCallBackImpl());
        // Set up a network connection with the server.
        MPSync.appToForeground();

    }

    public class SyncCallBackImpl implements ISyncCallback
    {
    @Override
    public void onReceiveMessage(SyncMessage syncMessage) {
    //Print mobile sync data in Logcat. 
    Log.e("=========",syncMessage.msgData);
    // Notify the MSS server that the sync data has been received. 
    MPSync.reportMsgReceived(syncMessage);
    }
    }

Follow-up steps
Access the server

This guide introduces how to integrate Mobile Sync Service (MSS) to iOS client. You can
integrate MSS to iOS client based on native project with CocoaPods.

Prerequisites
You have connected your project to mPaaS. For more information, see Access based on
native framework and using Cocoapods.

Add SDK
Use CocoaPods plugin to add the MSS SDK. Complete the following steps:

1. In the Podfile file, use  mPaaS_pod "mPaaS_Sync"  to add the MSS dependencies.

4.2. iOS
4.2.1. Add SDK

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20240809 13



2. Run  pod install  to complete integrating the SDK.

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or
10.1.60, see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

After you add the MSS SDK, you must configure the project before using the SDK.

Prerequisites
The SDK version is 10.1.32 or later.
Note: You can view the current SDK version in the  mpaas_sdk.config  file.

4.2.2. Use SDK

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20240809 14



Configure a project
Ensure that the  meta.config  file containing the MSS address and port number has been
added to the project.

If you have used the latest plug-in to add the MSS SDK, the file will be generated
automatically.
If your project does not contain the  meta.config  file, log in to the mPaaS console, choose
Overview > Code configuration, download the  .config  file, rename it
to  meta.config , and add the file to your project.

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20240809 15



Upgrade precautions
The  Category  file of the  DTSyncInterface  class does not need to be added since version
10.1.32. The middle tier implements package reading from  meta.config . After an upgrade,
check whether there is any configuration of the earlier version in the project. If yes, remove
it. The following figure shows the  Category  file of the  DTSyncInterface  class to be
removed from an upgraded version.

Code sample

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20240809 16



To realize the logic for listening on the Sync service, you need to create a class, preferably a
memory-resident service, to listen on Sync messages. The following code sample creates the 
 MySyncService  class to listen on the Sync service.
Before listening on the Sync service, you need define a Sync ID for the sync service (the sync
ID will also be used when you create a push configuration on the mPaaS console). This sync
ID is the link between you as the user and the service provider. The sync ID in the following
example is  SYNC-TRADE-DATA .

#import <MPMssAdapter/MPSyncInterface.h>
#define SYNC_BIZ_NAME @"SYNC-TRADE-DATA";

@implementation MySyncService
+ (instancetype)sharedInstance
{
    static MySyncService *bizService;

    static dispatch_once_t llSOnceToken;

    dispatch_once(&llSOnceToken, ^{

        bizService = [[self alloc] init];
    });
    return bizService;
}

-(instancetype)init
{
    self = [super init];
    if (self) {
        [MPSyncInterface initSync];
        BOOL registerSingleDeviceSync = [MPSyncInterface 
registerSyncBizWithName:SYNC_BIZ_NAME syncObserver:self 
selector:@selector(revSyncBizNotification:)];
        [MPSyncInterface bindUserWithSessionId:@"SESSION_DEMO"]; // In this function, *
*User** corresponds to userId that you specify in the console. It specifies the target 
to which the console delivers commands, and the value must be the same as that set in t
he userId function of MPaaSInterface. **SessionId** specifies the authorization token c
arried by the client. The user login system returns both userId and sessionId. If eithe
r changes, this function needs to be called again to ensure that a persistent connectio
n is set up correctly.
    }
    return self;
}

-(void)revSyncBizNotification:(NSNotification*)notify
{
    NSDictionary *userInfo = notify.userInfo;
    dispatch_async(dispatch_get_main_queue(), ^{
        // Process business data.
        [MySyncService handleSyncData:userInfo];
        // Call back SyncSDK, indicating that business data has been processed.
        [MPSyncInterface responseMessageNotify:userInfo];
    });
}

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20240809 17



+(void)handleSyncData:(NSDictionary *)userInfo
{
    NSString * stringOp = userInfo[@"op"];
    NSArray *op = [NSJSONSerialization JSONObjectWithData:[stringOp 
dataUsingEncoding:NSUTF8StringEncoding] options:NSJSONReadingMutableContainers error:ni
l];
    if([op isKindOfClass:[NSArray class]]){
        [op enumerateObjectsUsingBlock:^(NSDictionary * item, NSUInteger idx, BOOL 
*stop) {
            if([item isKindOfClass:[NSDictionary class]]){
                NSString * plString = item[@"pl"]; // Payload of the business data
                if(item[@"isB"]){
                    NSData *dataPl = [[NSData alloc] 
initWithBase64EncodedString:plString options:kNilOptions];
                    NSString *pl = [[NSString alloc] initWithData:dataPl encoding:NSUTF8
StringEncoding];
                    NSLog(@"biz payload data:%@,string:%@",dataPl,pl);
                }else{
                     NSLog(@"biz payload:%@",plString);
                }
            }
        }];
    }
}

-(void)dealloc
{
    BOOL unRegisterSingleDeviceSync = [MPSyncInterface 
unRegisterSyncBizWithName:SYNC_BIZ_NAME syncObserver:[MySyncService sharedInstance]];
    [MPSyncInterface removeSyncNotificationObserver:self];
}
@end

Follow-up steps
Access the server

Mobile Sync Service User Guide·Client-side develo
pment

> Document Version: 20240809 18



Integrating the business system of a private cloud tenant into a Mobile Sync Service (MSS)
server involves two steps: Configure services and Write the call code and process the
results. In business scenarios that have high-security requirements for data synchronization,
you must perform user consistency verification after the integration. The step of writing the
call code and processing the results is described from the perspective of the single data
synchronization API and the global data synchronization API.

