
Ant Technology

Message Push Service
User Guide

Document Version: 20240808

Ant Technology

Message Push Service
User Guide

Document Version: 20240808

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Message Push Service User Guide·Legal disclaimer

> Document Version: 20240808 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Message Push Service User Guide·Document convent
ions

> Document Version: 20240808 I

Table of Contents
1.About Message Push Service
2.Terminology
3.Message push process
4.Client-side development

4.1. Android
4.1.1. Quick start
4.1.2. Process notification clicks
4.1.3. Integrate third-party push channels

4.1.3.1. Integrate HUAWEI Push
4.1.3.2. OPPO Push
4.1.3.3. Integrate vivo Push
4.1.3.4. Integrate MiPush
4.1.3.5. Integrate FCM push channel

4.1.4. Manufacturer Message Classification
4.1.5. Advanced features

4.2. iOS
5.Server-side configuration
6.Console operations

6.1. Data overview
6.2. Message management

6.2.1. Create a message - Simple push
6.2.2. Create a message – Multiple push
6.2.3. Manage simple push messages
6.2.4. Manage multiple push messages
6.2.5. Manage scheduled push task

6.3. Message templates

06

09

11

15

15

15

19

22

22

26

28

31

33

35

49

51

63

64

64

67

67

74

80

81

82

83

Message Push Service User Guide·Table of Contents

> Document Version: 20240808 I

6.3.1. Create a message template
6.3.2. Manage message templates

6.4. Message revocation
6.5. User tag management
6.6. Device status query
6.7. Channel configuration
6.8. Key management

7.API reference
7.1. Client APIs
7.2. Server APIs

8.Message content restrictions
9.FAQ
10.Appendix

10.1. Create an iOS push certificate
10.2. Message push status codes

83
86

86

88

89

89

96

101

101

104

161

163

167

167

170

Message Push Service User Guide·Table of Contents

> Document Version: 20240808 II

Message Push Service (MPS) provided by mPaaS is a professional mobile message push
solution and supports various push types for different scenarios to cater to personalized push
requirements. To improve the arrival rate of pushed messages, mPaaS integrates the push
functions of Huawei, Xiaomi and other vendors in MPS. In addition to the capability of quickly
pushing messages in the console, mPaaS provides server-side integration solutions. With
these solutions, you can quickly integrate the function of pushing messages to mobile devices
to keep interactions with app users, thereby effectively improving the user retention rate and
user experience.

Features
You can initiate various types of message push through MPS. Both self-built and vendors'
push channels are supported. In addition, messages can be pushed through the console or
APIs. You can select push types, channels, and modes based on your requirements.
The core functions of MPS are described as follows:

Multiple push modes: Messages can be precisely pushed to custom user groups,
individual users, or all users through the MPS console or APIs.
Custom message validity period: If a device is offline when a message is sent for the
first time, the message can be resent when the device is connected or a user binding
request is initiated within the validity period of the message.
Different types of push targets : You can establish mapping between devices and login
users to push messages by device or user ID.
Personalized message templates : On the template management page, you can
customize templates to meet your personalized push requirements.
Usage analysis: Based on tracking logs reported by the client SDK, MPS collects and
analyzes push data from various dimensions including platform, version, push channel,
push type, and time, and generates analysis reports. You can view the statistics by minute
or other granularity.
Push configuration: On the push configuration page, you can configure a push certificate.
For iOS devices, you can select an Apple APNs gateway based on your requirements.
Channel configuration: You can configure third-party push channels to integrate the push
functions provided by Huawei, Xiaomi, and other third-party vendors, thereby improving the
arrival rate of pushed messages.
Key management: All external APIs of MPS will sign the requests to ensure business
security. On the key configuration page, you can configure keys based on your
requirements. In addition, the message receipt function is provided for tracking the
message delivery results.

Principle
In mPaaS, MPS is one of the core basic components that directly interact with clients. It
transmits business data related to message notifications through TCP persistent
connection channels or various phone vendors' push channels.

1.About Message Push
Service

Message Push Service User Guide·About Message Pu
sh Service

> Document Version: 20240808 6

The client calls the Remote Procedure Call (RPC) gateway through mPaaS MGS for device
registration, user binding, and third-party channel binding, thereby implementing message
push by device and user. Client behavioral event tracking logs are collected and uploaded
based on specifications. Based on the logs, the backend collects and analyzes push data in
real time and generate statistical reports. MPS provides two push methods. You can either
call APIs on your server based on the business logic to push personalized messages or
directly push messages in the console. To improve the arrival rate of messages, MPS supports
third-party push channels such as those provided by Huawei, Xiaomi, FCM, and APNs and
keeps transparent to backend business systems. In this way, the business systems can focus
on business function implementation, and don’t need to pay attention to device models.

Advantages
MPS has the following advantages:

Quick and stable : Messages are delivered quickly and arrive at targets stably.
Easy to access : You can complete MPS access efficiently at a low cost.
Quantified push effect: The push data statistics function is integrated to intelligently
analyze the arrival rate and open rate of messages. This helps you clearly understand the
push effects.
Precise personalized push:

Personalized messages can be precisely pushed from various dimensions such as
individual users and custom user groups.
A push console is provided to meet some simple push requirements. In addition, server-
side integration solutions are provided to implement complex push requirements.
Message receipts are supported to track the message delivery results, improving the user
retention rate and user activeness effectively.
Mapping between device IDs and app user IDs is established. The app user name can be
directly used as the message recipient. In this way, messages can accurately arrive at
any devices to which the user logs in.

Application scenarios
Typical application scenarios for MPS are as follows:

Marketing activities

Message Push Service User Guide·About Message Pu
sh Service

> Document Version: 20240808 7

Push targeted messages to users, including marketing activities, business reminders, etc.,
to increase user stickiness. By calling the message push API, the app pushes targeted
messages to target users to reach more users in a more active way, which attracts user,
increases consumption, and improves the conversion effect of final marketing activities.
System notification
According to the business logic of the app server, specify the target user group, and
directly push the message to the target device.

The following push modes are supported to accommodate different application scenarios:
Simple Push: Quickly push messages to a single user or device with simple configuration.
Template Push: Push messages to a single user or device, a message template can be
specified, and the message body is obtained by replacing the template placeholder.
Multiple Push: Push messages to a number of devices or users , you can specify a message
template and set different placeholder variable values for different devices or users in the
configuration file.
Broadcast Push: Push to devices on the entire network, you can specify a message
template, the message body is obtained by replacing the template placeholder.

Message Push Service User Guide·About Message Pu
sh Service

> Document Version: 20240808 8

Terms are listed in an alphabetical order.
Ad-token
The unique identifier of Android device, mainly used in client SDK.
Apache Dubbo (Dubbo)
Dubbo is an open source distributed service framework developed by Alibaba, which provides
high-performance RPC invocation, microservice governance and other capabilities for
interface agents.
AppId
Application ID, generated when application is created.
Bind-info
The mapping relation between device token and user ID, in connection with two operations:
binding and unbinding.
BroadcastPush
Used to push the same message to all devices. The message content is generated by
replacing parameters in template.
Device Token
The unique identifier of Apple device, provided by iOS system.
Msgkey
Used to uniquely identify a message.
MultiplePush
Used to push customized message to a large number of targets. The message content is
generated by using the same template and replacing parameters with different content
according to different targets.
Push Cert
The certification, in iOS, used to establish connections with Apple's APNs servers.
SimplePush
Used to push the same message to individual target(s).
TaobaoRemoting (TR)
TaobaoRemoting (TR) framework refers to the underlying communication framework
developed by Ant Group for RPC calls.
Target ID/Token
The target to push message to, which can be Ad-token of Android, Device Token of iOS or
userId and is determined according to context.
TaskName
Each message push is identified as a task.
Template
The framework to generate a message, including attribute configuration of message,
message content and placeholders which can be dynamically replaced.
Templatekv
"k" is the placeholder parameter in template; "v" is the parameter to be replaced.

2.Terminology
Message Push Service User Guide·Terminology

> Document Version: 20240808 9

Template Placeholder
The dynamically replaceable parameters in template configuration.
TemplatePush
Used to push the same message to individual target(s). The message content is generated by
replacing parameters in template.
UserId/UsrId
Used to identify user, corresponding to device, normally used for binding.

Message Push Service User Guide·Terminology

> Document Version: 20240808 10

After integrating the Message Push Service (MPS), the client uses the mPaaS Mobile Gateway
Service to call the Remote Procedure Call (RPC) gateway for device registration, user binding,
and third-party channel binding, so as to implement message push by devices or users. The
message push processes are different in different device platforms. The following sections
introduce message push process through RPC on different device platforms.
Before acquainting yourself with the push process, you need to know some basic concepts
involved in message push.

Basic concepts
Device ID (token): MPS assigns a unique identifier to each client device and determines
the target of message push based on the identifier.

For Android devices, a persistent connection is established for message push.
For iOS devices, the Apple Push Notification service (APNs) is used for message push.

Push mode: MPS provides the following push modes:
Device ID-specific push
User ID-specific push
Broadcast push without specifying any identifiers

Note
No matter which mode is adopted, mapped device IDs will be eventually generated
inside the system. User ID-specific message push offers convenience in interworking
with your business systems. As user IDs are eventually mapped to device IDs, you
must bind user IDs to device IDs. The recommended method is to bind the user ID to
the corresponding device ID upon user login. When the user logs out, the binding
relationship is removed.

Third-party push: Third-party push refers to pushing by vendors, which can guarantee a
high arrival rate. During the initialization process of calling the init method, the client
applies for device IDs from both mPaaS and the third-party platform. Device IDs are then
returned by mPaaS and the third-party platform in the callback.
If you want to use a third-party push, you should call the report API to upload both
mPaaS device ID and the third-party device ID to Mobile Push Core, and associate the two
device IDs. After the above operation is completed, the third-party device ID can be truly
used, otherwise the message push is a common mPaaS push.

Process
The MPS involves two backend systems:

Mobile Push Core (Pushcore): handles service logic and provides APIs to developers.
Mobile Push Gateway (Mcometgw): maintains persistent connections with Android
devices.

3.Message push process
Message Push Service User Guide·Message push pro

cess

> Document Version: 20240808 11

Note
For the devices configured with access to the third-party push platform, such as Xiaomi,
Huawei or other vendors, the client also requests the device ID from the third-party
platform. The third-party push channel is only available after you call the report API to
bind the mPaaS device ID and third-party device ID returned. For general devices, only
the device ID returned by mPaaS is used.

Learn about the process for integrating MPS on different device platforms:
Android devices in Chinese mainland
iOS devices and Android devices outside China

Android devices in Chinese mainland
The client uses RPC to directly interact with Mobile Push Core (Pushcore) through the RPC
gateway. For Android devices in China, MPS provides a self-built gateway. The following
figure shows the process.

Where,
When the app starts, the client establishes a persistent connection with Mcometgw. If the
connection setup information of the client does not include the device identifier, Mcometgw
issues the device identifier.
If the user enables the MPS from a third-party channel such as Mi and Huawei, and the
client is a third-party device, the third-party SDK initializes, establishes a persistent
connection with the vendor’s push gateway, and obtains the device ID from the third-party
channel.
The app calls the device report RPC API and reports the third-party device information.
The app user initiates a login request on the client.
The server receives the user login request. When successfully logging in to the app, you
can send a user-device binding request to Pushcore.
The server initiates a push request.

Message Push Service User Guide·Message push pro
cess

> Document Version: 20240808 12

Pushcore receives the push request, and distinguishes the message push type.
If the message is pushed by device, Pushcore calls Mcometgw to send the message.
If the message is pushed by user, Pushcore obtains the device ID based on the user ID in
the request and then calls Mcometgw to send the message.

Mcometgw sends the message to the client.
After the message is successfully sent, the client will confirm the receipt of the message
with Mcometgw. If the user has configured a callback API, Pushcore will send a receipt to
the server.
When the user actively logs out of the app, the client calls the unbinding RPC API.

iOS devices and Android devices outside China
The push gateway for Android devices outside China uses Google Firebase Cloud Messaging
(GCM/FCM) for Android, while the push gateway for iOS devices uses the Apple Push
Notification service (APNs). The following takes the iOS device for example.
The client uses RPC to directly interact with Mobile Push Core (Pushcore) through the RPC
gateway. The following figure shows the process.

Where,
The client obtains the iOS device ID.
The client calls the device report RPC API and reports the device ID to Pushcore through the
RPC gateway.
The app user initiates a login request on the client.
When successfully logging in to the app, the user can call the binding RPC API to send a
user-device binding request to the RPC gateway, which forwards the request to Pushcore.
The server sends a push request to Pushcore.
Pushcore receives the push request and distinguishes the message push type.

If the message is pushed by device, Pushcore directly calls the APNs to send the
message.

Message Push Service User Guide·Message push pro
cess

> Document Version: 20240808 13

If the message is pushed by user, Pushcore obtains the device ID based on the user ID in
the request and then calls the APNs to send the message.

After the message is successfully sent, the client will confirm the receipt of the message
with Pushcore. If the user has configured a callback API, Pushcore will send a receipt to the
server.

Message Push Service User Guide·Message push pro
cess

> Document Version: 20240808 14

This guide briefly describes how to fast integrate MPS to the Android client. You can integrate
Message Push Service (MPS) through Native AAR or Portal & Bundle method.
The complete integration process mainly includes the following four steps:

1. Add SDK: Add the SDK dependencies and AndroidManifest configuration.
2. Initialize the SDK: Initialize the push service to establish persistent connection between the

client and the mobile push gateway.
3. Create a service: Create a service to receive Android device IDs (Ad-tokens), so you can

push messages based on device ID.
4. Bind user ID: Report user ID to the server to bind the user ID and the device ID, so you can

push messages based on the user ID.

Prerequisites
You have completed the basic configuration with reference to the general operations.

If you integrate MPS through Native AAR, ensure that you have added mPaaS to project.
If you integrate MPS in componentized integration mode (through Portal & Bundle
projects), ensure that you have completed the componentized integration process.

You have obtained the .config configuration file from the mPaaS console. For how to
generate and download the configuration file, see Add configuration file to project.
The MPPushMsgServiceAdapter method described in this guide only works in the baseline
10.1.68.32 or later version. If your current baseline version is lower than 10.1.68.32, please
refer to mPaaS upgrade guide to upgrade the baseline version to 10.1.68.32.

Note
You can continue using the AliPushRcvService method in the earlier version. Click
here to download the documentation about using AliPushRcvService .

Procedure
To use MPS, you should complete the following steps.

1. Add MPS SDK.
Add the push SDK dependencies and AndroidManifest configuration.
i. Add SDK dependencies. Choose an integration method, and complete the required steps

accordingly.
Native AAR: Follow the instructions in AAR component management to install the
PUSH component in the project through Component management (AAR) .
Componentized integration mode (Portal & Bundle): Install the PUSH component in the
Portal and Bundle projects through Component management (AAR) . For more
information, see Add component dependencies.

Add AndroidManifest configuration. In the AndroidManifest.xml file, add the

4.Client-side development
4.1. Android
4.1.1. Quick start

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 15

https://gw.alipayobjects.com/os/bmw-prod/af2fd0f5-29b6-40de-a8d8-52e4f209ab59.pdf

ii. Add AndroidManifest configuration. In the AndroidManifest.xml file, add the
following content:

Note
If you add the SDK through Portal & Bundle, you should add the above content in the
Portal project.

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

<service
 android:name="com.alipay.pushsdk.push.NotificationService"
 android:enabled="true"
 android:exported="false"
 android:label="NotificationService"
 android:process=":push">
 <intent-filter>
 <action android:name="${applicationId}.push.action.START_PUSHSERVICE" />
 </intent-filter>
</service>
<receiver
 android:name="com.alipay.pushsdk.BroadcastActionReceiver"
 android:enabled="true"
 android:process=":push">
 <intent-filter android:priority="2147483647">
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 <action android:name="android.intent.action.USER_PRESENT" />
 <action android:name="android.intent.action.ACTION_POWER_CONNECTED" />
 </intent-filter>
</receiver>

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 16

iii. In order to improve the arrival rate of messages, the push SDK has a built-in process
keep-alive function, including the above-mentioned
 com.alipay.pushsdk.BroadcastActionReceiver to listen to the system broadcast to wake
up the push process, and automatically restart after the process is recycled. When
accessing, you can decide whether to enable these functions according to your own
needs:

a. If you do not need to monitor the system startup broadcast, you can delete:

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<action android:name="android.intent.action.BOOT_COMPLETED" />

b. If you do not need to monitor the network switching broadcast, you can delete:

<action android:name="android.net.conn.CONNECTIVITY_CHANGE" />

c. If you do not need to monitor the user wake-up broadcast, you can delete:

<action android:name="android.intent.action.USER_PRESENT" />

d. If you do not need to monitor the charging status change broadcast, you can delete:

<action android:name="android.intent.action.ACTION_POWER_CONNECTED" />

e. If you do not need to monitor all the above broadcasts, you can set the
 android:enabled attribute of com.alipay.pushsdk.BroadcastActionReceiver to false .

f. If you do not need to automatically restart after the push process is recycled, you can
add the following configuration under the application node:

<meta-data
 android:name="force.kill.push"
 android:value="on" />

Note
This configuration is only valid in baseline version 10.2.3.21 and above.