Note
In a private cloud, the intranet within your IDC is used. Your business system can be
directly connected to the MSS server deployed in the private cloud, without using the
OpenAPI system provided by Ant Technology. Modify the domain (IP) address for API calls
based on the deployment environment.

Prerequisites
1. You have already deployed the MSS service in a private cloud. All health checks and port

checks have passed.
2. You have created an app and obtained the app ID and workspace ID. You understand the

client integration progress.
3. You have a server-side application that can initiate HTTP calls.

Configure services
The MSS server communicates with the client based on BizType. BizType is the core
attribute for logic separation between different business data of the same app in an
environment. Before you call the server-side API, you must perform push configurations. For
more information, see Add configurations.

Write the call code and process the results
The process of writing the call code and processing results varies with synchronization APIs,
including the single data synchronization API and the global data synchronization API. For
more information, see the following two topics:

Use the single data synchronization API
Use the global data synchronization API

You can call this API to synchronize one piece of data to specified users or devices.
If the target user or device is online, the pushed data is directly synchronized to the
terminal.
However, if the target user or device is offline, the pushed data is forwarded and stored in
the database. After the terminal goes online and establishes a connection with the Mobile
Sync Service (MSS), the pushed data is then synchronized to the terminal. For more
information about data persistence operations, see Add configurations.

5.Access the server
5.1. Integrate into MSS

5.2. Single data synchronization
API

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 19



API URL example
http://11.160.18.15/webapi/sync/single?instanceId=sit_320C94C171133

IP address (domain name): Change it to the IP address of your on-premises MSS server.
instanceId: The value format is workspaceId_AppId.  instanceID  is the core attribute for
separating the app data logic in the MSS.

Code sample
    import net.sf.json.JSONObject;
    import org.apache.commons.httpclient.HttpStatus;
    import org.apache.http.HttpEntity;
    import org.apache.http.client.methods.CloseableHttpResponse;
    import org.apache.http.client.methods.HttpPost;
    import org.apache.http.entity.StringEntity;
    import org.apache.http.impl.client.CloseableHttpClient;
    import org.apache.http.impl.client.HttpClients;
    import org.apache.http.util.EntityUtils;

    /**
     * Single push, which uses the httpclient to simulate a POST request and sends the 
request to a specified server. You only need to modify the server IP address in apiURL.
     */
    public class SingleTest {
    private static String apiURL = "http://11.162.169.36/webapi/sync/single?
instanceId=sit_320C94C171133";

    /**
     * POST request
     *
     * @param url  URL
     * @param json JSONObject
     * @return JSONObject
     */

    private static JSONObject doPost(String url, JSONObject json) {
        CloseableHttpClient httpclient = HttpClients.createDefault();
        HttpPost httpPost = new HttpPost(url);
        JSONObject response = null;
        try {
            StringEntity s = new StringEntity(json.toString());
            StringEntity s = new StringEntity(json.toString(),"UTF-8");
            s.setContentEncoding("UTF-8");
            // Set contentType, which is required for sending JSON data.
            s.setContentType("application/json");
            httpPost.setEntity(s);
            CloseableHttpResponse res = httpclient.execute(httpPost);
            if (res.getStatusLine().getStatusCode() == HttpStatus.SC_OK) {
                HttpEntity entity = res.getEntity();
                // Return data in JSON format.
                String result = EntityUtils.toString(entity);
                response = JSONObject.fromObject(result);
            }

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 20



            }
        } catch (Exception e) {
            throw new RuntimeException(t);
        }
        return response;
    }

    public static void main(String[] args){
        JSONObject params = new JSONObject();
        //bizType
        params.put("bizType", "UCHAT");
        // User ID or device ID.
        params.put("linkToken", "2088102147396225");
        // Message body, which is transparently sent to the client.
        JSONObject payload = new JSONObject();
        payload.put("name", "James");
        payload.put("age", "30");
        payload.put("address", "Hangzhou, Zhejiang");
        // String.
        params.put("payload", JSON.toJSONString(payload));

        // Business ID, which can contain business rules. A maximum of 100 characters i
s allowed. In this demo, a random value is used.
        Double i = Math.random() * 1000000;
        String[] num = i.toString().split("\\.");
        params.put("thirdMsgId", "test_third_msg_id_" + num[0] + 
System.currentTimeMillis());

        // Earliest client version supported.
        params.put("appMinVersion", "0.0.0.0");
        // Latest client version supported.
        params.put("appMaxVersion", "100.100.100.100");

        // Current time.
        long today = System.currentTimeMillis();
        // Valid for 30 days.
        long validTimeEnd = today + 30 * 24 * 60 * 60 * 1000L;
        // Validity period.
        params.put("validTimeEnd", validTimeEnd);

        // Submit a POST request.
        JSONObject ret = doPost(apiURL, params);
        System.out.println(ret);
     }
    }

Request parameter

Parameter Required Data type Maximum length Description

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 21



bizType Yes String 30

The business
scenario ID. The
value must be
the same as that
of Sync ID set in
the mPaaS
console. For
more
information, see
Manage the
console.

linkToken Yes String 100

Set this
parameter based
on the value of
bizType. Set it to
the value of
userId for user-
based business
and the value of
utdid for device-
based business.

payload No String 4096

The pushed data,
which is a text
string or a JSON
character string.
You must
transfer this
parameter or the 
 binaryPayload
  parameter.
You cannot leave
both parameters
empty.

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 22



thirdMsgId Yes String 100

The ID of a data
synchronization
request,
customized by
you for data
association and
idempotent
control. The
result of the
combination of 
 bizType , 
 linkToken ,

and 
 thirdMsgId 

must be unique.
Otherwise, the
newly pushed
data will not be
saved to the
database and a
successful call
response is
returned.

binaryPayload No String 4096

The pushed data,
which is a string
generated from
the original byte
array by using
the Base64
encoding. You
must set this
parameter or the
payload
parameter. Do
not leave both
empty.

osType No String 10

Operating
system (iOS or
Android) running
on the client to
which messages
are to be pushed.
Leave this
parameter empty
if you do not
want to restrict
the operating
system.

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 23



appMinVersion No String 20

Earliest client
version
supported.
Messages are
pushed only to
clients of the
specified version
or later versions.
An example
value is
8.6.0.9999. We
strongly
recommend that
you use the
version number
in the standard
format.

appMaxVersion No String 20

Latest client
version
supported.
Messages are
pushed only to
clients of the
specified version
or earlier
versions. An
example value is
9.0.0.9999. We
strongly
recommend that
you use the
version number
in the standard
format.

validTimeEnd No long 13

End time of the
push validity
period, after
which the MSS
server will no
longer push
expired data to
the client.
Format:  (new 
Date()).getTime
(); .

Response parameters
The returned data is in JSON format, and the code sample is as follows:

    {
    "msg": "SUCCESS",
    "success": true
    }

Attribute description:

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 24



Parameter Type Example Description

success boolean true or false

The business call
result. Valid values: 
 true  and 
 false , where true

indicates a successful
call and false indicates
a failed call. If 
 false  is returned,

check the value of
msg to locate the
cause. For more
information, see the
following Result code
table.

msg String SUCCESS Result code.

Result code:

Call result Result code Description

true SUCCESS The business is successful.
Data has been pushed online.

true DUPLICATED_BIZ_ID  bizId  is duplicated. The
data push is successful.

true NOT_ONLINE The user or device is offline.

false THIRDMSGID_IS_NULL  thirdMsgId  is not specified.

false BIZ_NOT_ONLINE
The synchronization
configuration is not submitted
online.

false ARGS_IS_NULL A required input parameter is
not specified.

false NOT_SUPPORT_GLOBAL This API does not support
global services.

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 25



false PAYLOAD_LONG

The length of the message
body has exceeded the upper
limit.

false THIRD_MSG_ID_LONG
The length of the third-party
message ID has exceeded the
upper limit.

false SYSTEM_ERROR A system error occurred.

You can call this API to synchronize one piece of data to all users or devices in all networks.
The pushed data will be persisted into the database. For more information about configuring
data persistence, see Manage the console. Considering the cost-benefit-risk tradeoffs, the
pushed data will not be immediately synchronized to users of the application that is currently
in the foreground. Instead, when the application switches to the foreground next time, the
MSS client SDK will trigger the synchronization process.

API URL example
    http://11.160.18.15/webapi/sync/global?instanceId=sit_320C94C171133

IP address (domain name): Change it to the IP address of your on-premises MSS server.
instanceID: The value format is workspaceId_AppId.  instanceID  is the core attribute for
separating the app data logic in the MSS.

Code sample
    import com.alibaba.fastjson.JSON;
    import net.sf.json.JSONObject;
    import org.apache.commons.httpclient.HttpStatus;
    import org.apache.http.client.methods.CloseableHttpResponse;
    import org.apache.http.client.methods.HttpPost;
    import org.apache.http.entity.StringEntity;
    import org.apache.http.impl.client.CloseableHttpClient;
    import org.apache.http.impl.client.HttpClients;
    import org.apache.http.util.EntityUtils;

    /**
     * Global push, which uses the httpclient to simulate a POST request and sends the 
request to a specified server. You only need to modify the server IP address in apiURL.
     */
    public class GlobalTest {
    private static String apiURL = "http://11.160.18.15/webapi/sync/global?
instanceId=default_99FB626081956";