2. Initialize the SDK.
Initialize the message push service to establish persistent connection between the client
and the Mobile Push Gateway. The persistent connection is maintained by the SDK, and is
regarded as the self-built channel.

Native AAR
If you have called the mPaaS initialization method in Application , you can call the
following method behind MP.init() :

MPPush.init(this);

If you haven't called the mPaaS initialization method, you can call the following
methods in Application :

 MPPush.setup(this);
 MPPush.init(this);

Portal & Bundle

In LauncherApplicationAgent or LauncherActivityAgent , call the following method in

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 17

In LauncherApplicationAgent or LauncherActivityAgent , call the following method in
 postInit :

MPPush.init(context);

3. Create a service.
Create a service to inherit MPPushMsgServiceAdapter , and override the onTokenReceive
method to receive the device token delivered by the self-built channel.

public class MyPushMsgService extends MPPushMsgServiceAdapter {

 /**
 * Call back upon receiving the token delivered by the self-built channel
 *
 * @param token Device token delivered by the self-built channel
 */
 @Override
 protected void onTokenReceive(String token) {
 Log.d("Receive the token delivered by the self-built channel: " + token);
 }

}

Declare the service in AndroidManifest.xml :

<service
 android:name="com.mpaas.demo.push.MyPushMsgService"
 android:exported="false">
 <intent-filter>
 <action android:name="${applicationId}.push.action.MESSAGE_RECEIVED" />
 <action android:name="${applicationId}.push.action.REGISTRATION_ID" />
 <category android:name="${applicationId}" />
 </intent-filter>
</service>

After you complete this step, you can push messages by device on the console. The device
ID required refers to the token.

4. Bind user ID.
The user ID is customized by the developer. It can be the user ID of the real user system or
other parameters that can form a mapping relationship with users, such as account and
mobile phone number.
After receiving the token, you can bind the token with the user ID:

String userId = "Custom userId";
ResultPbPB bindResult = MPPush.bind(context, userId, token);
Log.d("Bind userId " + (bindResult.success ? "Succeeded" : ("Error:" + bindResult.cod
e)));

If you have already set the user ID by calling MPLogger , you don’t have to pass the user
ID when binding it. For example:

MPLogger.setUserId("Custom userId");
ResultPbPB bindResult = MPPush.bind(context, token);

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 18

To unbind the user ID, for example, the user exits the app, you can call the following
method:

ResultPbPB unbindResult = MPPush.unbind(context, userId, token);
ResultPbPB unbindResult = MPPush.unbind(context, token);

After you complete this step, you can push messages by user on the console. The user ID
required refers to the custom user ID.

Related operations
To improve the message arrival rate, you are recommended to integrate the push channels
provided by Android mobile phone vendors. Currently, MPS supports Huawei, Xiaomi, OPPO,
and vivo push channels. For how to access the push channels of those vendors, see
Integrate third-party channels.
A notification will be sent automatically when the third-party channel receives the message.
The users can click on the notification to open the Web page. If you need to jump to the in-
app page according to a customized DeepLink, or customize the behavior after receiving
the message, see Process notification click.

For more functions, see Advanced features.

Sample code
Click here to download the sample code.

What to do next
After you successfully integrate MPS to your Android client, you can call the RESTful interface
through the server. For more information, see Configure server > Push messages.

For the apps which have third-party channels integrated and run on the corresponding
vendors’ mobile phones, the server pushes messages through the third-party channels by
default; for other apps, the server pushes messages through the self-built channel.

When self-built channel receives a message, the push SDK automatically deliver a
notification, and the user can click it to open the Web page.

Important
Message notification IDs used by the SDK start from 10000. Make sure that other
notification IDs you use do not conflict with them.

To jump to an in-app page, refer to Implement in-app page redirection.
To process the received messages by yourself, refer to Implement custom message
processing.
After the third-party channel receives a message, the mobile system will automatically
deliver a notification. Neither the push SDK nor developers can interfere. The push SDK can
receive the message and open the Web page only when the user clicks the notification.
To jump to an in-app page, refer to Implement in-app page redirection.
To process the redirection upon click on message by yourself, refer to Implement custom
message processing.

Prerequisites

The MPPushMsgServiceAdapter method mentioned in this guide is only applicable for

4.1.2. Process notification clicks

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 19

https://github.com/mpaas-demo/android-push?spm=a2c4g.11186623.2.32.3f5c6fe0GIFBz9

The MPPushMsgServiceAdapter method mentioned in this guide is only applicable for
baseline 10.1.68.32 or later version. If your current baseline version is lower than
10.1.68.32, refer to mPaaS upgrade guide to upgrade the baseline.
You can continue using the AliPushRcvService method in the earlier version. Click here
to download the documentation about using AliPushRcvService .

Implement in-app page redirection
If you need to jump to a specific page in the app, you can fill in a custom DeepLink in the
redirection address of the message, for example: mpaas://navigate , and set up a routing
Activity in the app to receive the DeepLink and then distribute it to other pages.
You also need to add the corresponding intent-filter in AndroidManifest.xml for the
routing Activity, for example:

<activity android:name=".push.LauncherActivity"
 android:launchMode="singleInstance">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.BROWSABLE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="mpaas" />
 </intent-filter>
</activity>

Obtain URI and message from the routing Activity.

Uri uri = intent.getData();
MPPushMsg msg = intent.getParcelableExtra("mp_push_msg");

Implement custom message processing
To process the messages by yourself, you can override the onMessageReceive and
 onChannelMessageClick method of MPPushMsgServiceAdapter .

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 20

https://gw.alipayobjects.com/os/bmw-prod/af2fd0f5-29b6-40de-a8d8-52e4f209ab59.pdf

public class MyPushMsgService extends MPPushMsgServiceAdapter {

 /**
 * Callback after the self-built channel receives the message
 *
 * @param msg Message received
 * @return Whether the message has been processed:
 * If true is returned, the SDK will not process the message; the developer needs t
o process the message, including notification delivery and redirection upon click on no
tification.
 * If false is returned, the SDK will automatically deliver a notification and add
the redirection upon click on notification.
 */
 @Override
 protected boolean onMessageReceive(MPPushMsg msg) {
 Log.d("Receive message through self-built channel:" + msg.toString());
 // Process the message by yourself, such as delivering custom notification
 return true;
 }

 /**
 * Callback after the notification is clicked. The messages delivered through the t
hird-party channels are displayed on the notification bar.
 *
 * @param msg Message received
 * @return Whether the click on message has been processed:
 * If true is returned, the SDK will not process the click on notification delivere
d through the third-party channel; the developer needs to process the redirection upon
click on notification.
 * If false is returned, the SDK will automatically process the redirection upon cl
ick on notification.

 */
 @Override
 protected boolean onChannelMessageClick(MPPushMsg msg) {
 Log.d("Message through the third-party channel is clicked:" + msg.toString());
 // Process the logic after the message is clicked by yourself
 return true;
 }

}

 MPPushMsg encapsulates all the parameters of the message:

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 21

String id = msg.getId(); // Message ID
boolean isSilent = msg.isSilent(); // Whether to silence the message

String title = msg.getTitle(); // Message title
String content = msg.getContent(); // Message body

String action = msg.getAction(); // Redirection type, 0: URL, 1: Custom DeepLink
String url = msg.getUrl(); // Redirection address, URL or DeepLink

int pushStyle = msg.getPushStyle(); // Message type, 0: Normal message, 1: Big text, 2:
Rich text
String iconUrl = msg.getIconUrl(); // Icon of rich text message
String imageUrl = msg.getImageUrl(); // Large image of rich text message

String customId = msg.getCustomId(); // Custom message ID
String params = msg.getParams(); // Extension parameters

After you process the message, you may need to report the following message tracking,
otherwise the MPS usage analysis module on the mPaaS console will not get accurate
statistical data.

MPPush.reportPushOpen(msg); // Report that the message was opened
MPPush.reportPushIgnored(msg); // Report that the message was ignored

For the messages delivered through self-built channel:
For silent messages, there is no need to report the message tracking.
For non-silent messages, it is required to report the opened and ignored messages. You can
listen the message opening and ignorance by calling the SetContentIntent and
 setDeleteIntent methods of Notification.Builder or through other effective methods.

For the messages delivered through the third-party channels, there is no need to report the
message tracking by yourself.

This guide mainly introduces the process of integrating HUAWEI Push. The process falls into
three steps:

1. Register HUAWEI Push
2. Integrate HUAWEI Push
3. Test HUAWEI Push

Register HUAWEI Push
Visit the Huawei Developer official website, register an account, and enable the push service.
For more information, see Enable HUAWEI Push.

Integrate HUAWEI Push
MPS supports access to Huawei HMS2 and HMS5. However, you can only select HMS2 or
HMS5 in the process of integrating Huawei push component.

4.1.3. Integrate third-party push channels

4.1.3.1. Integrate HUAWEI Push

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 22

https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/android-config-agc-0000001050170137

The HMS2 is obsolete. If you are integrating HUAWEI Push for the first time, you are
recommended to integrate HMS5.
If you have upgraded from HMS2 to HMS5, you need to delete the HMS2 AndroidManifest
configuration listed below first.

The following describes the integration methods of Huawei HMS2 and HMS5 respectively.

HUAWEI Push - HMS5.x version
1. Add Push - HMS5 component in the IDE plugin. The steps are roughly the same as adding

MPS SDK, see Add SDK.

Note
The Push - HMS5 component only contains adaptive codes, without HMS SDK. You can
add the HMS SDK dependencies separately by following the steps below.

2. Download the configuration file agconnect-services.json in the Huawei App Service
Console and place it under the assets directory of the main project.

3. Configure the Maven warehouse address of HMS SDK in the build.gradle file in the
project root directory.

 allprojects {
 repositories {
 // Other repos are ignored
 maven {url 'https://developer.huawei.com/repo/'}
 }
 }

4. Add HMS SDK dependencies in the build.gradle file of the main project.

 dependencies {
 implementation 'com.huawei.hms:push:5.0.2.300'
 }

The HMS SDK version is updated frequently. For the latest version, refer to HMS SDK
Version Change History.
The current adaptable version is 5.0.2.300. If you need to use a higher version, you can
change it by yourself. Generally, the vendor’s SDK is downward compatible. If it is not
compatible, you can give feedback to adapt to the needs of the new version

5. To use obfuscation, you need to add the related obfuscation configurations.
No matter which integration method is used in integrating HUAWEI push SDK, you need
to add Huawei push obfuscation rules.
If you integrated HUAWEI push SDK through Native AAR, you need to add mPaaS
obfuscation rules.

HUAWEI Push - HMS2.x version
1. Add Push - HMS2 component in the IDE plugin. The steps are roughly the same as adding

MPS SDK, see Add SDK.
The current HMS2 SDK version is V2.5.2.201.

2. Configure AndroidManifest.xml , and replace the value of com.huawei.hms.client.appid .
If you integrate the MiPush SDK through Portal & Bundle projects, please configure the
 AndroidManifest.xml in the Portal project.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 23

https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides-V5/android-app-version-0000001074227861-V5
https://developer.huawei.com/consumer/en/doc/development/HMSCore-Guides/android-config-obfuscation-scripts-0000001050176973?spm=a2c4g.11186623.2.12.14321111Vvkvxp

 <activity
 android:name="com.huawei.hms.activity.BridgeActivity"
 android:configChanges="orientation|locale|screenSize|layoutDirection|fontScale"
 android:excludeFromRecents="true"
 android:exported="false"
 android:hardwareAccelerated="true"
 android:theme="@android:style/Theme.Translucent">
 <meta-data
 android:name="hwc-theme"
 android:value="androidhwext:style/Theme.Emui.Translucent" />
 </activity>
 <!--To prevent dex crashing in an earlier version, dynamically enable provider, and
set "enabled" to false.-->
 <provider
 android:name="com.huawei.hms.update.provider.UpdateProvider"
 android:authorities="${applicationId}.hms.update.provider"
 android:exported="false"
 android:enabled="false"
 android:grantUriPermissions="true">
 </provider>
 <!-- Replace the "appid" of value with the actual app ID in the service deta
ils of the app on Huawei Developer. Keep the slash (\) and space in the value. -->
 <meta-data
 android:name="com.huawei.hms.client.appid"
 android:value="\ your huawei appId" />
 <receiver
 android:name="com.huawei.hms.support.api.push.PushEventReceiver"
 android:exported="true"
 >
 <intent-filter>
 <!-- Receive the notification bar message sent by the channel. It is
compatible with earlier versions of PUSH.-->
 <action android:name="com.huawei.intent.action.PUSH" />
 </intent-filter>
 </receiver>

 <receiver
 android:name="com.alipay.pushsdk.thirdparty.huawei.HuaweiPushReceiver"
 android:exported="true"
 android:process=":push">
 <intent-filter>
 <!-- Required, used for receiving TOKEN. -->
 <action android:name="com.huawei.android.push.intent.REGISTRATION" />
 <!-- Required, used for receiving messages -->
 <action android:name="com.huawei.android.push.intent.RECEIVE" />
 <!-- Optional, used for triggering onEvent callback upon a click on t
he notification bar or the button on the notification bar -->
 <action android:name="com.huawei.android.push.intent.CLICK" />
 <!-- Optional, used for checking whether the PUSH channel is
connected. You do not need to configure this parameter if access check is not require
d -->
 <action android:name="com.huawei.intent.action.PUSH_STATE" />
 </intent-filter>
 </receiver>

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 24

3. To use obfuscation, you need to add the related obfuscation configurations.
If you integrated HUAWEI push SDK through Native AAR, you need to add mPaaS
obfuscation rules.
If you integrated HUAWEI push SDK through other methods, you don’t have to add any
obfuscation configuration.

Test HUAWEI Push
1. After integrating HUAWEI Push, you can start the app on your Huawei phone, and the MPS

SDK will automatically get the HUAWEI Push token and report it. Before you start the app,
make sure that you have called the initialization method, see Message push initialization.

2. Push test messages when the app process is killed:
If you can still receive the messages, it means that the app has successfully integrated
HUAWEI Push.
If you cannot receive the messages, you can follow the steps below for troubleshooting.

Troubleshooting
1. Check if the Huawei configuration and parameters are consistent with that in the Huawei

push backend.
For HMS2, check if AndroidManifest.xml has related configurations added, and check if
 com.huawei.hms.client.appid is same as that in Huawei push backend.
For HMS5, check if agconnect-services.json exists, and the file is correctly placed.

2. Check if HUAWEI Push is enabled in the mPaaS console (see Configure HUAWEI Push), and
the relevant configurations are consistent with that on Huawei push backend.

3. View the logs in Logcat to troubleshoot:
i. Select the push process, filter mPush.PushProxyFactory , and check if the following log

exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.hms.Creator (HMS2)
D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.hms5.Creator (HMS5)

If not, it means that there may be a problem with the Push - HMS2 or Push - HMS5
component. Check if the component has been correctly added.

ii. Select the main process, filter mHMS , and check if the channel token of HUAWEI Push
has been obtained. If the following log get token failed appears:
It means the system failed to get the channel token, see HUAWEI Push Result Codes for
the failure reason.

iii. Select the main process, filter report channel token , check if the channel token of
HUAWEI Push has been successfully reported. If the following log appears:

report channel token error: xxxx

It means the channel token reporting failed, you need to check if the base64Code in the
mPaaS configuration file has a value, and check if the apk signature that you uploaded
when obtaining the configuration file is consistent with the app.

Other questions
Does MPS has any version restrictions on EMUI and Huawei
mobile services

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 25

https://developer.huawei.com/consumer/en/doc/development/HMSCore-References-V5/error-code-0000001050255690-V5?spm=a2c4g.11186623.2.28.68ac1781avgDVc

There are version restrictions on Emotion UI (EMUI for short, it is an Android-based emotional
operating system developed by Huawei) and Huawei mobile services.
For detailed version requirements, see Conditions for devices to receive Huawei notifications.

Failed to print logs for Huawei mobile phones
On the dialing interface of the Huawei mobile phone, enter ##2846579## to enter Project
menu > Background settings > LOG settings and select AP Logs. After the phone
restarts, Logcat will start to take effect.

This article describes the access process of OPPO push, including the following three steps.
1. Register OPPO Push
2. Add OPPO Push
3. Test OPPO push

Register OPPO Push
Register an account on the OPPO Open Platform and apply for access to the push service. For
more information, see OPPO Push Platform User Guide.

Connect to OPPO Push
1. Install the push- OPPO component in the same way as you add the push SDK. For more

information, see Add an SDK. The Push- OPPO component contains only adaptation code
and does not contain OPPO Push SDK.

2. Go to the OPPO SDK documentation to download the SDK and integrate it into the main
project. The current version of the adaptation is 3.4.0 . If you need to use a higher
version, you can modify it according to your requirements. Generally speaking, the vendor
SDK will be backward compatible. If it is not compatible, you can join the DingTalk group
41708565 to feed back and adapt to the requirements of the new version.

3. Configure the AndroidManifest.xml (add the component-based method in the Portal
project) and replace the com.oppo.push.app_key and com.oppo.push.app_secret values
in it.