    /**

5.3. Global data synchronization
API

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 26



    /**
     * POST request
     *
     * @param url  String
     * @param json JSONObject
     * @return JSONObject
     */

    private static JSONObject doPost(String url, JSONObject json) {
        CloseableHttpClient httpclient = HttpClients.createDefault();
        HttpPost httpPost = new HttpPost(url);
        JSONObject response = null;
        try {
            StringEntity s = new StringEntity(json.toString());
            StringEntity s = new StringEntity(json.toString(),"UTF-8");
            s.setContentEncoding("UTF-8");
            // Set contentType, which is required for sending JSON data.
            s.setContentType("application/json");
            httpPost.setEntity(s);
            //httpPost.set
            CloseableHttpResponse res = httpclient.execute(httpPost);
            if (res.getStatusLine().getStatusCode() == HttpStatus.SC_OK) {
                // Return data in JSON format.
                String result = EntityUtils.toString(res.getEntity());
                response = JSONObject.fromObject(result);
            }
        } catch (Exception e) {
            throw new RuntimeException(t);
        }
        return response;
    }

    public static void main(String[] args){
        JSONObject params = new JSONObject();
        //bizType
        params.put("bizType", "GLOBAL-SDK-CONFIG");

        // Message body, which is transparently sent to the client.
        JSONObject payload = new JSONObject();
        payload.put("switchName", "showImage");
        payload.put("switchValue", true);

        // String
        params.put("payload", JSON.toJSONString(payload));

        // Business ID, which can contain business rules. A maximum of 100 characters i
s allowed. In this demo, a random value is used.
        Double i = Math.random() * 1000000;
        String[] num = i.toString().split("\\.");
        params.put("thirdMsgId", "test_third_msg_id_" + num[0] + 
System.currentTimeMillis());

        // IOS or ANDROID. Do not transfer this parameter if you do not want to restric
t the operating system.
        params.put("osType", "IOS");

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 27



        params.put("osType", "IOS");

        // Earliest client version supported. Do not transfer this parameter if you do 
not want to restrict the version.
        params.put("appMinVersion", "0.0.0.0");
        // Latest client version supported. Do not transfer this parameter if you do no
t want to restrict the version.
        params.put("appMaxVersion", "100.100.100.100");

        // Current time.
        long today = System.currentTimeMillis();
        // Valid for 30 days.
        long validTimeEnd = today + 30 * 24 * 60 * 60 * 1000L;
        // Validity period.
        params.put("validTimeEnd", validTimeEnd);

        // Submit a POST request.
        JSONObject ret = doPost(apiURL, params);
        System.out.println(ret);
    }
    }

Request parameter

Parameter Required Data type Maximum length Description

bizType Yes String 30

The business
scenario ID. The
value must be
the same as that
of Sync ID set in
the Mobile PaaS
(mPaaS) console.
For more
information, see
Manage the
console.

payload No String 4096

The pushed data,
which is a text
string or a JSON
character string.
You must
transfer this
parameter or the 
 binaryPayload
  parameter.
You cannot leave
both parameters
empty.

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 28



thirdMsgId Yes String 100

The ID of a data
synchronization
request,
customized by
you for data
association and
idempotent
control. The
result of the
combination of 
 bizType , 
 linkToken ,

and 
 thirdMsgId 

must be unique.
Otherwise, keep
the data
previously used
for a successful
API call, discard
the new data,
and a successful
call response is
returned.

binaryPayload No String 4096

The pushed data,
which is a string
generated from
the original byte
array by using
the Base64
encoding. You
must transfer
this parameter or
the  payload 
parameter. You
cannot leave
both parameters
empty.

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 29



osType No String 10

Operating
system (iOS or
Android) running
on the client to
which messages
are to be pushed.
Leave this
parameter empty
if you do not
want to restrict
the operating
system.

appMinVersion No String 20

Earliest client
version
supported.
Messages are
pushed only to
clients of the
specified version
or later versions.
An example
value is
8.6.0.9999. We
strongly
recommend that
you use the
version number
in the standard
format.

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 30



appMaxVersion No String 20

Latest client
version
supported.
Messages are
pushed only to
clients of the
specified version
or earlier
versions. An
example value is
9.0.0.9999. We
strongly
recommend that
you use the
version number
in the standard
format.

validTimeEnd No long 13

End time of the
push validity
period, after
which the MSS
server will no
longer push
expired data to
the client.
Format:  (new 
Date()).getTime
(); .

Response parameters
The returned data is in JSON format, and the code sample is as follows:

    {
    "msg": "SUCCESS",
    "success": true
    }

Attribute description:

Parameter Type Example Description

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 31



success boolean true or false

The business call
result. Valid values: 
 true  and 
 false , where true

indicates a successful
call and false indicates
a failed call. If 
 false  is returned,

check the value of 
 msg  to locate the

cause. For more
information, see Result
code.

msg String SUCCESS The result code.

The following table describes the result codes:

Result Result code Description

true SUCCESS The business is successful.
Data has been pushed online.

true DUPLICATED_BIZ_ID  bizId  is duplicated. The
business is successful.

false THIRDMSGID_IS_NULL  thirdMsgId  is not specified.

false BIZ_NOT_ONLINE
The synchronization
configuration is not submitted
online.

false ARGS_IS_NULL A required input parameter is
not specified.

false NOT_SUPPORT_GLOBAL This API does not support
global services.

false PAYLOAD_LONG
The length of the message
body has exceeded the upper
limit.

false THIRD_MSG_ID_LONG The length of the third-party
message is too long.

false SYSTEM_ERROR A system error occurred.

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 32



In some cases, the business has high-security requirements for data synchronization. Make
sure that the target users of the push are the current logon users and have not been forged.
For that, Mobile Sync Service (MSS) provides user consistency verification, which can be
turned on by the user when needed.
The general principle of this feature is:

The client reports userId and authorization token (sessionId) when the client connects to
the server. Both userId and sessionId are the data returned after the user logs on to the
system. When userId and sessionId change, the relevant APIs need to be called to ensure
that the persistent connection is established correctly.
The server calls a consistency verification API implemented by the tenant. The tenant
verifies the consistency by checking userId and authorization token (sessionId) through the
API. MSS records a consistency identifier for determining the session status during
subsequent data synchronization. When the MSS server determines that a session is valid,
it will synchronize data to the target user. When it determines that a session is invalid, it
will not synchronize data to the target user.
For synchronization configuration with high-security requirements, the tenant can enable
user consistency verification, and data is pushed only to devices of users who have passed
the consistency verification. If user consistency verification is not enabled, the consistency
verification results are ignored. For more information about data synchronization
configuration, see Manage the console.

Configure the user consistency verification API
Configure the RPC API for verifying the logon session in the Mobile PaaS (mPaaS) console.

Operation page
In the selected app, choose Backend service management > Mobile gateway service,
and configure the API. For more information, see Configure an API.

API name
The MSS server regularly calls this API. Therefore, you must set  operationType  of the API to
be added to  com.antcloud.session.validate . In addition, the API must have the following
request parameters.

Parameter Required Data type Maximum
length Description

instanceId Yes String 100
The business scenario
identifier. The value format is
workspaceId_AppId.

userId Yes String 100 The unique identifier of the
user.

sessionId Yes String 100 Authorization token carried by
the client.

Response

5.4. Verify user consistency

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 33



To check the custom consistency verification logic in the system, the data returned must be
in JSON format.

Parameter description

Parameter Type Example Description

success boolean true or false

The business call result. Valid values: 
 true  and  false , where 
 true  indicates a successful call

and  false  indicates a failed call. If
 false  is returned, use 
 returnCode  to locate the cause.

For more information, see the result
codes in the following table.

returnCode String SUCCESS The result code.

resultMsg String SUCCESS Result information.

result JSONString
{ “sid”:
“kkdddd”,
“valid”:”true/fals
e”,}

The result object. For parameter
descriptions, see the result codes in
the following table.

sid String kkdddd The authorization token or sessionId.

valid boolean true or false The consistency verification result.

Result codes

Result Result code Description

true OK The business is successful.

false OPERATION_ERROR
The operation fails. Only the 
 com.antcloud.session.vali
date  API is called.

Code sample

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 34



  {
  "response": {
      "resultCode": "OK",
      "resultMsg": "Operation is done successfully",
      "success": "true",
      "result": { 
          "sid": "kkdddd",
          "valid":"true/false",
      } 
    }
  }

Mobile Sync Service User Guide·Access the server

> Document Version: 20240809 35



The Mobile Sync console allows you to manage push configurations and perform data push
actions. A push configuration defines the basic application scnenario of the push service. And
the actual data push actions can be realized based on the push configuration.
You can perform the following actions in the Mobile Sync console:

Add cnfigurations
Send business data
View configuration details
Modify configurations
Disable configurations
Query statistics on configuration pushes
Service management

A synchronization configuration defines the basic application scenario of data push. And the
actual data push actions can be realized based on the synchronization configuration.
Therefore, you need to add synchronization configuration before sending data.
Log in to mPaaS console, click the mPaaS App for which you want to add configuration, and
complete the following steps.

Procedure
1. On the left navigation pane, choose Mobile Sync Service under Backend connection.
2. Click the Configuration management tab, and then click + New sync configuration.

The New sync configuration page appears.
3. Set parameters.

The following table describes the parameters.

Parameter Description

Sync ID
Identifies a specific data push business scenario.
The format of uppercase letters with a hyphen (-
), such as DEVICE-LOCK, is recommended.

Description Describes the business scenario corresponding
to the configuration.

6.Console operations
6.1. Console introduction

6.2. Add configuration

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20240809 36



Push scope

Indicates the range of users or devices receiving
data in the data push process. The value Global
indicates that all users or devices can receive
data, and the value Appointed indicates that
only the appointed user or device can receive
data.

Target Indicates whether data is pushed by user or by
device.

Multi-device sync

This parameter is required only when Target is
set to User. If you select Yes, data will be
synchronized between multiple devices of a
single user. That is, when the user uses a device
to log in to the client, the user can receive the
data that the user has received on another
device.

Data persistence
Pushed data will be saved to the database for a
maximum of 30 days by default. If a user is
offline when data is pushed, the user will
receive the data when going online.

Re-push mode

Specifies the policy for processing the backlog
data on the server. This parameter is available
only when Data persistence is set to Yes.
When All is selected, all the backlog data on the
server will be pushed to the client. When
Threshold is selected, only the latest backlog
data within the threshold will be pushed to the
client.

Re-push threshold
This parameter is available only when Data
persistence is set to Yes and Re-push mode
is set to Threshold.

User consistency check

This parameter is available only when Target is
set to User. If you set this parameter to Yes,
MSS will verify user consistency when pushing
data and push data only when user consistency
check is successful. For more information, see
Verify user consistency.