4.1.3.2. OPPO Push

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 26

https://developer.huawei.com/consumer/en/doc/development/HMS-Guides/push-faq-v4#restrictions
https://open.oppomobile.com/newservice/capability?pagename=push
https://open.oppomobile.com/wiki/doc#id=10195
https://open.oppomobile.com/wiki/doc#id=10875

 <uses-permission android:name="com.coloros.mcs.permission.RECIEVE_MCS_MESSAGE" /
>
 <uses-permission android:name="com.heytap.mcs.permission.RECIEVE_MCS_MESSAGE"/>

 <application>
 <service

android:name="com.heytap.msp.push.service.CompatibleDataMessageCallbackService"
 android:exported="true"
 android:permission="com.coloros.mcs.permission.SEND_MCS_MESSAGE"
 android:process=":push">
 <intent-filter>
 <action android:name="com.coloros.mcs.action.RECEIVE_MCS_MESSAGE"/>
 </intent-filter>
 </service>

 <service
 android:name="com.heytap.msp.push.service.DataMessageCallbackService"
 android:exported="true"
 android:permission="com.heytap.mcs.permission.SEND_PUSH_MESSAGE"
 android:process=":push">
 <intent-filter>
 <action android:name="com.heytap.mcs.action.RECEIVE_MCS_MESSAGE"/>
 <action android:name="com.heytap.msp.push.RECEIVE_MCS_MESSAGE"/>
 </intent-filter>
 </service>
 <meta-data
 android:name="com.oppo.push.app_key"
 android:value="OPPO open platform acquisition"
 />
 <meta-data
 android:name="com.oppo.push.app_secret"
 android:value="OPPO Open Platform Acquisition"
 />
 </application>

4. To use obfuscation, add the relevant obfuscation configuration:
You must add OPPO push obfuscation rules for all access methods.
If you use the AAR access method, you must add mPaaS obfuscation rules.

5. If you are using the OPPO push version 3.4.0 , you must add the following dependencies:

implementation 'commons-codec:commons-codec:1.15'

Test OPPO push
1. After OPPO push is enabled, you can start your application on your mobile phone and make

sure that the initialization method is called. For more information, see Initialize message
push. The push SDK automatically obtains the vendor token of OPPO push and reports the
token.

2. You can push a test message when the application process is killed:
If you still receive the message, the application is successfully connected to OPPO Push.
If you cannot receive the message, troubleshoot the issue as follows.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 27

https://open.oppomobile.com/wiki/doc?spm=a2c4g.11186623.2.12.454e3801PnlETY#id=10875

Troubleshooting
1. Check whether the AndroidManifest.xml configuration is added and whether the values of

 com.oppo.push.app_key and com.oppo.push.app_secret are consistent with those of the
OPPO open platform.

2. Check whether the OPPO channel is enabled in the mPaaS console. For more information,
see Configure the OPPO push channel.

3. View the logcat logs for troubleshooting:
i. Select the push process, filter the mPush.PushProxyFactory , and check whether the

following logs exist:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.oppo.Creator

If no push- OPPO component is available, a problem may exist when you add the push-
OPPO component. Check whether the push- OPPO component is added.

ii. Select the push process, filter mOPPO , and check whether the vendor token pushed by
OPPO is obtained. If the following log is displayed ("OPPO onRegister error" or
"responseCode" is not 0), it indicates that the OPPO push registration failed. For error
codes, see OPPO push error codes, and drop down to the error code definition description
section.

iii. Select the main process, filter the report channel token , and check whether the OPPO
vendor token is successfully reported. If the following log appears:

report channel token error: xxxx

This indicates that the vendor token fails to be reported. Please check whether the
 base64Code of the mPaaS configuration file has a value and whether the apk signature
uploaded when obtaining the configuration file is consistent with the current application.

iv. Select the push process, filter the mcssdk , and view the internal logs of OPPO push.

Other FAQ
What models and system versions does OPPO push support?
Currently, OPPO models, OnePlus 5/5T and above and realme models are supported for
ColorOS 3.1 and above systems.
ColorOS is a mobile phone operating system that is deeply customized and optimized based
on Android system launched by OPPO.

This guide mainly introduces the process of integrating vivo Push. The process falls into three
steps:

1. Register vivo Push
2. Integrate vivo Push
3. Test vivo Push

Register vivo Push
Register an account on the vivo Developers Platform and request to integrate the push
service with reference to vivo Push Platform Operation Guide.

Integrate vivo Push

4.1.3.3. Integrate vivo Push

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 28

https://open.oppomobile.com/wiki/doc#id=10875
https://dev.vivo.com.cn/documentCenter/doc/180
https://dev.vivo.com.cn/documentCenter/doc/151

1. Add Push - vivo component in the IDE plugin. The steps are roughly the same as adding
MPS SDK, see Add SDK.
The component has integrated the vivo Push SDK V2.3.4. You can upgrade the vivo Push
SDK on demand. Generally, the vendor's SDK is downward compatible. If it is not
compatible, you can submit a ticket about the adaption issue.

2. Configure AndroidManifest.xml , and replace the values of com.vivo.push.api_key and
 com.vivo.push.app_id . If you integrate the vivo Push SDK through Portal & Bundle
projects, please configure the AndroidManifest.xml in the Portal project.

 <application>
 <service
 android:name="com.vivo.push.sdk.service.CommandClientService"
 android:process=":push"
 android:exported="true" />
 <activity
 android:name="com.vivo.push.sdk.LinkProxyClientActivity"
 android:exported="false"
 android:process=":push"
 android:screenOrientation="portrait"
 android:theme="@android:style/Theme.Translucent.NoTitleBar" />
 <meta-data
 android:name="com.vivo.push.api_key"
 android:value="Provided by vivo Developers Platform" />
 <meta-data
 android:name="com.vivo.push.app_id"
 android:value="Provided by vivo Developers Platform" />
 </application>

3. To use obfuscation, you need to add the related obfuscation configurations.
No matter which integration method is used in integrating vivo push SDK, you need to
add vivo push obfuscation rules.
If you integrated vivo push SDK through Native AAR, you need to add mPaaS obfuscation
rules.

Test vivo Push
1. After integrating vivo Push, you can start the app on your vivo phone, and the MPS SDK will

automatically get the OPPO Push token and report it. Before you start the app, make sure
that you have called the initialization method, see Message push initialization.

2. Push test messages when the app process is killed:
If you can still receive the messages, it means that the app has successfully integrated
vivo Push.
If you cannot receive the messages, you can follow the steps below for troubleshooting.

Troubleshooting
1. Check if AndroidManifest.xml has related configurations added, and check if the values of

 com.vivo.push.api_key and com.vivo.push.app_id are the same as that on vivo
Developers Platform.

2. Check if vivo Push is enabled in the mPaaS console (see Configure vivo Push), and the
relevant configurations are consistent with that on vivo Developers Platform.

3. View the logs in Logcat to troubleshoot:

i. Select the push process, filter mPush.PushProxyFactory , and check if the following log

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 29

https://dev.vivo.com.cn/documentCenter/doc/365

i. Select the push process, filter mPush.PushProxyFactory , and check if the following log
exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.vivo.Creator

If not, it means that there may be a problem with the Push - vivo component. Check if the
component has been correctly added.

ii. Select the push process, filter mVIVO , and check if the channel token of vivo Push has
been obtained. If the following log “fail to turn on vivo push” appears:
It means the vivo Push registration failed, see vivo Push Error Codes.

iii. Select the main process, filter report channel token , check if the channel token of vivo
Push has been successfully reported. If the following log appears:

report channel token error: xxxx

It means the channel token reporting failed, you need to check if the base64Code in the
mPaaS configuration file has a value, and check if the apk signature that you uploaded
when obtaining the configuration file is consistent with the app.

4. If the above steps do not resolve the issue, please search for the group number 31591197
with DingTalk to join DingTalk group for further communication.

FAQ
Models and OS versions supported by vivo Push
The models and earlier system versions supported by vivo Push are listed in the following
table. For other questions on vivo Push, see vivo Push FAQs.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 30

https://dev.vivo.com.cn/documentCenter/doc/368
https://dev.vivo.com.cn/documentCenter/doc/156#w1-08608733

This guide mainly introduces the process of integrating MiPush. The process falls into three
steps:

1. Register MiPush
2. Integrate MiPush
3. Test MiPush

Register MiPush
Complete MiPush registration with reference to the following official Xiaomi documents:

Register a Xiaomi developer account
Enable MiPush

Integrate MiPush
1. Add Push - Xiaomi component in the IDE plugin. The steps are roughly the same as

adding MPS SDK, see Add SDK. Currently, the built-in MiPush SDK is V4.0.2. You can see
Release notes to learn the historical versions.

4.1.3.4. Integrate MiPush

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 31

https://global.developer.mi.com/document?doc=accountRegistration.becomeADeveloper
https://dev.mi.com/console/doc/detail?pId=68

2. Configure AndroidManifest.xml , and replace the values of xiaomi_appid and
 xiaomi_appkey . If you integrate the MiPush SDK through Portal & Bundle projects, please
configure the AndroidManifest.xml in the Portal project.

 <permission
 android:name="${applicationId}.permission.MIPUSH_RECEIVE"
 android:protectionLevel="signature"/>
 <uses-permission android:name="${applicationId}.permission.MIPUSH_RECEIVE"/>
 <application>

 <!-- Keep the slash (\) and space in the value -->
 <meta-data
 android:name="xiaomi_appid"
 android:value="\ 2xxxxxxxxxxxxxxx" />
 <!-- Keep the slash (\) and space in the value -->
 <meta-data
 android:name="xiaomi_appkey"
 android:value="\ 5xxxxxxxxxxxxxxx" />

 </application>

Test MiPush
1. After integrating MiPush, you can start the app on your Xiaomi phone, and the MPS SDK will

automatically get the MiPush token and report it. Before you start the app, make sure that
you have called the initialization method, see Message push initialization.

2. Push test messages when the app process is killed:
If you can still receive the messages, it means that the app has successfully integrated
MiPush.
If you cannot receive the messages, you can follow the steps below for troubleshooting.

Troubleshooting
1. Check if AndroidManifest.xml has been configured, and the values of xiaomi_appid and

 xiaomi_appkey in the file are consistent with that on Mi Developer Platform.
2. Check if MiPush is enabled in the mPaaS console (see Channel configuration), and the

relevant configurations are consistent with that on Mi Developer Platform.
3. View the logs in Logcat to troubleshoot:

i. Select the push process, filter mPush.PushProxyFactory , and check if the following log
exists:

D/mPush.PushProxyFactory: found proxy com.mpaas.push.external.mi.Creator

If not, it means that there may be a problem with the Push - Xiaomi component. Check if
the component has been correctly added.

ii. Select the push , filter mMi , and check if the MiPush channel token has been
obtained.
If the following log (register_fail) appears, it means the MiPush registration failed. See
MiPush error codes for the failure reason (reason). If the value of reason is
UNKNOWN, it is generally due to incorrect xiaomi_appid or xiaomi_appkey . To learn
about the result codes (resultCode), see MiPush server error codes.

Select the main process, filter report channel token , check if the MiPush channel token

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 32

https://dev.mi.com/console/doc/detail?pId=41#_2_1
https://dev.mi.com/console/doc/detail?spm=a2c4g.11186623.0.0.2a671c84xJ8kXs&pId=1557

iii. Select the main process, filter report channel token , check if the MiPush channel token
has been successfully reported. If the following log appears:

report channel token error: xxxx

It means the channel token reporting failed, you need to check if the base64Code in the
mPaaS configuration file has a value, and check if the apk signature that you uploaded
when obtaining the configuration file is consistent with the app.

MPS supports integrating the Firebase Cloud Messaging (FCM) push channel to satisfy the
message push requirements on overseas Android devices.
The following sections describe how to integrate the FCM push channel.

Prerequisites
Before you integrate FCM, ensure that the following conditions are met:

Adopt native AAR integration mode. Portal & Bundle integration modes don't work for FCM.
Gradle must be 4.1 or later versions.
AndroidX is used.
 com.android.tools.build:gradle must be 3.2.1 or a later version.
 compileSdkVersion must be 28 or a later version.

Integrate FCM SDK
Perform the following steps:

1. Add your app in the Firebase console.
Log on to the Firebase console and register your app. See Firebase documentation.

2. Add the Firebase Android configuration file to your app.
Download the configuration file google-services.json and move the file to the main
module of your project.

3. Add the Google service plug-in to the buildScript dependency in the root-level
 build.gradle file.

4.1.3.5. Integrate FCM push channel

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 33

https://firebase.google.com/docs/cloud-messaging/android/client

 buildscript {

 repositories {
 // Check that you have the following line (if not, add it):
 google() // Google's Maven repository
 }

 dependencies {
 // ...

 // Add the following line:
 classpath 'com.google.gms:google-services:4.3.4' // Google Services plugin
 }
 }

 allprojects {
 // ...

 repositories {
 // Check that you have the following line (if not, add it):
 google() // Google's Maven repository
 // ...
 }
 }

4. Apply the Google service plug-in in the build.gradle file of the main module.

 apply plugin: 'com.android.application'
 // Add the following line:
 apply plugin: 'com.google.gms.google-services' // Google Services plugin

 android {
 // ...
 }

5. Add the FCM SDK dependency to the build.gradle file of the main module.

 dependencies {
 // Import the BoM for the Firebase platform
 implementation platform('com.google.firebase:firebase-bom:26.1.1')

 // Declare the dependencies for the Firebase Cloud Messaging and Analytics libra
ries
 // When using the BoM, you don't specify versions in Firebase library
dependencies
 implementation 'com.google.firebase:firebase-messaging'
 implementation 'com.google.firebase:firebase-analytics'
 }

Integrate mPaaS
Perform the following steps:

1. Add the FCM Adapter dependency to the build.gradle file of the main module.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 34

 dependencies {
 implementation 'com.mpaas.push:fcm-adapter:0.0.2'
 }

2. Integrate the MPS SDK, with reference to the requirements on mPaaS baseline:
For com.mpaas.push:fcm-adapter:0.0.2 , the baseline must be 10.1.68.34 or later
version.
For com.mpaas.push:fcm-adapter:0.0.1 , the baseline must be 10.1.68.19 or later
version.

3. Receive push messages.
Due to the features of FCM SDK, the messages pushed through the FCM channel may not
always be received by the client through the FCM channel, but may be received through the
self-built channel. The specific rules are:

If the app is in frontend, the messages are passed through to the app by FCM, and the
app will receive the message through the self-built channel.
If the app is in backend or the app is killed, the messages are sent through FCM channel,
and are displayed on the notification bar.

4. (Optional) You can register a message receiver to obtain an error message when the FCM
initialization fails. For details, see Error codes.
Refer to the following sample code:

 <receiver android:name=".push.FcmErrorReceiver" android:exported="false">
 <intent-filter>
 <action android:name="action.mpaas.push.error.fcm.init" />
 </intent-filter>
 </receiver>

 package com.mpaas.demo.push;

 import android.content.BroadcastReceiver;
 import android.content.Context;
 import android.content.Intent;
 import android.widget.Toast;

 public class FcmErrorReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();
 if ("action.mpaas.push.error.fcm.init".equalsIgnoreCase(action)) {
 Toast.makeText(context, "fcm error " + intent.getIntExtra("error", 0),
Toast.LENGTH_SHORT).show();
 }
 }
 }

In order to improve the end user push experience and create a good and sustainable
notification ecology, major manufacturers have been limiting the frequency of pushed
messages according to classification.

4.1.4. Manufacturer Message Classification

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 35

https://developers.google.com/android/reference/com/google/android/gms/common/ConnectionResult

Introduction
Classify and manage messages based on push content, and you can customize the
Channel ID.

Applies to all Android channels
Create a client-side custom channel
Send the corresponding channel ID when pushing

Parameter Type Requir
ed Examples Description

channelId Strin
g No channelId: "channelIdTest" Android notification

channelId

If you need to deliver manufacturer channel important level messages, please refer to the
usage guide for each manufacturer message classification below.

Huawei Classification
Manufacturer's instructions on message classification
According to the message content, Huawei Push classifies notifications into two categories:
Service and Communication, and Information Marketing . It also manages the
notification methods and message styles of different types of messages as follows:

Msg Type Service and Communication Information Marketing

Push content
Including social communication

messages and service
reminder messages

Including information messages
and marketing messages, which

refers to event information,
content recommendations,
information, etc. sent by

operators to users

Notification method (EMUI
10.0 or later)

Lock screen, ringtone,
vibration

Silence notifications, which only
display messages in the drop-

down notification bar

Message style Text + small image Text only

Push quantity Unlimited

Starting from 2023.01.05, the
daily push limit for information

marketing messages will be
managed based on application
type. For more information, see

Push quantity limit requirements
for different application types.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 36

https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/message-restriction-description-0000001361648361#section199311418515

Configuration method

You need to apply for self-
classification rights from

Huawei. After the review is
passed, the classification
information provided by

developers will be trusted.
Messages are not subject to

intelligent classification.

Default value

Classification Method
Message intelligent classification
The intelligent classification algorithm automatically classifies your messages based on
multiple dimensions such as the content you send.

Message self-classification
Starting from July 1, 2021, Huawei Push Service began to receive applications for self-
classification rights and interests of developers. After the application is successful, developers
are allowed to classify messages according to Huawei push classification specifications.

Huawei Message Classification Application
For more information about self-classification application, see Huawei message classification
management solution.

If the application does not have a self-classification benefit, the push messages of the
application are automatically classified by using intelligent classification.
If an application has a self-classification benefit, it trusts the classification information
provided by the developer. Messages are not subject to intelligent classification.