4. After setting the above information, click OK to complete adding the synchronization
configuration. The newly added synchronization configuration becomes online by default.
Once a configuration is taken online, you can push data by calling APIs or performing
actions in the console.

6.3. Send business data

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20240809 37



This topic describes how to send business data in the mPaaS console. Enter your target App
and complete the following steps.

Prerequisites
One push configuration record exists in the console and is online.

Procedure
1. On the left-side navigation pane, choose Mobile Sync Service.
2. Under the Configuration management tab, click Operate of a configuration record in

the configuration list. The Create synchronization window appears.
3. Set parameters, and click OK.

The following table describes the parameters.

Parameter Description

User ID/Device ID Indicates the user or device to which the
business applies.

Content Indicates the text content of the data, in String
format.

Unique data ID

Uniquely identifies the data content. This
parameter is required only for the data
persistence business. When two data records
with the same unique data ID are pushed, the
second record will be ignored.

OS
Indicates the operating system type of the data
receiving client. The options are Android and
iOS.

Version range Indicates the range of data receiving client app
versions. This parameter is optional.

Validity period
Indicates the maximum validity period of the
pushed data. The default value is 30, in days.

This topic describes how to view configuration details in the mPaaS console.
Enter your target App and complete the following steps to view the configuration details:

1. In the left navigation pane, click Mobile Sync.
2. Under the Configuration management tab, click the ID of a configuration record in the

configuration list to view the details.

6.4. View configuration details

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20240809 38



This topic describes how to modify push configurations in the mPaaS console.
Enter your target App, and complete the following steps to modify a piece of push
configuration:

1. In the left navigation pane, click Mobile Sync.
2. Under the Configuration management tab, click the ID of a configuration record in the

configuration list.
3. On the displayed configuration details page, click Modify in the upper right corner. Modify

parameters as required, and click Save.
Note: Sync ID and Target cannot be modified.

In case data synchronization needs to be suspended due to data problems or other reasons,
you can do it by disabling the synchronization configuration in the mPaaS console.
In case data synchronization needs to be suspended due to data problems or other reasons,
you can do it by disabling the synchronization configuration in the mPaaS console.
In the mPaaS console, select your App, and complete the following steps to disable the
synchronization configuration:

1. On the left navigation pane, click Mobile Sync Service, and then go to the Configuration
management tab page.

2. In the synchronization configuration list, click Offline right to the target configuration, and
confirm to take the configuration offline.
Once the synchronization configuration is disabled, all the corresponding synchronization
business will be disabled accordingly. To use the configuration again, you just need to click
Online to take the configuration online.

MSS displays pushed statistical data by user and device status.
MSS displays pushed statistical data by user and device status.
This topic describes how to view pushed statistical data in the mPaaS console. Enter your
target App and complete the following steps.

Procedure
1. On the left navigation pane, click Mobile Sync Service.
2. Click the Data query tab to view user or device status.
3. Select User or Device in the upper right of the User/device status area, and enter a user

name or device name in the search box accordingly to view the status of the user or device.
MSS provides the following user or device data on this page:

User/device name
Status of whether the user connects to MSS
Pushes in the last 30 days
Arrivals in the last 30 days
Push list

6.5. Change settings

6.6. Disable configuration

6.7. Query configuration pushes

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20240809 39



On the Service Management tab page, a switch is available for enabling or disabling
signature. The setting is effective globally. You can temporarily enable or disable all signature
verification related functions as needed.

Mobile Sync Service (MSS) allows you to query operation records of data synchronization,
including the operation change records of creating a configuration, modifying a configuration,
deleting a configuration, creating a synchronization, publishing a configuration, disabling a
configuration, enabling a signature, and disabling a signature. MSS is used for operation
traceability and usage data analysis.
To query the operation records, perform the following steps.

1. Log on to the mPaaS console to enter the target application, and click MSS in the left-side
navigation pane to enter the MSS page.

2. On the right-side Operation record tab, filter the operation records by operating account,
operating type, or operating date. After you set the filter criteria, click Search, and the
search results will be shown in the operation record list in descending order. The result
includes the operation account, operation type, and specific operation time (accurate to
second) for each operation.

Note If you do not specify a time range, a maximum of 1,000 operation change
records in the latest 7 days are shown by default.

3. Select the operation you want to view and click the right-side Details link to enter the
operation details page to view the specific information of the operation.

Create configuration: shows the details of the new synchronization configuration.

6.8. Manage services

6.9. Query MSS operation records

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20240809 40



Modify configuration: shows the modified configuration information and highlights the
modified information in red.

Delete configuration: shows the deleted synchronization configuration.
Create sync: shows the details of the new synchronization task, including push object ID,
data content, unique data ID, app version interval of the client, and push data validity.

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20240809 41



Publish configuration: shows the details of synchronization configuration after
disabling a configuration and publishing it again. The details of the changes shown are
the same as creating a configuration.
Disable configuration: shows the details of the disabled synchronization configuration.
Disable signature: shows the operation records of disabling a signature.
Enable signature: shows the operation records of enabling a signature.