Connecting with Harmony message classification and
parameter enumeration on mPaaS MPS
(thirdChannelCategory.hms)

Pass parameter (string) Description

1 IM: Instant Message

2 VOIP: Voice Over Internet Protocol

3 SUBSCRIPTION: Subscription

4 TRAVEL: Travel

5 HEALTH: Health

6 WORK: Work item reminder

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 37

https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/message-classification-0000001149358835

7 ACCOUNT: Account dynamics

8 EXPRESS: Order&Logistics

9 FINANCE: Finance

10 DEVICE_REMINDER: Device reminder

11 SYSTEM_REMINDER: System prompt

12 MAIL: Mail

13 PLAY_VOICE: Voice broadcast (only transparent
message support)

14

MARKETING: Content recommendations, news,
financial updates, life information, social updates,

research, product promotions, feature
recommendations, operational activities (only

content is marked and will not speed up message
sending)

Parameter passing example

Parameter name Typ
e

Require
d Examples Description

thirdChannelCategory Map No thirdChannelCategory:
{"hms": "9"}

In the example, a
value of "9" indicates
a HUAWEI FINANCE
type message. For
more information

about other values,
see Vendor Message

Classification

HONOR Classification
Manufacturer's instructions on message classification
Based on the content of the message, Huawei Push classifies the notifications into two
categories: service and communication and information marketing, as follows:

Msg Type Service and Communication Information Marketing

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 38

Push content
including social communication
messages and service alert
messages.

Including information messages and
marketing messages, which refers
to event information, content
recommendations, information, etc.
sent by operators to users

Notification method
Lock screen display + drop down
notification bar display, support
ringtone, vibration

Silent notifications to display
messages only in the drop-down
notification bar

Message style Text + small image Text only

Push quantity Unlimited

Information marketing messages
manage the upper limit of the daily
push quantity based on the
application type,

News category (three classified
as news category): 5
Other application types: 2
For more information, see
Maximum number of push
requests for different application
types.

Classification Method
Message intelligent classification
The intelligent classification algorithm automatically classifies your messages based on the
content you send and other factors.

Message self-classification
Allows developers to classify messages based on message classification specifications.

Connecting with HONOR message classification and parameter
enumeration on mPaaS MPS (thirdChannelCategory.HONOR)

Pass parameter (string) Description

1 Service and communication category

2 Information marketing category

Parameter passing example

Parameter
Typ

e Required Examples Description

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 39

https://developer.hihonor.com/cn/kitdoc?category=%25E5%259F%25BA%25E7%25A1%2580%25E6%259C%258D%25E5%258A%25A1&kitId=11002&navigation=guides&docId=notification-push-standards.md&token=#%25E4%25B8%258D%25E5%2590%258C%25E5%25BA%2594%25E7%2594%25A8%25E7%25B1%25BB%25E5%2588%25AB%25E7%259A%2584%25E6%258E%25A8%25E9%2580%2581%25E6%2595%25B0%25E9%2587%258F%25E4%25B8%258A%25E9%2599%2590%25E8%25A6%2581%25E6%25B1%2582

thirdChannelCategory Map No thirdChannelCategory:
{"HONOR": "1"}

The example passes
a value of "1" to

indicate a
communication
message of the
HONOR service.

Xiaomi Message Classification
Manufacturer's instructions on message classification
According to the New Rules for Classifying Xiaomi Push Messages, Xiaomi Push classifies
messages into two categories: Private Messages and Public Messages. If you choose not
to access private messages or public messages, the application is connected to the default
channel.

Msg Type Default value Public Message Private Message

Push content
You can follow the

public trust scenario
description of Xiaomi.

Hot news, new product
promotion, platform

announcements,
community topics,

award-winning
activities, etc., multi-

user universal content

Chat messages,
personal order changes,

courier notifications,
transaction reminders,

IoT system notifications,
and other content
related to private

notifications

Notification method Not provided N/A. Ring, vibration

Push quantity limit 1 times
2-3 times. For more

information, see Public
trust restrictions.

Unlimited

User receive quantity
limit

1 entry per day for a
single device for a
single application

Single application
single device single

day 5-8
Unlimited

Application method No need to apply
You must apply on the Xiaomi Push platform. For
more information, see Channel application and

access methods.

Xiaomi message classification application
For more information, see Channel application and access method in the official Xiaomi
documentation.

Connecting with Xiaomi message classification and parameter
enumeration on mPaaS MPS

Parameter Type Require
d Examples Description

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 40

https://dev.mi.com/console/doc/detail?pId=2422
https://dev.mi.com/distribute/doc/details?pId=1655#_3
https://dev.mi.com/console/doc/detail?pId=2422
https://dev.mi.com/distribute/doc/details?pId=1655#_4
https://dev.mi.com/console/doc/detail?pId=2422#_2

miChannelId Strin
g No miChannelId:"miChannelIdTest"

The channelId of
the push channel

of the Xiaomi
manufacturer

OPPO message classification
Manufacturer's instructions on message classification

Msg Type Private Public

Push content

For information that users
have a certain degree of

attention and hope to receive
in time, such as instant chat
information, personal order

changes, express notification,
subscription content updates,
comment interaction, member

points changes, etc.

Public trust is aimed at users' low
attention and no psychological
expectation for receiving such

information, such as hot news, new
product promotion, platform
announcements, community

topics, award-winning activities,
etc., and multi-user universal

content

Push quantity limit Unlimited

There are public channel sharing
push times, after reaching the
push limit on the same day, all

public channel will no longer push
messages; Push limit: when the

cumulative number of users is less
than 50000, it is calculated by
100000; When the cumulative

number of users is greater than or
equal to 50000, it is calculated by
the cumulative number of users *

2

Single-user push limit
(log/day) Unlimited

News category (three classified
as news category): 5
Other application types: 2
The application category is
subject to the "software
classification" submitted by the
basic application information
when creating the application. If
you need to modify the
application category, you can
update the application
information in the mobile
application list-application
details

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 41

Configuration methods

The client creates a custom
channel.
After the private message
application email passes,
you need to register the
channel on the OPPO push
platform and set the
corresponding attribute of
the channel to private.

Enable by default

OPPO private channel application
Private channel rights application
After the private application email is passed, you need to register the channel on the OPPO
push platform and set the corresponding attribute of the channel to private

Connecting with OPPO message classification and parameter
enumeration on mPaaS MPS

Parameter Type Require
d Examples Description

channelId Strin
g No channelId:"channelIdTest" OPPO private

channel channelId

vivo Message Classification
Manufacturer's instructions on message classification

Valid users for which notifications are enabled: The push-sdk subscription for application
integration is successful, and the device has the permission to enable notifications for
networking within the last 14 days.
If the number of active users on notification is less than 10000, the operation message
magnitude is 10000 by default.
The number of valid users with enabled notifications and the magnitude of operational
messages that can be sent can be queried in the push operation background.
The push quota is calculated based on the number of arrivals. If the number of arrivals on
the current day exceeds the limit, it is included in the control.

Msg Type System Message Operation Message

Push content

Messages that users need to
know in a timely manner, such as

instant messages, emails,
reminders set by users, and

notifications such as logistics

Messages that users pay less
attention to, such as: content

recommendations, activity
recommendations, social updates and

other notifications

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 42

https://open.oppomobile.com/new/developmentDoc/info?id=11227
https://push.oppo.com/

Notification bar
permissions

Default ring, vibrate, message
display
Default lock screen, suspended

By default, there is no ringing, no
vibration, and messages are stored
in the box when the application is
not alive
Default no lock screen, no
suspension

Push quantity limit

Three times the number of valid
users who are notified. You can

apply for unlimited message
permissions by email. For more
information, see Push message

limits.

News category (three-level
classification is news category): 3
times the number of effective users
who are informed
Other categories: 2 times the
number of effective users of
notification opening

User receive quantity
limit Unlimited

News category (three-level
classification is news category): 5
Other categories: 2

Connect to vivo's secondary message classification parameter
enumeration (thirdChannelCategory.vivo) on mPaaS MPS

Pass parameter (string) Description

1

IM
Point-to-point chat messages (private messages,
group chats, etc.) between users, including pictures,
file transfers, audio (or video) calls in chat messages,
not include private messages from unfollowed people,
official accounts, or private messages or
advertisements and email reminders pushed to users
by merchants in batches

2

ACCOUNT
Account changes: account online and offline, status
changes, information authentication, membership
expiration, renewal reminders, balance changes, etc.
Asset changes: real asset changes under the account,
typical operator reminders such as transaction
reminders, phone bill balance, traffic, voice duration,
SMS quota, etc.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 43

https://dev.vivo.com.cn/documentCenter/doc/695

3

TODO
TODO is related to personal schedule and needs to
remind users of something to deal with.

Meeting reminders, class reminders, appointment
reminders, travel flights and other travel-related
news.
The push object is the service provider: workflow
messages such as ticket processing, status flow
reminders, and order messages such as order
receipt, shipment, and after-sales reminders.
Business operation reminders such as insufficient
inventory, sold-out reminder, product removal
notice, cash withdrawal restriction, customer
complaint warning, store restriction, product
blacklist, transaction violation, fake /fraud-related
delivery notice, etc.

4

DEVICE_REMINDER
Reminder messages such as device status
/information /prompt /alarm sent by IoT devices
Health device reminders, including exercise (steps,
mileage, swimming distance, etc.), physical data
(heart rate, weight, body fat, calories, etc.)
Tips and status reminders related to mobile phone
operation

5

ORDER
Order-related information in various goods and
services such as e-commerce shopping and gourmet
group purchases is pushed to users.

Successful order placement, order details, order
status, after-sales progress, etc.
Logistics news such as express delivery, delivery,
signature, pickup, etc.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 44

6

SUBSCRIPTION
Users actively subscribe to follow and expect to
receive messages at specific times:

Actively subscribe to thematic content, schedule
event reminders, actively set live broadcast start
reminders, and book updates
Set product or air ticket price reductions, product
group opening reminders
Actively follow market trends reminders
Actively set check-in and clock-in reminders
Paid subscription content update reminders, etc.

Important
To apply for subscription messages, you must
meet the following requirements and provide
complete proof:

In-app support for users to subscribe
/unsubscribe, the user interface needs to
appear at least "subscribe" or
"appointment" and other words.
Subscription is an active behavior of
users. If users do not subscribe, messages
are not pushed to users.
After the user subscribes, the user
interface in the application has a clear
prompt, and the user will receive a push
message related to the subscription. For
example: you will receive xx message
push
The scope of subscribing to messages
should not be too broad or specific. For
example, subscribing to market
information is too broad and unspecific.
The push content needs to reflect that the
push is a user's subscription message. For
example, the header or body of a message
contains the following characters:
"Subscribe to messages", "Subscribe to
...", etc.

7
NEWS

Newly occurring and valuable factual news content.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 45

8

CONTENT
Content-based information recommendations include
hot searches, reviews, advertisements, books, music,
videos, live broadcasts, courses, programs, game
promotions, community topics, etc. as well as:

Related content information for each vertical
category
Weather forecast: including various weather
forecasts, weather warning reminders, etc.
Travel information: including traffic regulations
announcements, driving test information, navigation
road conditions, railway ticket purchase
announcements, epidemic news, road control, etc.

9

MARKETING
Non-user active settings, activities that require user
participation reminders, small game reminders,
service or commodity evaluation reminders, etc. For
example: lucky draw, points, sign-in, task, sharing,
crop someone's way on Farmville, receiving gold
coins, etc.
Commodity recommend, including red envelope
discounts, business service updates, new stores,
etc. For example, notice related to possible interest,
lowest price of goods, full reduction, promotion,
rebate, coupon, voucher, red envelope, credit score
increase, etc.
Other news: user survey questionnaire, function
introduction, invitation recommend, version update,
etc.

10

SOCIAL
Social interaction reminders between users, such
as: friend dynamics, new fans, adding friends, being
liked, being @, being collected, commenting,
leaving messages, following, replying, forwarding,
and stranger messages.
User recommendation: people nearby, big V,
anchor, opposite sex, people who may know, etc.

Connecting with vivo message classification and parameter
enumeration on mPaaS MPS

Parameter Typ
e

Requi
red Examples Description

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 46

classification Strin
g No classification:"1"

The type of
messages used to
pass the vivo push
channel:

0 - Operation
messages
1 - System class
messages

If this parameter is
not specified, the
default value is 1

thirdChannelCategory Map No thirdChannelCategory: {"vivo":
"1"}

In the example, a
value of "1" indicates
a vivo IM type
message

Note
The classification parameter "0" represents the operation message, which is directly
deducted from the total amount of operation messages without secondary correction by
intelligent classification, and is controlled by the frequency limit of the number of pieces
received by the user.
In the classification parameter, "1" indicates a system message. After the intelligent
classification is corrected twice, if the intelligent classification identifies that the message
is not a system message, it is automatically corrected to an operation message and the
amount of the operation message is deducted. If the message is identified as a system
message, the amount of the operation message is deducted from the total amount of the
system message.

Java sample code for MPS to connect to manufacture message
classification
The manufacturer's message classification push parameter recommendations are
all uploaded, and MPS will encapsulate the corresponding manufacturer
classification parameters according to the device type.

 DefaultProfile.addEndpoint("cn-hangzhou", "mpaas", "mpaas.cn-hangzhou.aliyuncs.com");
 // Create and initialize a DefaultAcsClient instance.
 // The AccessKey pair of an Alibaba Cloud account has permissions on all API op
erations. We recommend that you use a RAM user to call API operations or perform routin
e O&M.
 // We recommend that you do not hard code your AccessKey ID and AccessKey secre
t in your project code. Otherwise, the AccessKey pair may be leaked and the security of
all resources within your account is compromised.
 // In this example, the AccessKey ID and AccessKey secret are saved as
environment variables. You can also save the AccessKey pair in the configuration file b
ased on your business requirements.
 // We recommend that you configure environment variables first.
 String accessKeyId = System.getenv("MPAAS_AK_ENV");
 String accessKeySecret = System.getenv("MPAAS_SK_ENV");
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // The region ID.
 accessKeyId,

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 47

 accessKeyId,
 accessKeySecret);

IAcsClient client = new DefaultAcsClient(profile);
// Create an API request and set parameters
PushSimpleRequest request = new PushSimpleRequest();
request.setAppId("ONEX570DA89211721");
request.setWorkspaceId("test");
request.setTaskName("Test task");
request.setTitle("Test");
request.setContent("Test");
request.setDeliveryType(3L);
Map<String,String> extendedParam = new HashMap<String, String>();
extendedParam.put("key1","value1");
request.setExtendedParams(JSON.toJSONString(extendedParam));
request.setExpiredSeconds(300L);

request.setPushStyle(2);
String imageUrls = "{\"defaultUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.al
iyuncs.com/tmp/test.png\",\"miuiUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"fcmUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"iosUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\"}";
String iconUrls = "{\"defaultUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"hmsUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.al
iyuncs.com/tmp/test.png\",\"miuiUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\"}";
request.setImageUrls(imageUrls);
request.setIconUrls(iconUrls);

request.setStrategyType(2);
request.setStrategyContent("
{\"fixedTime\":1630303126000,\"startTime\":1625673600000,\"endTime\":1630303126000,\"circle
Type\":1,\"circleValue\":[1, 7],\"time\":\"13:45:11\"}");

Map<String,String> target = new HashMap<String, String>();
String msgKey = String.valueOf(System.currentTimeMillis());
target.put("user1024",msgKey);
request.setTargetMsgkey(JSON.toJSONString(target));

// The manufacture message category field.

// Encapsulate the VIVO message classification level 1 category.
request.setClassification("1");
// Encapsulate Huawei message classification, HONOR message classification, and VIVO me
ssage classification level 2 category
Map<String, String> map = new HashMap<>();
map.put("hms", "2");
map.put("vivo", "3");
map.put("HONOR", "1");
pushSimpleReq.setThirdChannelCategory(map);
// Encapsulate the Xiaomi message classification.
pushSimpleReq.setMiChannelId("miChannelIdTest);

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 48

pushSimpleReq.setMiChannelId("miChannelIdTest);
// Encapsulate the OPPO message classification.
pushSimpleReq.setChannelId("channelIdTest");

// Initiate the request and handle the response or exceptions
PushSimpleResponse response;
try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
} catch (ClientException e) {
 e.printStackTrace();
}

After integrating the push SDK, you can configure the client as follows:
Clear corner mark
Submit vendor channel token
Custom notification channels (NotificationChannel)

Prerequisites
The MPPushMsgServiceAdapter method in this topic applies only to baseline versions
10.1.68.32 and later. If the current baseline version is earlier than 10.1.68.32, upgrade the
baseline version by referring to mPaaS Upgrade Guide.
The AliPushRcvService method in the old version can still be used. Click here to
download the old version of the document.

Clear corner mark
For messages received through the vendor channel, the number of messages can be
displayed on the app icon. Currently, the push SDK only supports Huawei channels to
automatically clear corner markers.

Set the application corner to automatically clear when the user clicks the notification:

// Specify whether to automatically clear the data.
 boolean autoClear = true;
 MPPush.setBadgeAutoClearEnabled(context, autoClear);
 // Set the application entry Activity class name. If you do not set this parameter,
you cannot clear the corner mark.
 String activityName = "com.mpaas.demo.push.LauncherActivity";
 MPPush.setBadgeActivityClassName(context, activityName);

In scenarios where corner markers cannot be automatically cleared, for example, when a
user actively clicks an application icon to enter an application, you can call the following
method in the Application to actively clear corner markers:

 MPPush.clearBadges(context);

Report vendor channel token

4.1.5. Advanced features

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 49

https://gw.alipayobjects.com/os/bmw-prod/0f269a4c-c5f6-4ca2-b323-74564cd91ccc.pdf

If you have connected to the vendor channel, the push SDK will receive the token of the
vendor channel after initialization. The push SDK will automatically bind the vendor channel
token and user-created channel token for reporting.
If necessary, you can listen for the issuance and reporting of the vendor channel token by
rewriting the MPPushMsgServiceAdapter onChannelTokenReceive and
 onChannelTokenReport methods:

public class MyPushMsgService extends MPPushMsgServiceAdapter {

 /**
 * Callback of the vendor channel token received
 *
 * @param channelToken The token of the vendor channel.
 * @param channel The type of the vendor channel.
 */
 @Override
 protected void onChannelTokenReceive(String channelToken, PushOsType channel) {
 Log.d("Received vendor channel token: " + channelToken);
 Log.d("Vendor: " + channel.getName());
 }

 /**
 * Callback for the result of vendor channel token reporting
 *
 * @param result The report result.
 */
 @Override
 protected void onChannelTokenReport(ResultBean result) {
 Log.d("Report vendor token " + (result.success ? "Success" : ("Error:" +
result.code)));
 }

 /**
 * Indicates whether the vendor token is automatically reported.
 *
 * @return The return value is false, which can be reported as required.
 */
 @Override
 protected boolean shouldReportChannelToken() {
 return super.shouldReportChannelToken();
 }

}

If you need to bind the report, you can override the shouldReportChannelToken method and
return false, and call it after ensuring that you have received two tokens:

MPPush.report(context, token , channel.value(), channelToken);

Custom NotificationChannel
To customize the name and description of the NotificationChannel of the self-built channel,
you can add them in the AndroidManifest.xml :

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 50

<meta-data
 android:name="mpaas.notification.channel.default.name"
 android:value="Name" />
<meta-data
 android:name="mpaas.notification.channel.default.description"
 android:value="Description" />

Adjust push channel priority order
Baseline 10.2.3.43 and later allow you to adjust the priority of vendor channels on specific
devices. To use this feature, create a mpaas_push_config.properties file in the assets
directory of your project and enable it as needed.

Prioritize the Honor channel on Huawei /Honor devices
To preferentially use the Honor Push Channel on Huawei or Honor devices, add the following
to the file mpaas_push_config.properties:

// Prioritize the use of Honor channels on Huawei /Honor devices
isHonorBeforeHms=true

Prioritize the use of device vendor channels on devices with
FCM push capabilities
To preferentially use the device vendor's channel on devices with FCM push capabilities, add
the following to the file mpaas_push_config.properties:

// Device vendor’ channels will be used first on devices with FCM push capability.
isFcmEnd=true

This guide introduces how to integrate MPS to iOS client. You can integrate MPS to iOS client
based on native project with CocoaPods.

Note
Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to
10.1.68 or 10.1.60, see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

Prerequisites
You have integrated your project to mPaaS. For more information, refer to Integrate based on
native framework and using Cocoapods.

Procedure
To use MPS, you should complete the following steps.

1. Use CocoaPods plugin to add the MPS SDK.
i. In the Podfile file, use mPaaS_pod "mPaaS_Push" to add dependency.
ii. Execute pod install to complete integrating the SDK.

4.2. iOS

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 51

2. Configure the project.
Enable the following functions in the TARGETS directory of your project:

Capabilities > Push Notifications

Capabilities > Background Modes > Remote notifications

3. Use the SDK. In the case of using CocoaPods to access the iOS client based on an existing
project, you need to complete the following operations.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 52

i. (Optional) Register device token.
The message push SDK will automatically request the registration of deviceToken when
the application is started. Generally, you do not need to request the registration of
deviceToken. But in special cases (such as when there is privacy control at startup, when
all network requests are blocked), you need to trigger the registration of deviceToken
again after the control and authorization. The sample code is as follows:

- (void)registerRemoteNotification
{
 // Push notification registration
 if ([[[UIDevice currentDevice] systemVersion] floatValue] >= 10.0) {// 10.0+
 UNUserNotificationCenter* center = [UNUserNotificationCenter
currentNotificationCenter];
 center.delegate = self;
 [center
getNotificationSettingsWithCompletionHandler:^(UNNotificationSettings * _Nonnull se
ttings) {

 [center requestAuthorizationWithOptions:
(UNAuthorizationOptionAlert|UNAuthorizationOptionSound|UNAuthorizationOptionBadge)
 completionHandler:^(BOOL granted, NSError *
_Nullable error) {
 // Enable or disable features based on authorization.
 if (granted) {
 dispatch_async(dispatch_get_main_queue(), ^{
 [[UIApplication sharedApplication]
registerForRemoteNotifications];
 });
 }
 }];

 }];
 } else {// 8.0,9.0
 UIUserNotificationSettings *settings = [UIUserNotificationSettings
settingsForTypes:(UIUserNotificationTypeBadge
|UIUserNotificationTypeSound|UIUserNotificationTypeAlert) categories:nil];
 [[UIApplication sharedApplication]
registerUserNotificationSettings:settings];
 [[UIApplication sharedApplication] registerForRemoteNotifications];
 }
}

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 53

ii. Obtain the device token and bind it with user ID.
The message push SDK provided by mPaaS encapsulates the
logic of registering with the APNs server. After the program
starts, the Push SDK automatically registers with the APNs
server. You can obtain the deviceToken issued by APNs in
the callback method of successful registration, and then call
the interface method of PushService to report the binding
userId to the mobile push core.
// import <PushService/PushService.h>
- (void)application:(UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken
{
 [[PushService sharedService] setDeviceToken:deviceToken];
 [[PushService sharedService] pushBindWithUserId:@"your userid(to be replaced)"
completion:^(NSException *error) {
 }];

}

The push SDK also provides the API - (void)pushUnBindWithUserId:(NSString *)userId
completion:(void (^)(NSException *error))completion; for unbinding the device token
from the user ID of the app. For example, you can call the unbind API after the user
switches to another account.

iii. Receive push messages.
After the client receives the pushed message, if the user
clicks to view it, the system will start the corresponding
application. The logic processing after receiving the push
message can be done in the callback method of AppDelegate .

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 54

In the system versions earlier than iOS 10, the methods of
processing notification bar messages or silent messages
are as follows:
 // Cold start for push messages in system versions earlier than iOS 10
 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions {
 NSDictionary *userInfo = [launchOptions objectForKey:
UIApplicationLaunchOptionsRemoteNotificationKey];
 if ([[[UIDevice currentDevice] systemVersion] doubleValue] < 10.0) {
 // Cold start for push messages in system versions earlier than iOS 10
 }

 return YES;
 }

 // When the app runs in the foreground, adopt the method of processing common p
ush messages; when the app runs in the background or foreground, adopt the method
of processing silent messages ; when the app version is earlier than iOS 10, adop
t the method of processing notification bar messages
 -(void)application:(UIApplication *)application didReceiveRemoteNotification:(N
SDictionary *)userInfo fetchCompletionHandler:(void (^)(UIBackgroundFetchResult r
esult))completionHandler
 {
 // Process received messages
 }

On iOS 10 and above, you need to implement the following delegate methods to listen
for notification bar messages:

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 55

 // Register UNUserNotificationCenter delegate
 if ([[[UIDevice currentDevice] systemVersion] doubleValue] >= 10.0) {
 UNUserNotificationCenter* center = [UNUserNotificationCenter
currentNotificationCenter];
 center.delegate = self;
 }

 // Receive remote push messages when the app runs in the foreground
 - (void)userNotificationCenter:(UNUserNotificationCenter *)center willPresentNo
tification:(UNNotification *)notification withCompletionHandler:(void (^)(UNNotif
icationPresentationOptions options))completionHandler
 {
 NSDictionary *userInfo = notification.request.content.userInfo;

 if([notification.request.trigger isKindOfClass:[UNPushNotificationTrigger c
lass]]) {
 // Receive remote push messages when the app runs in the foreground

 } else {
 // Receive local push messages when the app runs in the foreground

 }
 completionHandler(UNNotificationPresentationOptionNone);
 }

 // Receive remote push messages when the app runs in the background or uses col
d start mode
 - (void)userNotificationCenter:(UNUserNotificationCenter *)center didReceiveNot
ificationResponse:(UNNotificationResponse *)response withCompletionHandler:(void(
^)(void))completionHandler
 {
 NSDictionary *userInfo = response.notification.request.content.userInfo;

 if([response.notification.request.trigger isKindOfClass:
[UNPushNotificationTrigger class]]) {
 // Receive remote push messages when the app runs in the background or
uses cold start mode

 } else {
 // Receive local push messages when the app runs in the foreground

 }
 completionHandler();

 }

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 56

iv. Calculate message open rate.
In order to count the open rate of messages on the client side, you need to call the
 pushOpenLogReport interface of PushService (available in versions 10.1.32 and
above) to report the message open event when the app message is opened by the user.
After the event is reported, you can view the statistics of the message open rate on the
Message Push > Overview page in the mPaaS console.

/**
 * Enable the API for reporting push messages so that the message open rate can be
calculated.
 * @param userInfo userInfo of a message
 * @return
 */
- (void)pushOpenLogReport:(NSDictionary *)userInfo;

4. Configure a push certificate.
To push messages through the MPS console of mPaaS, you need to configure an APNs push
certificate in the console. This certificate must match the signature on the client.
Otherwise, the client cannot receive push messages.
For more information about the configuration, see Configure an iOS push certificate.

Follow-up steps
After an APNs certificate is configured on the MPS console of mPaaS, messages can be
pushed to applications in device dimension. MPS pushes messages to clients through
Apple APNs. For more information, see Push process for Apple devices and Android devices
outside China.
After user IDs are reported and the server binds them with device tokens, messages can be
pushed to applications in user dimension.

Code sample
Click here to download the code sample.

Related topics
Create a message
Configure the server

Live Activity message push
iOS introduces a new feature in version 16.1: Live Activity. This feature can display real-time
activities on the locked screen, helping users learn the progress of various activities in real
time from the locked screen. In the main project, you can use the ActivityKit framework to
start, update, and end the real-time activities. Among them, updating and ending real-time
activities can also be achieved through using remote push. In the widget extension, you can
use SwiftUI and WidgetKit to create the live activity interface. Among them, the live activity
remote push update function does not support .p12 certificate, so users need to configure
 .p8 certificate.
Multiple live activities can be opened at the same time in the same project, and different live
activities have different tokens.

Access client
Configure the project which support Live Activity

Add a key-value pair in the Info.plist file of the main project. The key is

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 57

https://github.com/mpaas-demo/ios-push?spm=a2c4g.11186623.2.15.40556fe0bjccoZ

1. Add a key-value pair in the Info.plist file of the main project. The key is
 NSSupportsLiveActivities and the value is YES .

2. Create a new Widget Extension. If it already exists in the project, you can skip this step.

Access client by code
1. Create model.

Create a new swift file in the main project code and define ActivityAttributes and
Activity.ContentState in it. The following code is sample code, please write it according to
actual business.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 58

import SwiftUI
import ActivityKit

struct PizzaDeliveryAttributes: ActivityAttributes {
 public typealias PizzaDeliveryStatus = ContentState

 public struct ContentState: Codable, Hashable {
 var driverName: String
 var estimatedDeliveryTime: ClosedRange<Date>

 init(driverName: String, estimatedDeliveryTime: ClosedRange<Date>) {
 self.driverName = driverName
 self.estimatedDeliveryTime = estimatedDeliveryTime
 }
 init(from decoder: Decoder) throws {
 let container:
KeyedDecodingContainer<PizzaDeliveryAttributes.ContentState.CodingKeys> = try decoder
.container(keyedBy: PizzaDeliveryAttributes.ContentState.CodingKeys.self)
 self.driverName = try container.decode(String.self, forKey:
PizzaDeliveryAttributes.ContentState.CodingKeys.driverName)
 if let deliveryTime = try? container.decode(TimeInterval.self, forKey:
PizzaDeliveryAttributes.ContentState.CodingKeys.estimatedDeliveryTime) {
 self.estimatedDeliveryTime =
Date()...Date().addingTimeInterval(deliveryTime * 60)
 } else if let deliveryTime = try? container.decode(String.self, forKey: P
izzaDeliveryAttributes.ContentState.CodingKeys.estimatedDeliveryTime) {
 self.estimatedDeliveryTime =
Date()...Date().addingTimeInterval(TimeInterval.init(deliveryTime)! * 60)
 } else {
 self.estimatedDeliveryTime = try
container.decode(ClosedRange<Date>.self, forKey:
PizzaDeliveryAttributes.ContentState.CodingKeys.estimatedDeliveryTime)
 }
 }
 }

 var numberOfPizzas: Int
 var totalAmount: String
}

Both the main project target and Activity must be selected.
Received push messages are processed by the system and cannot be intercepted by
developers.
 ContentState contains data that can be dynamically updated. When pushing Live
Activity notifications, the dynamically updated parameter names and types must
correspond to those configured in ContentState .
If some data needs to be processed, you need to override the decoder method of
 ActivityAttributes.ContentState .

2. Create interface.
Create live, active interfaces in Widget Extensions. Creates the Widget and returns an
 Activity Configuration . Please write the specific UI according to your own business.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 59

3. Use WidgetBundle.
If the target App supports both widgets and live activities, use a WidgetBundle.

import WidgetKit
import SwiftUI

@main
structIslandBundle: WidgetBundle {
varbody: someWidget {
Island()
IslandLiveActivity()
}
}

4. Turn on the live activity.

func startDeliveryPizza() {
 let pizzaDeliveryAttributes = PizzaDeliveryAttributes(numberOfPizzas: 1, totalAmo
unt:"$99")
 let initialContentState = PizzaDeliveryAttributes.PizzaDeliveryStatus(driverName:
"TIM", estimatedDeliveryTime: Date()...Date().addingTimeInterval(15 * 60))
 do {
 let deliveryActivity = try Activity<PizzaDeliveryAttributes>.request(
 attributes: pizzaDeliveryAttributes,
 contentState: initialContentState,
 pushType: .token)
 } catch (let error) {
 print("Error requesting pizza delivery Live Activity \
(error.localizedDescription)")
 }
}

5. Submit Token.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 60

After the live activity is successfully turned on, the push Token of the live activity returned
by the system is obtained through the pushTokenUpdates method. Call PushService's
 liveActivityBindWithActivityId:pushToken:filter:completion: method to submit. When
submitting the Token, the identifier of the live activity needs to be submitted together. This
identifier is needed when pushing live activities, and the server confirms the push target
based on this identifier. Please customize the identity of this live activity. Different live
activities have different ids (if they are same, it will cause push problems). For the same
live activity, do not change the id when the Token is updated.

Note
ActivityKit is a swift language framework and does not support direct OC calls. When
using the framework API, please call it in the swift file. Since MPPushSDK is an OC
language, when swift calls OC, a bridge file needs to be created. And import #import
<MPPushSDK/MPPushSDK.h> in the bridge file.

let liveactivityId = UserDefaults.standard.string(forKey: "pushTokenUpdates_id") ?? "
defloutliveactivityId"
Task {
 for await tokenData in deliveryActivity.pushTokenUpdates {
 let newToken = tokenData.map { String(format: "%02x", $0) }.joined()
 PushService.shared().liveActivityBind(withActivityId: liveactivityId,
pushToken: newToken, filter: .call) { excpt in
 guard let excpt = excpt else {
 ///Submitted successfully
 return
 }
 if "callRepeat" == excpt.reason {
 ///Repeated call, please ignore
 print("pushTokenUpdates_id-Repeated calls")
 } else {
 ///Submit failed
 }
 }
 }
}

After submitting successfully, the updates can be pushed by using the identification of live
activities.

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 61

Note
Since the iPhone's pushTokenUpdates will be called twice at the same time, that is, in
the scenario of multiple live activities, the previous live activity pushTokenUpdates will
be reawakened when a new live activity is created, so the SDK provides a filtering
function, controlled by the parameter filter:

When filter is MPPushServiceLiveActivityFilterAbandon , the SDK will
automatically discard repeated calls without giving a callback.
When filter is MPPushServiceLiveActivityFilterCall , the SDK will automatically
filter out this request and give a failure callback (callRepeat). At this time,
 error.reason is @"callRepeat" , please ignore it.
When filter is MPPushServiceLiveActivityFilterReRefuse , no filtering is
performed inside the SDK. When the same activityId and pushToken are called
repeatedly, if the submitting fails, the client's re-submitting will not be
considered the same call.

The definition of MPPushServiceLiveActivityFilterType is as follows:

typedef NS_ENUM(NSInteger, MPPushServiceLiveActivityFilterType){
 MPPushServiceLiveActivityFilterAbandon,//Abandon it directly without any callback
 MPPushServiceLiveActivityFilterCall,//Filter out this request and give a callback
for failure(callRepeat)
 MPPushServiceLiveActivityFilterRefuse//No filtering
};

Message Push Service User Guide·Client-side develo
pment

> Document Version: 20240808 62

After learning about the message push process of Mobile Push Service, you need to configure
signature verification, bind users and devices, and push messages.

Prerequisites
You have activated mPaaS.
You have a server-side application.
You have reported the user ID and device ID on client.