Mobile Sync Service User Guide·Console operation
s

> Document Version: 20240809 42



Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or
10.1.60, see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

In baseline 10.1.32 or later versions, the  MPSync  class in the mPaaS middle layer
encapsulates all APIs of the Mobile Sync Service (MSS). You can use the  MPSync  object to
implement all functions of MSS.

java.lang.Object
  - com.mpaas.mss.adapter.api.MPSync

Related public functions are shown as follows:
setup(Application application)
appToBackground()
appToForeground()
clearUserInfo()
initialize(Context context)
isConnected()
registerBiz(String bizType, ISyncCallback syncCallback)
reportMsgReceived(SyncMessage syncMessag)
unregisterBiz(String bizType)
updateUserInfo(String sessionId)

Return value type Methods and description

void

setup(Application application)
Initializes basic services on which MSS depends. Call this API before
you call the  initialize  method. This function is available only
in baseline 10.1.60 and later versions.

void

appToBackground()
Notifies the client SDK that the App has been switched to the
background and it needs to disconnect from the server. Call this
function every time the App is switched to the background.

void

appToForeground()
Notifies the client SDK that the App has been switched to the
foreground and it needs to connect to the server. Call this function
every time the App is switched to the foreground.

7.API reference
7.1. Android API

Mobile Sync Service User Guide·API reference

> Document Version: 20240809 43



void
clearUserInfo()
Clears user information when a user logs out.

void
initialize(Context context)
Initializes MSS.

boolean
isConnected()
Checks whether MSS is running properly.

void

registerBiz(String bizType, ISyncCallback syncCallback)
Registers a callback to receive business data. If this API is called,
the client SDK will call the syncCallback class after receiving
synchronized data.

void

reportMsgReceived(SyncMessage syncMessag)
Notifies MSS of the data synchronization success after data is
received in the syncCallback class. Before receiving
reportMsgReceived, MSS attempts to resend the data for a
maximum of six times. If all resending attempts fail, the data is
permanently deleted.

void

unregisterBiz(String bizType)
Unregisters a specified synchronization configuration. If this API is
called, the client SDK will not call the syncCallback class when
receiving synchronized data.

boolean
updateUserInfo(String sessionId)
Call this API at least once when the login information (userId or
sessionId) is modified.

Return value type Methods and description

setup(Application application)
Declaration
 public static void setup(Application application) 

Description
Used to initialize the base service that MSS depends on. This function needs to be called
before the initialize method is called. This function is available only in baseline 10.1.60 and
later versions.

Parameters

Mobile Sync Service User Guide·API reference

> Document Version: 20240809 44



Parameter Type Description

application Application An application instance.

Returned value
None.

appToBackground()
Declaration
 public static void appToBackground() 

Description
Notifies the client SDK that the App has been switched to the background and it needs to
disconnect from the server. Call this function every time the App is switched to the
background.
We recommend that you call this API inside the  onStop()  method of the home page. If this
API is not called when the App is switched to the background, the network connection
between the App and the server cannot be released in a timely manner, increasing power
consumption and traffic usage.

Parameters
None.

Returned value
None.

appToForeground()
Declaration
 public static void appToForeground() 

Description
Notifies the client SDK that the App has been switched to the foreground and it needs to
connect to the server. Call this function every time the App is switched to the foreground.
We recommend that you call this API inside the  onResume()  method of the home page.

Parameters
None.

Returned value
None.

clearUserInfo()
Declaration
 public static void clearUserInfo() 

Description
Clears user information when a user logs off.

Mobile Sync Service User Guide·API reference

> Document Version: 20240809 45



Parameters
None.

Returned value
None.

initialize(Context context)
Declaration
 public static void initialize(Context ctx) 

Description
You can call this API to initialize MSS. Your App can use MSS only after you call this API.
During the life cycle of the App (from the time the App is started to the time the App is
stopped), this API needs to be called only once.

Parameters

Parameter Type Description

ctx Context A non-empty  Context .

Returned value
None.

isConnected()
Declaration
 public static boolean isConnected() 

Description
Checks whether MSS is running properly.

Parameters
None.

Returned value
Returns true if the service is normal, and returns false if the service is abnormal.

registerBiz(String bizType, ISyncCallback syncCallback)
Declaration
 public static void registerBiz(String biz, ISyncCallback callback) 

Description
Used to register a callback for receiving service data. If this API is called, the client SDK will
call the syncCallback class after receiving synchronized data.
This API needs to be called once for each synchronization configuration.

Parameters

Mobile Sync Service User Guide·API reference

> Document Version: 20240809 46



Parameter Type Description

bizType String Synchronization identifier

syncCallback ISyncCallback Callback implementation class

Returned value
None.

reportMsgReceived(SyncMessage syncMessag)
Declaration
 public static void reportMsgReceived(SyncMessage msg) 

Description
After the synchronously pushed data is received in  syncCallback , call this API to notify MSS
that the synchronized data has been received successfully. Before receiving the 
 reportMsgReceived , MSS attempts to resend the data for a maximum of six times. If all
resending attempts fail, the data will be permanently deleted.

Parameters

Parameter Type Description

syncMessag SyncMessage Message synchronization

Returned value
None.

unregisterBiz(String bizType)
Declaration
 public static void unregisterBiz(String biz) 

Description
Unregisters a specified synchronization configuration. MSS will not call  syncCallback  after
MSS receives the synchronization configuration data.