Procedure
Step 1: Bind users and devices
When obtaining the user ID and device ID reported by client, the server calls the interface
provided by mobile push service to complete binding.
For more information about interfaces, see Client APIs or Server APIs.

Step 2: Push messages
Server can push the following four types of messages by calling interfaces:

Simple Push: Push simple messages.
Template Push: Push templated messages.
Multiple Push: Push different messages to different targets.
Broadcast Push: Push message to all users.

5.Server-side configuration
Message Push Service User Guide·Server-side config

uration

> Document Version: 20240808 63

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use
10.1.68 or 10.1.60 instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or 10.1.60,
see mPaaS 10.1.68 upgrade guide (Android/iOS) or mPaaS 10.1.60 upgrade guide (Android/iOS).

MPS provides statistics on message push data including pushed messages, successfully
pushed messages, message arrivals, opened messages, and ignored messages, and supports
filtering the data by platform, version, push channel, push type, and other criteria, and
exporting the data reports.

Prerequisites
You have integrated MPS SDK based on the mPaaS framework.
You have completed client tracking by referring to the following topics. All data involved in
usage analysis are collected from the SDK tracking logs.

Android: Report push data
iOS: Calculate message open rate

Note
For iOS devices, currently you can only collect the message open rate.

View push data
To view the statistical data about MPS usage, you should complete the following steps:

1. Log in to the mPaaS console, select the target app, and enter the Message Push Service
> Overview page.

2. Set filter criteria to query statistical data. You can filter by platform, version, push
channel, push type, and time, or input a complete task ID to search.

Note
Searching data with task ID only works for messages delivered through multiple push.
You can view the task ID on the Multiple push records page.

Platform: The options include All platforms, Android - workspaceId, and iOS -
workspaceId. Available options depend on the existing push platforms with message
push and the push console which launches message push. For example, if no message
has been pushed to iOS devices, the iOS - workspaceId option is unavailable. In these
options, workspaceId indicates the workspace ID of the push console.
Version: The value depends on tracking log reported by the client SDK. MPS gets the app
version based on MAS statistics.
Push channel: The options include All push channels, MPS self-built channel, and
Third-party channel (such as MIUI, HMS, vivo, OPPO and iOS). Only when any message
push through the push channel occurred, the corresponding option is available. For
example, if no message has been pushed through MIUI (MiPush) channel, the MIUI option
is unavailable.

6.Console operations
6.1. Data overview

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 64

Push type: The options include All push types, Simple push - non-template based,
Simple push - template based , Multiple push - all devices , and Multiple push -
not all devices. Only when message push of the push type occurred, the corresponding
option is available. For example, if no template-based simple push occurred, the
corresponding option is unavailable.
Time range: A maximum of 90 days is allowed.

Core metrics
Display the critical push data within a certain period, including the pushed messages,
successfully pushed messages, message arrivals, opened messages, ignored messages, etc.

Metrics Description

Pushed messages The total number of messages pushed by the backend, which is
counted by backend.

Successfully pushed messages

MPS automatically collects statistics on the actual number of
messages that have been pushed in the specified time period,
which is counted by backend. The statistics doesn't care whether
the messages were pushed within the specified time period.

One push task may contain multiple target IDs, and MPS needs
to push a message to each of these targets.
If a token has expired or a user binding relationship does not
exist, the target ID is invalid and MPS will not count the
messages pushed to this target.

Message arrivals

The actual number of messages that have arrived at the client,
which is counted by client. The statistics doesn’t care whether the
messages were pushed within the specified time period.
For example, if the message arrivals during 2021.8.1 ~ 2021.8.7 is
100, it means 100 pieces of messages arrived at client during the
period. Among those 100 pieces of messages, some may be
pushed before August 1.
The data statistics varies with the push channels:

Android self-built channel: After messages are successfully
pushed to devices, statistics are collected based on tracking log
data reported by the client SDK.
iOS and Android third-party channels: After messages are
pushed through specified channels, statistics are collected based
on push results returned by backend services of these channels.

Arrival rate Arrival rate = (Message arrivals/Pushed messages) × 100%.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 65

Opened messages

The actual number of messages that have been opened on the
client, which is counted by client. The value depends on tracking
log data reported by the client SDK. MPS obtains the number of
opened messages based on MAS statistics. The statistics doesn't
care whether the messages arrived at client within the specified
time period.
For example, if the number of opened messages during 2021.8.1 ~
2021.8.7 is 88, it means 88 pieces of messages were opened by
users during the period. Among those 88 pieces of messages, some
may have arrived at client before August 1.

Open rate Open rate = (Opened messages/Message arrivals) × 100%

Ignored messages

The number of messages that are manually ignored by users on
the client. The statistics doesn't care whether the messages arrived
at client within the specified time period. The value depends on
tracking log data reported by the client SDK. MPS obtains the
number of ignored messages based on MAS statistics.
For example, if the number of ignored messages during 2021.8.1 ~
2021.8.7 is 66, it means 66 pieces of messages were manually
ignored by users during the period. Among those 66 pieces of
messages, some may have arrived at client before August 1.

Ignorance rate Ignorance rate = (Ignored messages/Message arrivals) × 100%

Data trend
Message push statistical data is presented in a line chart. You can click the metric legend
under the chart to hide or display the curve of a metric.
In the upper left corner of the chart, you can select Query by quantity or Query by rate to
view the metric statistics in quantity or rate curves.

Query by quantity: Displays curves of pushed, arrived, opened, and ignored messages.
Query by rate: Displays curves of the arrival rate, open rate, and ignorance rate.

In the upper right corner of the chart, you can select a granularity to display the chart by
minute, hour, or day.

Minutes: The horizontal axis displays the time points (accurate to minutes) of pushed,
arrived, opened, and ignored messages.
Hours: The horizontal axis displays the time points (accurate to hours) of pushed, arrived,
opened, and ignored messages.
Days: The horizontal axis displays the time points (accurate to days) of pushed, arrived,
opened, and ignored messages.

Note
If you set a duration longer than one day, Minutes and Hours will be unavailable.

Push details
Daily or hourly push details listed in the table are consistent with data displayed in the core
metric chart.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 66

The time points in the Time column are obtained from the horizontal axis of the core metric
chart.
The list contains the following core metrics: pushed messages, successfully pushed
messages, message arrivals (arrival rate), opened messages (open rate), and Ignored
messages (ignorance rate).

Click Export in the upper right corner to download the corresponding data.

Important
Since March 18th, 2022, mPaaS MPS console has been upgraded. On the new console, the
push types have been integrated and optimized from the previous four types (simple
push, template push, multiple push and broadcast push) to two types (simple push and
multiple push). The upgraded simple push covers the capabilities of the original simple
push and template push; the upgraded multiple push covers the capabilities of the
original multiple push and broadcast push.

Simple push refers to pushing a message to an individual user or device. When you pushing
messages in this mode, you can either customize messages or create messages based on a
predefined message template.
Customizing message is applicable for the scenarios of pushing messages to a few targets,
such as verifying the validity of Apple Push certificate and checking whether the Android Push
SDK is correctly integrated. The message template is suitable for the scenario of pushing
messages to multiple targets in multiple times. That is to verify and test the template
function by creating a template-based message through the console before the template
function is automatically or widely used.

Note
The messages are pushed immediately after they are created. You cannot delete or
modify them.
Since manual operations are required, we recommend you push messages through
the console in the scenarios requiring low-frequency message push, such as
system verification, operation support, and temporary emergency requirement.

The following sections describe how to create a simple push message in the console.

Prerequisites
To push messages to iOS devices, you should have integrated MPS iOS SDK (see Integrate
iOS SDK) and configured the iOS push certificate on the Channel configuration page in
the mPaaS console. For more information, see Configure iOS push channel.
To push messages through the Android vendor channels (also known as third-party
channels), you should have integrated MPS Android SDK (see Integrate Android SDK),
integrated relevant vendor channels (see Integrate vendor push channels) and completed
corresponding push channel setting on the Channel configuration page in the mPaaS
console. For more information, see Channel configuration.

Procedure

6.2. Message management
6.2.1. Create a message - Simple push

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 67

1. Log in to the mPaaS console, select the target app, and go to the Message Push Service
> Message management page.

2. Click the Create message push task button, and in the pop-up dialog box, select the
Simple push tab.

3. On the simple push tab page, configure the basic information of the message. The
configuration items are as follows:

Parameter Required Description

Message type:
silent message Yes

Whether to display the message:
Yes: Indicates that the message will not be displayed in
any form on the target device, and user has no sense
about it.
No: Indicates that the message will be displayed in the
notification bar.

For Android devices, you need to perform different
operations according to the push channel that you have
selected:

MPS channel: This parameter is sent to the client as a
reference field. You need to parse the message body
and get the content of this field, then control the display
of the message.
Vendor channel: This parameter is sent to the target
device as a field. The device vendor's system will then
parse the content of this field, and control the display of
the message. You do not need to perform any other
operations.

For iOS devices, the display of messages is controlled by
the device vendor’s system. You do not need to perform
any other operations.

Message content
creation method Yes

Create the message in either of the following ways:
Create: Customizes message content, including
message title, body and the presentation style.
Use a template: Uses the predefined template.

Template Yes

Choose a message template from templates listed on the
Message templates page.

Note
It is required only when you choose to create the
message based on a template.

Template
placeholder Yes

Enter variable values in the template. The system provides
configuration options for placeholders in the selected
template.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 68

Push dimension Yes

Select the message delivery mode:
Users: Push messages by user ID. You need to call the
bind API to bind the user ID with device ID. For more
information about the binding API, see Client APIs.
Android: Push messages by Android device ID.
iOS: Push messages by iOS device ID.

User ID/Device
ID Yes

Input the corresponding user ID or device ID according to
the push dimension you chose.

When the push dimension is Android, input the Ad-
token.
When the push dimension is iOS, input the Device
Token.
When the push dimension is user, input the actual user
ID, that is the value of userid passed in when you
called the binding API.
If there is any space in the device ID obtained from
sources such as logs, you need to delete the space.

Push priority of
Android message
channels

Yes

Only available for Android push platform.
Vendor channels preferred: Vendor channels are
preferred. If vendor channels are integrated, messages
are pushed through the corresponding vendor channels;
if no vendor channel is integrated to the app, the
messages are pushed through MPS self-built channel.
MPS channel: MPS uses the self-built channel to push
messages.

For Android devices, this parameter specifies whether to
push messages through an MPS self-built channel or
vendor channel. For iOS devices, you do not need to set
this parameter (iOS push belongs to vendor channel push).

Parameter Required Description

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 69

Display style Yes

The style that how the message is displayed on the client.
You can choose any one of the following three styles:
Default (short text), Big text, and Rich text.

Default: This style is suitable for messages with
concise and clear content. The message of this style
contains title and text only. It is recommended to keep
the length of the message text within 100 characters,
including custom parameters and symbols.
Big text: This style is suitable for messages with long
text, such as information and news messages, so users
can quickly obtain information without opening the
application. The message of this style contains title and
text only. It is recommended to keep the length of the
message text within 256 characters, including custom
parameters and symbols.
Rich text: This style supports the messages containing
icon and image, suitable for the messages with various
content. To ensure good message presentation effect, it
is better to keep the text within two lines.

Message title Yes
Enter the title of the message with no more than 200
characters. The message display effect can be previewed
in the preview area.

Message content Yes
Enter the message boy with no more than 200 characters.
The message display effect can be previewed in the
preview area.

Icon No

The icon displayed on the right of the message, which can
be JPG, JPEG or PNG image. Enter the public accessible URL
of the icon here.
If you only provide the default icon URL while no materials
are uploaded for the corresponding vendor channels, the
default icon will be automatically pulled and used for the
messages pushed through the vendor channels. Since the
vendor channels have different requirements on the icon
material, it is suggested to upload the material for each
vendor channel separately according to their
requirements.

Default icon: The suggested size is 140 * 140px, not
exceeding 50 KB.
OPPO icon: The suggested size is 140 * 140px, not
exceeding 50 KB.
Xiaomi icon: The suggested size is 120 * 120px, not
exceeding 50 KB.
Huawei icon: The suggested size is 40 * 40dp, not
exceeding 512 KB.
FCM icon: If no specific requirement applies, the
default icon will be automatically used.

Parameter Required Description

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 70

Large image No

The image displayed at the lower part of the message,
which can be JPG, JPEG or PNG image. Enter the public
accessible URL of the image here.
If you only provide the default image URL while no
materials are uploaded for the corresponding vendor
channels, the default large image will be automatically
pulled and used for the messages pushed through the
vendor channels. Since the vendor channels have different
requirements on the image, it is suggested to upload the
material for each vendor channel separately according to
their requirements.

Default large image: The suggested size is 876 *
324px, not exceeding 1 MB.
OPPO large image: The suggested size is 876 * 324px,
not exceeding 1 MB.
Xiaomi large image: The suggested size is 876 *
324px, not exceeding 1 MB.
iOS large image: Supports custom images, without
limitation on image size.
FCM large image: If no specific requirement applies,
the default image will be automatically used.

Push mode Yes

Select the time to push message:
Now: Push the message immediately once the message
push task is created.
Scheduled: Specify a time to push the message. For
example, push the message at 8:00 am on June 19th.
Cyclic: Push the message at a specific time cyclically
within a period. For example, push the message at 8:00
am every Friday from June 1st to September 30th.

Parameter Required Description

The preview area is on the right side of the message creation window. To preview the
message display effects for different platforms respectively, click Notification, iOS
message body and Android message body.

4. (Optional) Configure the advanced information on demand. In the Advanced information
area, complete the following configurations:

Redirect upon click: Specify the operation to be performed after a user taps the
message on the phone. This parameter is sent to the client as a reference field. You need
to implement subsequent operations by referring to the field.

Web page: Users will be redirected to a Web page.
Custom page: Users will be redirected to a native page.

Redirection address: The page to be visited after a user taps the message on the
mobile phone. Enter the address according to the option you chose.

For Web page, enter the URL of the web page to be visited.
For custom page, enter the address of the native page to be visited (Android:
ActivityName; iOS: VCName).

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 71

Custom message ID: Custom message ID is automatically generated by the system to
uniquely identify the message in the client's system. It can be customized and a
maximum of 64 characters are allowed.

Note
Custom message ID is required for silent message only.

Valid period: Specify the valid period of the message in seconds. To ensure the
message arrival rate, when a message fails to be sent because the device is offline or the
user is logged out, MPS will resend it after the device is connected or a user binding
request is initiated within the validity period of the message. It is 180 seconds by default.

Note
The valid period cannot be shorter than 180 seconds or longer than 72 hours.

Extension parameters: Turn the switch on, click Add parameter, set the key/value,
and left click on any area of the page to complete setting. The extension parameters are
passed to the client together with the message body for your use.
Extension parameters include the following three types:

System extension parameters
These extension parameters are occupied by the system, and cannot be modified.
System extension parameters include notifyType , action , silent , pushType ,
 templateCode , channel , and taskId .

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 72

System extension parameters with some significance
These extension parameters are occupied by the system and have some significance.
You can configure values of these extension parameters.
For more information about these parameters, see the following table.

Parameter Description

sound
The custom ringtone of the message. The value of this
parameter is the path of the ringtone. This parameter is only
valid for Xiaomi phones and iPhones.

badge

Badge number. Its value is a specific number. This extension
parameter will be passed to the client together with the
message body.

For Android devices, you need to implement the badge logic
by yourself.
For iOS devices, iOS system automatically implements the
badge logic. When a message is pushed to the target
mobile phone, the number that you specified in value
appears in the badge of the app icon.

mutable-content
The APNs custom push identifier. If a pushed message carries
this parameter, it indicates that the
 UNNotificationServiceExtension of iOS10 is supported,

otherwise it is a normal push. The value is set to 1.

badge_add_num Accumulative badge number, only available in Huawei
channel.

badge_class Activity class corresponding to the desktop app icon in Huawei
channel.

big_text
Big text style, the value is fixed to 1, and other values are
invalid. This parameter is only valid for Xiaomi and Huawei
phones.

User-defined extension parameters
All other parameters than system extension parameters and system extension
parameters with some significance are user-defined extension parameters. User-
defined extension parameters are passed to the client together with the message body
for your use.

5. Click Submit to complete creating the message. The new message will appear in the
simple push records.

In addition to console operation, you can also push messages by calling relevant APIs. For
more information, see Server APIs.

Relevant operations
Create a message – Multiple push

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 73

Call API to push messages
Manage messages

Important
Since March 18th, 2022, mPaaS MPS console has been upgraded. On the new console, the
push types have been integrated and optimized from the previous four types (simple
push, template push, multiple push and broadcast push) to two types (simple push and
multiple push). The upgraded simple push covers the capabilities of the original simple
push and template push; the upgraded multiple push covers the capabilities of the
original multiple push and broadcast push.

Multiple push is mainly used to push messages to a large number of users to meet some
operation needs.
The multiple push falls into network-wide push and non network-wide push.

Network-wide push refers to pushing the same template-based message to all Android and
iOS networking devices, which only supports pushing by devices.
When you push a message to Android devices, all the Android devices that are connected
in the message validity period can receive the message; when you push a message to iOS
devices, all the iOS devices that are bound in the message validity period can receive the
message.
Non network-wide push refers to pushing the same template-based message to specified
user groups.
You can manually upload a group of message receivers, customize tagged user groups, or
use the MAS groups.

Note
The messages are pushed immediately after they are created. You cannot delete or
modify them.
Since manual operations are required, we recommend you push messages through
the console in the scenarios requiring low-frequency message push, such as
system verification, operation support, and temporary emergency requirement.

The following sections describe how to create a multiple push message in the console.

Prerequisites
To push messages to iOS devices, you should have integrated MPS iOS SDK (see Integrate
iOS SDK) and configured the iOS push certificate on the Channel configuration page in
mPaaS console. For more information, see Configure iOS push channel.
To push messages through the Android vendor channels (also known as third-party
channels), you should have integrated MPS Android SDK (see Integrate Android SDK),
accessed relevant vendor channels (see Integrate vendor push channels) and completed
corresponding push channel setting on the Channel configuration page in mPaaS
console. For more information, see Channel configuration.
Before creating a multiple push task, you need to prepare a template. For how to create a
template, see Create a message template.

6.2.2. Create a message – Multiple push

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 74

When you create a multiple push task, if you choose to call the MAS group as the target
audiences, you should create a MAS group in advance. For details, see Create user groups.
If you choose a tagged user group as the target audiences, you should create a tagged user
group in advance. For details, see Create a user tag.

Procedure
1. Log in to the mPaaS console, select the target app, and go to the Message Push Service

> Message management page.
2. Click the Create message push task button, and in the pop-up dialog box, select the

Multiple push tab.
3. On the multiple push tab page, configure the basic information of the message. The

configuration items are as follows:

Parameter Required Description

Message type:
silent message Yes

Whether to display the message:
Yes: Indicates that the message will not be displayed in
any form on the target device, and user has no sense
about it.
No: Indicates that the message will be displayed in the
notification bar.

For Android devices, you need to perform different
operations according to the push channel that you have
selected:

MPS channel: This parameter is sent to the client as a
reference field. You need to parse the message body
and get the content of this field, then control the display
of the message.
Vendor channel: This parameter is sent to the target
device as a field. The device vendor's system will then
parse the content of this field, and control the display of
the message. You do not need to perform any other
operations.

For iOS devices, the display of messages is controlled by
the device vendor’s system. You do not need to perform
any other operations.

Push dimension Yes

Select the message delivery mode:
Users: Push messages by user ID. You need to call the
bind API to bind the user ID with device ID. For more
information about the binding API, see Client APIs.
Devices: Push messages by device ID.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 75

Push platform Yes

When you choose the push dimension as Devices, you
need to select a push platform to specify the type of the
target device.

Android: MPS provides vendor channels and MPS self-
build channel to push the message to the network-wide
online Android devices (in valid period) or specified
Android devices. The message will be pushed only once
for each device.
iOS: Use the vendor channel to push the message to the
network-wide or specified iOS devices. The message will
be pushed only once for each device.

Select push
targets Yes

When you choose the push dimension as Users, you
have the following options:

Upload a group: Upload the file containing target IDs
and the personalized configuration of each target ID
based on the selected template. Every data record in
the file represents a message, which is identified by a
customer message ID. Requirements for the file
format are as follows:

The format of each data record: target
ID,customer message ID,placeholder
1=XXX;placeholder 2=XXX… , where the customer
message ID can be user customized.
The file encoding type must be UTF-8 and the
maximum file size is 200 MB. Separate multiple
data records with line breaks. Each data record
must be 1~250 characters in length. Only one file
can be uploaded in one push task.
After a file is successfully uploaded, its icon is
displayed below the Upload button. You can
preview up to 10 data records of the file by clicking
the icon.

MAS group: Call the MAS group and push the same
message to the specified group users. You need to
create a MAS group first. For details, see Create user
groups. If the message template includes any
placeholder, this option is unavailable.
User tags: Select the target groups by tag. You
should create a tagged user group first. For details,
see Create a user tag.

When you choose the push dimension as Devices, you
have the following options:

All devices: Push the message to all devices of the
selected platform.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 76

Partial devices: Upload the file containing target IDs
and the personalized configuration of each target ID
based on the selected template. Every data record in
the file represents a message, which is identified by a
customer message ID. Requirements for the file
format are as follows:

The format of each data record: target
ID,customer message ID,placeholder
1=XXX;placeholder 2=XXX… , where the customer
message ID can be user customized.
The file encoding type must be UTF-8 and the
maximum file size is 200 MB. Separate multiple
data records with line breaks. Each data record
must be 1~250 characters in length. Only one file
can be uploaded in one push task.
After a file is successfully uploaded, its icon is
displayed below the Upload button. You can
preview up to 10 data records of the file by clicking
the icon.

MAS group: Call the MAS group and push the same
message to the specified group users. You need to
create a MAS group first. For details, see Create user
groups. If the message template includes any
placeholder, this option is unavailable.

Template Yes Choose a message template from templates listed on the
Message templates page.

Template
placeholder Yes

Enter variable values in the template. The system provides
configuration options for placeholders in the selected
template.

Push priority of
Android message
channels

Yes

Only available for Android push platform.
Vendor channels preferred: Vendor channels are
preferred. If vendor channels are integrated, messages
are pushed through the corresponding vendor channels;
if no vendor channel is integrated to the app, the
messages are pushed through MPS self-built channel.
MPS channel: MPS uses the self-built channel to push
messages.

For Android devices, this parameter specifies whether to
push messages through an MPS self-built channel or
vendor channel. For iOS devices, you do not need to set
this parameter (iOS push belongs to vendor channel push).

Push mode Yes

Select the time to push message:
Now: Push the message immediately once the message
push task is created.
Scheduled: Specify a time to push the message. For
example, push the message at 8:00 am on June 19th.
Cyclic: Push the message at a specific time cyclically
within a period. For example, push the message at 8:00
am every Friday from June 1st to September 30th.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 77

The preview area is on the right side of the message creation window. To preview the
message display effects for different platforms respectively, click Notification, iOS
message body and Android message body.

4. (Optional) Configure the advanced information on demand. In the Advanced information
area, complete the following configurations:

Redirect upon click: Specify the operation to be performed after a user taps the
message on the phone. This parameter is sent to the client as a reference field. You need
to implement subsequent operations by referring to the field.

Web page: Users will be redirected to a Web page.
Custom page: Users will be redirected to a native page.

Redirection address: The page to be visited after a user taps the message on the
mobile phone. Enter the address according to the option you chose.

For Web page, enter the URL of the web page to be visited.
For custom page, enter the address of the native page to be visited (Android:
ActivityName; iOS: VCName).

Login status: Specify target users according to login status. When you select the
login/logout period, Permanent means no time limit, namely pushing messages to all
login/logout users.

Important
Login status is unconfigurable when you use Android push platform and push
messages through MPS self-built channel.

If you select Login users, MPS will push messages to the users who logged in to the
App in the specified time period. For example, if the login period is 15 days, it means
pushing messages to the users who logged in to the App in recent 15 days.
If you select Logout users, MPS will push messages to the users who logged out from
the App in the specified time period. For example, if the logout period is 15 days, it
means pushing messages to the users who logged out in recent 15 days.
If you select both Login users and Logout users, MPS will push messages to the
users who logged in to the App and logged out in the specified time period. For
example, if the login period is permanent while the logout period is 7 days, it means
pushing messages to all login users and the users who logged out in recent 7 days.

Custom message ID: Custom message ID is automatically generated by the system to
uniquely identify the message in the client's system. It can be customized and a
maximum of 64 characters are allowed.
Valid period: Specify the valid period of the message in seconds. It is 180 seconds by
default. To ensure the message arrival rate, when a message fails to be sent because the
device is offline or the user is logged out, MPS will resend it after the device is connected
or a user binding request is initiated within the validity period of the message.
Extension parameters: Turn the switch on, click Add parameter, set the key/value,
and left click on any area of the page to complete setting. The extension parameters are
passed to the client together with the message body for your use.
Extension parameters include the following three types:

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 78

System extension parameters
These extension parameters are occupied by the system, and cannot be modified.
System extension parameters
include notifyType , action , silent , pushType , templateCode , channel ,
and taskId .
System extension parameters with some significance
These extension parameters are occupied by the system and have some significance.
You can configure values of these extension parameters.
For more information about these parameters, see the following table.

Parameter Description

sound
The custom ringtone of the message. The value of this parameter is
the path of the ringtone. This parameter is only valid for Xiaomi
phones and iPhones.

badge

Badge number. Its value is a specific number. This extension
parameter will be passed to the client together with the message
body.

For Android devices, you need to implement the badge logic by
yourself.
For iOS devices, iOS system automatically implements the badge
logic. When a message is pushed to the target mobile phone, the
number that you specified in value appears in the badge of the App
icon.

mutable-content
The APNs custom push identifier. If a pushed message carries this
parameter, it indicates that the
 UNNotificationServiceExtension of iOS10 is supported,

otherwise it is a normal push. The value is set to 1.

badge_add_num Accumulative badge number, only available in Huawei channel.

badge_class Activity class corresponding to the desktop App icon in Huawei
channel.

big_text Big text style, the value is fixed to 1, and other values are invalid. This
parameter is only valid for Xiaomi and Huawei phones.

User-defined extension parameters
All other parameters than system extension parameters and system extension
parameters with some significance are user-defined extension parameters. User-
defined extension parameters are passed to the client together with the message body
for your use.

5. Click Submit to complete creating the message. The new message will appear in the
multiple push records.

In addition to console operation, you can also push messages by calling relevant APIs. For
more information, see Server APIs.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 79

Relevant operations
Create a message – Simple push
Call API to push messages
Manage messages

The Simple push records tab page shows the relevant information of simple push
messages created in the last 30 days., and you can query the historical messages. The list
only displays the messages pushed through the console. For the messages pushed by calling
simple push API, you can query the message details by device/user ID or custom message ID.

View push details
1. Log in to the mPaaS console, select your app, and enter the Message Push Service >

Message management > Simple push records page.
2. In the search box displayed in the upper right corner, enter a complete device ID, user ID or

customer message ID to search for the message. The message with the specified target ID
and customer message ID will be displayed in the message list.

Note
You can only search for simple push messages created in the last 30 days.

Messages are sorted in descending order by creation time by default. The information
displayed in the list includes:

Customer message ID: It is customized by user or automatically generated by system.
Push time: It refers to the time when the message was pushed, accurate to seconds.
Push mode: It indicates that the message was pushed immediately upon creation or was
pushed in schedule.
Push dimension: It indicates that the message was pushed by user, Android device or
iOS device.
Target ID: user ID or device ID.
Message title: the title of a message.
Creation time: The time when the message was successfully created, accurate to
seconds.
Push status: Shows the push status of a message. To learn the status codes and
corresponding description, see Message push status codes.

3. To view the push details of a message, click the Expand button (+) of the target message
on the list.
Then the following information appears:

Message ID: It refers to the unique identifier of a message automatically generated by
MPS.
Offline retention period: It refers to the time when a message expires. If a message
has not been sent successfully, MPS will resend it after the device is connected or a user
binding request is initiated. However, if the message expires, MPS will not resend it.
Display type: Shows that the message is a plain text message, a big text message or a
rich text message.

6.2.3. Manage simple push messages

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 80

Extension parameters: Shows the extension parameters added during message
creation.
Message content: message body.

Revoke messages
It is supported to revoke the messages that have been pushed in past 7 days. For more
information, see Message revocation.
Silent messages will be immediately withdrawn once you revoke them, and the client-side
users have no sense about that. For non-silent messages, stop pushing the ones not arriving
user devices, and cancel presenting the ones that have arrived the user devices but not
appeared.

Note
The messages with "Failed" push status cannot be revoked.

Message Push Service (MPS) provides real-time statistics on the multiple-push and broadcast-
push tasks that are created through MPS console or triggered by calling API to help you get
the message push status.

View push tasks
1. Log in to the mPaaS console, select your app, and enter the Message Push Service >

Message management > Multiple push records page.
2. In the search box displayed in the upper right corner, enter a complete push task ID or task

name, and specify the time range to search the tasks. The eligible tasks will appear in the
task list.
In the task list, the tasks are sorted in descending order by creation time. The task
information displayed includes:

Task ID: The unique identifier of the push task, which is automatically generated by the
system.
Task name (API) : If the push task is delivered through the MPS console, the task name
is automatically generated by the system, usually named in the format “console + time”,
for example, “Console Wed Mar 24 14:47: 23 CST 202”; if the task is triggered by calling
an API, the task name is the name filled in by the caller.
Push type: It indicates that the message was pushed immediately upon creation or was
pushed in schedule.

3. To view the push details, click the Expand button (+) of the target task on the list.
Pushed messages: Refers to the total number of messages pushed by message push
backend, which is counted by the backend.
Successfully pushed messages: Refers to the total number of messages successfully
pushed by message push backend, which is counted by the backend.
Message arrivals: The number of messages that actually arrive the device. For iOS
channel or Android third-party channels (such as Xiaomi and Huawei), the statistics relies
on the result returned from the corresponding third-party channel’s backend after the
messages are pushed to the third-party channels. For the Android self-built channel, the
statistics relies on the tracking report after the messages are pushed the client.

6.2.4. Manage multiple push messages

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 81

Offline retention period: Indicates the validity period of the message. In the validity
period, MPS delivers the message to the target devices or users once the target devices
get connected or the users initiate a binding request till the message is pushed
successfully. Once the message expires, the MPS will no longer deliver the message.

Revoke messages
It is supported to revoke the messages that have been pushed in past 7 days. For more
information, see Message revocation.
Silent messages will be immediately withdrawn once you revoke them, and the client-side
users have no sense about that. For non-silent messages, stop pushing the ones not arriving
user devices, and cancel presenting the ones that have arrived the user devices but not
appeared.

Note
The messages with "Failed" push status cannot be revoked.

All scheduled push tasks and cyclic push tasks created through the mPaaS console and
triggered by calling APIs are displayed in the scheduled push task list. One cyclic push task
may contain one or more scheduled push tasks.

View a scheduled push task
1. Log in to the mPaaS console, and select a target app. In the navigation pane on the left,

choose Message Push Service > Message management > Scheduled push tasks.
2. In the search bars in the upper right of the displayed Scheduled push task tab page,

specify the scheduled push time and the push type, enter a push task ID, and click the
Search button () to search. Or you can press Enter to search. The tasks that are found
will be displayed in the list.
By default, scheduled push tasks are sorted by creation time in descending order. The
information displayed in the list includes:

3. Specify the push type and the scheduled push time to filter messages, and enter a push
task ID to search for messages. The results that are found will be displayed in the message
list. Note that the push type can be mPaaS console or API and all push types are displayed
by default. By default, messages in the message list are sorted by creation time in
descending order. The information displayed in the list includes:

Scheduled push time : push time specified when you create a push task.
Task ID: unique ID of a scheduled push task. The task ID is generated automatically by
the system.
Push mode: scheduled and cyclic.
Push dimension: the push dimension of a message, which can be users or devices.
Message title: the title of a message.
Message body: the body content of a message.
Push type: simple push and multiple push.
Creation method: the creation mode of a message. You can push a message through
the mPaaS console or by calling APIs.
Push status: indicates whether a scheduled push task has been implemented.

6.2.5. Manage scheduled push task

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 82

Cancel a scheduled push task
A scheduled push task that has not been implemented can be canceled. Each cyclic push task
contains one or more scheduled push tasks. When you cancel a cyclic push task, you need to
confirm whether to cancel the latest scheduled push task or all scheduled push tasks.
With Message Push Service (MPS), you can cancel a scheduled push task by the mPaaS
console or by calling APIs. For more details, see section Cancel a scheduled push task.

A template consists of the body, placeholders and some other attributes. You can use
placeholders to specify dynamic content in the template. Only templates with placeholders
can be used to send personalized messages.
You can use templates to flexibly configure messages and eliminate input of repeated
content.
In a template, you can mark the dynamic part in the title, body, and redirection URL by
using the format of #placeholder name#.

Procedure
1. Log in to the mPaaS console, select your app, and enter the Message Push Service >

Message templates page.
2. On the right page, click the Create template button, and in the pop-up template creation

window, configure template information. The following table describes related parameters.

Parameter Required Description

Template name Yes
The name of the template. The name must be 1 to 200
characters in length, and can contain letters, digits, and
underscores (_). The name must be unique, and it will be
used to identify the template in API calling.

Description Yes
The description of the template. The description must be 1
to 200 characters in length, and can contain letters,
numbers, and underscores (_).

Template title Yes The title of the template. The title must be 1 ~ 200
characters in length.

Template body Yes The body of the template. The text must be 1 ~ 200
characters in length.

6.3. Message templates
6.3.1. Create a message template

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 83

Message type:
silent message Yes

Whether to display the message:
Yes: Indicates that the message will not be displayed in
any form on the target device, and user has no sense
about it.
No: Indicates that the message will be displayed in the
notification bar.

For Android devices, you need to perform different
operations according to the push channel that you have
selected:

MPS channel: This parameter is sent to the client as a
reference field. You need to parse the message body
and get the content of this field, then control the display
of the message.
Vendor channel: This parameter is sent to the target
device as a field. The device vendor's system will then
parse the content of this field, and control the display of
the message. You do not need to perform any other
operations.

For iOS devices, the display of messages is controlled by
the device vendor’s system. You do not need to perform
any other operations.

Display style Yes

The style that how the message is displayed on the client.
You can choose any one of the following three styles:
Default (short text), Big text, and Rich text.