Parameters

Parameter Type Description

biz String Synchronization identifier

Returned value
None.

Mobile Sync Service User Guide·API reference

> Document Version: 20240809 47



updateUserInfo(String sessionId)
Declaration
 public static boolean updateUserInfo(String sessionId) 

Description
Calling inside the method is based on the 
 LongLinkSyncService.getInstance().updateUserInfo(String userId, String sessionId)  API,
in which  userId  indicates the user ID specified in  MPLogger .This API is called when 
 userId  or  sessionId  changes and will update user login information.
Both parameters are required for logon. If  userId  is not specified, this method returns 
 false , indicating a calling failure.
This method must be called upon session expiration or each successful automatic logon. Note
that the automatic logon function is enabled after a user logs on to the client once. The
general calling principle is that this method must be called when  userId  or  sessionId 
changes.
Parameters

Parameter Type Description

sessionId String Session ID.

Returned value
Returns true if the user information is updated successfully, and returns false if userId is not
set at logon.

The  MPSyncInterface  class in  MPMssAdapter.framework  provides all MSS APIs. All methods
in the class are class methods that can be called by the class name.

+(void)initSync;
Initializes MSS. An app can use MSS only after calling this API.
During the life cycle of the app (from the time the app is started to the time the app is
stopped), this API needs to be called only once.

+(MPSyncNetConnectType)connectStatus;
Checks the connection status of MSS.
Return value: connection status specified by  MPSyncNetConnectType .

+(BOOL)registerSyncBizWithName:(NSString *)bizName
syncObserver:(id)observer selector:(SEL)selector;
Registers the notification listener which works on the business name  bizName , and calls
 [[NSNotificationCenter defaultCenter] addObserver:observer selector:selector
name:bizName object:nil];  to listen on notifications.

7.2. iOS API

Mobile Sync Service User Guide·API reference

> Document Version: 20240809 48



The value of bizName is the same as that in the server console. If this API is not called, the
specified biz messages will not be distributed but stacked in the database of the client SDK.
We recommend that you start listening on specified sync messages sent to the server upon
server startup.
Return value: registration result  YES  or  NO .

+(BOOL)unRegisterSyncBizWithName:(NSString *)bizName
syncObserver:(id)observer;
Notifies the MSS client SDK that message listening on a synchronization configuration has
been disabled and that sync messages related to the synchronization configuration will no
longer be received.
The internal  [[NSNotificationCenter defaultCenter] removeObserver:observer name:bizName
object:nil];  API is called to remove the listener.
After this API is called, messages of the biz will not be distributed but stacked in the SyncSDK
database. This API matches the  registerSyncBizWithName  API.
Return value: result  YES  or  NO .

+(void)removeSyncNotificationObserver:(id)observer;
Disables listening on the synchronization notification. This API is usually called in the
 dealloc  function of a listening class. The internal  [[ NSNotificationCenter defaultCenter]
removeObserver:observer];  API is called to remove the listener.
Return value: none.

+(void)responseMessageNotify:(NSDictionary *)userInfo;
Notify a  callback  after a message has been processed. The parameter is
 userInfo(notify.userInfo)  in the notification.
Calls back  SyncSDK , indicating that the business data has been processed in the notification
processing function registered using the  registerSyncBizWithName  API, when data
processing is completed.
Return value: none.

+(void)bindUserWithSessionId:(NSString *)sessionId;
This method is called when the value of the login parameter  userId  or  sessionId 
changes.
This API is called during login. The value of  userId  is the  -(NSString\*)userId  function of
 MPaaSInterface .
This method must be called upon  sessionId  expiration or each successful automatic login,
which is enabled after a user logs in to the client once.
The overall calling principle is that this method must be called when the value of  userId  or
 sessionId  changes.
When the value of  userId  changes,  unBindUser  is called to unbind the user account and
then  bindUserWithSessionId:  is called to rebuild a connection.
sessionId is used with the server to verify the validity of a session. If this parameter is set to
nil on the server, the default value  @”SESSION_DEMO”  is used.
Return value: none.

+(void)unBindUser;

Mobile Sync Service User Guide·API reference

> Document Version: 20240809 49



Called to unbind the currently connected user when the user logs out.
Return value: none.

+(NSString *)getSyncDeviceId;
Obtains the device ID, which is used when pushing device-based sync data.
Return value: device ID.
Important: If the value of  sessionId  in the API is invalid, the user consistency option in the
console must be disabled, or sync messages will fail to be pushed due to verification failure.
Enable or disable signature verification by referring to Service management.

Mobile Sync Service User Guide·API reference

> Document Version: 20240809 50


	1.Change history
	2.About Mobile Sync Service
	3.Terminology
	4.Client-side development
	4.1. Android
	4.2. iOS
	4.2.1. Add SDK
	4.2.2. Use SDK


	5.Access the server
	5.1. Integrate into MSS
	5.2. Single data synchronization API
	5.3. Global data synchronization API
	5.4. Verify user consistency

	6.Console operations
	6.1. Console introduction
	6.2. Add configuration
	6.3. Send business data
	6.4. View configuration details
	6.5. Change settings
	6.6. Disable configuration
	6.7. Query configuration pushes
	6.8. Manage services
	6.9. Query MSS operation records

	7.API reference
	7.1. Android API
	7.2. iOS API