Default: This style is suitable for messages with
concise and clear content. The message of this style
contains title and text only. It is recommended to keep
the length of the message text within 100 characters,
including custom parameters and symbols.
Big text: This is style is suitable for messages with long
text, such as information and news messages, so users
can quickly obtain information without opening the
application. The message of this style contains title and
text only. It is recommended to keep the length of the
message text within 256 characters, including custom
parameters and symbols.
Rich text: This style supports the messages containing
icon and image, suitable for the messages with various
content. To ensure good message presentation effect, it
is better to keep the text within two lines.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 84

Icon No

The icon displayed on the right of the message, which can
be JPG, JPEG or PNG image. Enter the public accessible URL
of the icon here.
If you only provide the default icon URL while no materials
are uploaded for the corresponding third-party channels,
the default icon will be automatically pulled and used for
the messages pushed through the third-party channels.
Since the third-party channels have different requirements
on the icon material, it is suggested to upload the material
for each third-party channel separately according to their
requirements.

Default icon: The suggested size is 140 * 140px, not
exceeding 50 KB.
OPPO icon: The suggested size is 140 * 140px, not
exceeding 50 KB.
Xiaomi icon: The suggested size is 120 * 120px, not
exceeding 50 KB.
Huawei icon: The suggested size is 40 * 40dp, not
exceeding 512 KB.
FCM icon: If no specific requirement applies, the
default icon will be automatically used.

Large image No

The image displayed at the lower part of the message,
which can be JPG, JPEG or PNG image. Enter the public
accessible URL of the image here.
If you only provide the default image URL while no
materials are uploaded for the corresponding third-party
channels, the default large image will be automatically
pulled and used for the messages pushed through the
third-party channels. Since the third-party channels have
different requirements on the image, it is suggested to
upload the material for each third-party channel
separately according to their requirements.

Default large image: The suggested size is 876 *
324px, not exceeding 1 MB.
OPPO large image: The suggested size is 876 * 324px,
not exceeding 1 MB.
Xiaomi large image: The suggested size is 876 *
324px, not exceeding 1 MB.
iOS large image: Support custom images, without
limitation on image size.
FCM large image: If no specific requirement applies,
the default image will be automatically used.

Redirect upon
click Yes

This parameter is sent to the client as a reference field.
You need to implement subsequent operations by referring
to the field.

Web page: Users will be redirected to a Web page. It is
required to enter the URL of the web page to be visited.
Custom page: Users will be redirected to a native
page. It is required to enter the address of the native
page to be visited (Android: ActivityName; iOS:
VCName).

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 85

Redirection
address No

The page to be visited after a user taps the message on
the mobile phone. This parameter will be sent to the client
as a reference. You need to develop the implementation
logic by yourself. Set this parameter based on the value of
Redirect upon click.

3. Click Submit to create the template. When the template is created successfully, the
Message templates page is displayed, with the new template listed at the top.

The template list displays information about existing message templates. You can view or
delete them as required.

View the template list
1. Log in to the mPaaS console, select your app, and enter the Message Push Service >

Message templates page.
Templates are listed in descending order by creation time . You can view the name,
description, body, and creation time of the template.

2. Click View in the Operations column of the target template to view detailed information
about the template.

Delete a template
The procedure is as follows:

1. On the template list, click Delete in the Operations column of the target template.
2. In the dialog box that appears, click OK. Then the template is deleted.

Note
Before deleting a template, ensure that it is not used for any messages to be sent.
Otherwise, the corresponding messages cannot be sent.

Message Push Service (MPS) enables you to revoke messages that have been pushed. With
this function, notifications that have been sent but not viewed or cleared will disappear from
the device notification bar. To reduce business loss and related impacts, this function mainly
applies to the following two scenarios: 1. Wrong messages are pushed due to misoperations;
2. Messages that have been pushed but need to be revoked urgently in case of temporary
business changes.
You can query the message status and revoke messages through the mPaaS console. In
addition, MPS supports backend APIs. You can revoke messages by calling APIs in the
business system.
The mode of implementing message revocation varies with the push channel. The following
table describes the specific details.

6.3.2. Manage message templates

6.4. Message revocation

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 86

Push channel
Revocation
supported or
not

How it works

Vendor channel

Huawei Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

Xiaomi Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

OPPO Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

Vivo Yes

Revoke a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be directly
cleared. That is, the message will
disappear from the notification bar.

Apple (iOS) Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

MPS self-built channel Yes

Overlap a message. After the client
receives the command of revoking a
message, the message displayed in
the notification bar will be cleared. The
"Message revoked" message is
displayed.

SMS push No The SMS messages that have been
sent cannot be revoked.

Revoke a message by the mPaaS console
1. Log in to the mPaaS console, and select a target app. In the navigation pane on the left,

choose Message Push Service > Message management.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 87

2. Select a message push task type to enter the message list page.
3. Select a message to be revoked, click Revoke, and click OK. After you perform the

revocation operation, a message that is being pushed will not be pushed. A message that
has been pushed but is not displayed will not be displayed.

Revoke a message by calling APIs
A message pushed in the simple push mode can be revoked by the message ID. A message
pushed in the multiple push mode can be revoked by the task ID. Only messages in recent 7
days can be revoked.
For how to revoke a message by calling APIs, see the documentation listed in Message
revocation API.

With Message Push Service (MPS), you can set tags to customize user groups to whom
messages are pushed to facilitate user management. If you set a user tag when you push a
message, you can push the message to all the users marked with such tag.
A tag is one attribute that describes the basic attribute, hobbies, and behavior characteristics
of a user. After you set one tag for users, you can use such tag to select the user group with
the same characteristic. In this way, messages are accurately pushed to targeted users. For
example, you can set one tag called "Female" for female users. Then, you can select the user
group marked with such tag and push messages to the group on International Women's Day.
Users have a many-to-many relationship with tags. That is, one user can correspond to
multiple tags, and one tag can also correspond to multiple users.

Create a user tag
To create a user tag is to tag a group of users with the same characteristic.
The procedure is as follows:

1. Log in to the mPaaS console, and select a target app. In the navigation pane on the left,
choose Message Push Service >
Settings > User tag management.

2. Click Create user tag . In the displayed Create user tag page, enter a tag name and add a
group. Two ways of adding a group are as follows:

Tag name: presents the group characteristic directly to facilitate user management. Any
character is supported. A maximum of 30 characters are allowed. The tag name should
be unique in an app.
Add a group: supports adding users directly and importing a file including user IDs.

Add directly: enter one or more user IDs in a text box. User IDs are separated with ",".
Each record cannot exceed 60 characters in length; otherwise, the excess content will
not be added. A maximum of 10,000 characters are allowed.
Import file: upload a .txt file that contains the user ID. The file size cannot exceed 100
MB. User IDs are separated with a line break in a file. Each record cannot exceed 60
characters in length; otherwise, the excess content will not be added. A maximum of
500,000 user IDs can be uploaded. When you import user IDs, the system
automatically deduplicates the IDs.

3. After you complete the configuration, click Submit. A new user tag is created. The new
user tag will be displayed in the list.

View a user tag
All user tags in the list are displayed by creation time in descending order. The tag name, tag
ID, users, creation time, and update time are displayed in the user tag list. Where:

6.5. User tag management

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 88

Tag ID: generated automatically by the system after you create a user tag successfully.
Users: the number of user IDs contained in the user group.

In the user tag list, click Details in the Operations column to view the user tag information.

Edit a user tag
In the user tag list, click Edit in the Operations column to edit the tag name or modify the
user information that corresponds to the tag.
For detailed operations of modifying the user information corresponding to a tag, see the
content of adding a group described in Create a user tag.

Delete a user tag
In the user tag list, click Delete in the Operations column to delete the user tag. When you
delete a user tag, all the user information corresponding to the user tag will be deleted.

Export a user list
In the user tag list, click Export in the Operations column to download the user list that
corresponds to the tag.

Message Push Service (MPS) supports querying the status of the target devices to which the
messages are pushed by user ID (UserId) or device ID (DeviceId). You can check device status
to facilitate troubleshooting in case of any pushing problems.
Complete the following steps to query device status:

1. Log in to the mPaaS console, select the target app, and go to the Message Push Service
> Query tool page from the left navigation pane to enter the device status query page.

2. Set the query criteria to query the status of the target device.
Select the query dimension, User ID or Device ID, enter the corresponding user ID or
device ID, and then press Enter or click the search icon to query the relevant information of
the device. The queried information includes user ID , device ID, self-built Token, vendor
Token, platform, device manufacturer, and self-built channel status.
Where,

User ID: It refers to the userid value passed in when the user calls the binding
interface.
Device ID: For Android device, it refers to the self-built channel token; for iOS device, it
refers to the APNS token.
Self-built Token: It refers to the identifier of self-built channel.
Vendor Token: It refers to the identifier of the vendor channel.
Self-built channel status: It indicates whether the self-built channel of the current
device is online.

For Android device, the device status is either Online or Offline.
For iOS device, since the iOS platform completes message push through the third-party
channel, so the device status is always Unknown.

This topic describes how to configure push channels for iOS and Android.

Configure an iOS push channel

6.6. Device status query

6.7. Channel configuration

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 89

When accessing an Apple mobile phone, it relies on the APNs service as the message push
gateway. You need to upload an iOS push certificate on the console side to connect to the
APNs service.
Complete these steps to configure the iOS push certificate:

1. Log on to the mPaaS console. In the left-side navigation pane, choose Message Push
Service > Settings.

2. On the right-side Settings page, click the Channel Settings tab. In the iOS Channel
section, configure the iOS certificate.

Select Certificate File : Select and upload the prepared iOS push certificate. The
backend parses the uploaded certificate to obtain the certificate environment and the
BundleId. For more information about how to create an iOS push certificate, see Create
an iOS push certificate.
Certificate Password: Enter the certificate password that you set when you export the.
p12 certificate.

3. Click Upload to save the configuration. If the format of the certificate is correct, you can
view the details of the certificate. If you need to verify whether the certificate corresponds
to the environment and is valid, you can test it by pushing a message in the console.

Note
An iOS push certificate has a validity period. Update the certificate before the push
certificate expires to prevent message push from working properly. The system starts
reminding you to replace the certificate 15 days before the certificate expires. To replace
the certificate, click Re-upload below the certificate information to upload a new
certificate.

Configure iOS Live Activity Message Push Certificate

Important
Before configuring the iOS live activity message push certificate, you must first make sure
that the iOS original push certificate, that is, the .p12 certificate, has been configured,
otherwise the live activity message certificate can not be configured.

The steps to configure the iOS live activity messaging certificate are as follows:
1. Log in to the mPaaS console, select the target application, and enter the Message Push

Service > Settings page from the left navigation bar.
2. On the settings page of the iOS channel, check the Token Authentication

configuration. After configuring bundleId, keyId, and teamId, upload the p8AuthKey
private key file, which is a .p8 file, and click OK.

Important
The environment for pushing live activity messages is bound to the original iOS
certificate, so the usage effect is as follows:

If the original iOS certificate is a test environment sandbox certificate, live activity
messages in the test environment will be pushed.
If the original iOS certificate is a production environment certificate, live activity
messages of the production environment will be pushed.

Configure an Android push channel

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 90

To improve the reach rate of push, mPaaS integrates push channels from manufactures such
as Huawei, Xiaomi, OPPO, and vivo. Use Xiaomi notification bar messages, Huawei notification
bar messages, OPPO notification bar messages and vivo notification bar messages to achieve
message push. When the application is not run time, a notification can still be sent, and the
user can activate the process by clicking on the notification bar.

Note
After you connect a manufacture-owned push channel, your application can achieve
stable push performance. Therefore, we recommend that you connect the manufacture-
owned push channel to your application.

This article will guide you to complete the console-side configuration required when you
access the Xiaomi, Huawei, OPPO, and vivo push channels.

Configure a Huawei push channel
Configure a HONOR push channel
Configure the Xiaomi push channel
Configure an OPPO push channel
Configure the vivo push channel
Configure an FCM push channel

Prerequisites
You must configure the client-side access. For more information, see Connect the
manufacture push channel.

Procedure
Configure a Huawei push channel

1. In the left-side navigation pane, choose Message Push Service > Settings > Channel
Configuration.

2. Click Configure in the upper-right corner of the Huawei Push Channel section. The
configuration entry is displayed.

Parameter Required Description

Status Yes
The access status switch of the channel. If you
turn on the switch, MPS will access the Huawei
push channel based on the configuration; if you
turn off the switch, the access is canceled.

SDK package Yes
Supports custom Huawei application package
names. If this parameter is not specified, the
package name registered by the Xiaomi channel
is used by default.

Huawei Application ID Yes Enter the App ID of the Huawei application.

Huawei Application
Key Yes Enter the App Secret of the Huawei application.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 91

Note
You can log on to the Huawei Developer Alliance website and choose Management
Center > My Product > mobile application Details to obtain the application
package name, application ID, and key.

3. Click OK to save the configurations.

Configure HONOR Push Channel
1. In the left-side navigation pane, choose Message Push Service > Settings > Channel

Configuration.
2. Click Configure in the upper-right corner of the HONOR Push Channel configuration

section. The configuration entry is displayed.

Parameter Required Description

Status Yes
The access status switch of the channel. Turn on the
switch, MPS will access the HONOR push channel
according to the configuration; Turn off the switch, that
is, cancel the access.

SDK package Yes Support custom HONOR application package name.

HONOR AppID Yes
The unique application identifier, which is generated
when the HONOR Push service of the corresponding
application is activated on the developer platform.

HONOR Application ID Yes
The customer ID of the application, which is used to
obtain the ID of the message sending token. It is
generated when the corresponding application PUSH
service is activated on the developer platform.

HONOR Application
Key Yes Enter the HONOR app secret (App Secret).

Note
You can log on to the HONOR Developer Alliance website and go to the Management
Center > My Products > mobile application Details page to obtain the application
package name, application ID, and key.

3. Click OK to save the configurations.

Configure the Xiaomi push channel
1. In the left-side navigation pane, choose Message Push> Settings> Channel

Configuration.
2. Click Configure in the upper-right corner of the Xiaomi Push Channel section. The

configuration entry is displayed.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 92

https://developer.huawei.com/consumer/cn/
https://developer.hihonor.com/cn/

Parameter Required Description

Status Yes
The access status switch of the channel. If you
turn on the switch, MPS will access the Xiaomi
push channel according to the configuration. If
you turn off the switch, the access is canceled.

SDK package Yes Enter the main package name of the Xiaomi
app.

sqlserver password Yes Enter the AppSecret of the Xiaomi app.

Note
To obtain the package name and key, log on to the Xiaomi Open Platform console and
choose Application Management > Application Information.

3. Click OK to save the configurations.

Configure an OPPO push channel
1. In the left-side navigation pane, choose Message Push> Settings> Channel

Configuration.
2. In the upper-right corner of the OPPO Push Channel section, click Configure. The

configuration entry is displayed.

Parameter Required Description

Status Yes
The access status switch of the channel. If you
turn on the switch, MPS connects to the OPPO
push channel based on the configuration. If you
turn off the switch, the access is canceled.

SDK package Yes

You can customize the name of an OPPO
application package. The name must be the
same as the name of the application package on
the OPPO open platform. If this parameter is not
specified, the package name registered by the
Xiaomi channel is used by default.

AppKey Yes The AppKey is the identity of the client and is
used when the client SDK is initialized.

MasterSecret Yes
The MasterSecret is used by developers to verify
their identities when they call API operations on
the server.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 93

https://dev.mi.com/console/

Note
On the OPPO Open Platform, after you grant the OPPO push permission, you can view
the AppKey and MasterSecret of the application on the OPPO Push Platform >
Configuration Management > Application Configuration page.

3. Click OK to save the configurations.

Configure the vivo push channel
1. In the left-side navigation pane, choose Message Push> Settings> Channel

Configuration.
2. In the upper-right corner of the VIVO Push Channel section, click Configure. The

configuration entry is displayed.

Parameter Required Description

Status Yes
The access status switch of the channel. If you
turn on the switch, MPS connects to the vivo
push channel based on the configuration. If you
turn off the switch, the access is canceled.

SDK package Yes

You can customize the name of the vivo
application package. The name must be the
same as the name of the application package on
the vivo open platform. If this parameter is not
specified, the package name registered by the
Xiaomi channel is used by default.

APP ID Yes
AppId is the identity of the client and is used
when the client SDK is initialized.

AppKey Yes The AppKey is the identity of the client and is
used when the client SDK is initialized.

MasterSecret Yes

The MasterSecret is used by developers to verify
their identities when they call API operations on
the server. This parameter corresponds to the
AppSecret that you obtained from the vivo
developer platform.

Note
After you apply for the push service for an application on the vivo open platform, you
can obtain the AppId,AppKey, and MasterSecret(AppSecret) of the application.

3. Click OK to save the configurations.

Configure the FCM Push Channel
If you use Google's FCM service as the message push gateway when you connect Android
devices outside China, you must configure the FCM push channel in the console.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 94

https://open.oppomobile.com/
https://push.oppo.com/
https://dev.vivo.com.cn/home

Prerequisites
Before you configure the FCM push channel, you need to obtain the FCM server key on the
Firebase console.

Procedure
1. In the left-side navigation pane, choose Message Push Service > Settings > Channel

Configuration.
2. Click Configure in the upper-right corner of the FCM Push Channel section to configure

the channel.
3. Click the Status switch. If you turn on the switch, MPS is connected to FCM. If you turn off

the switch, MPS is not connected to FCM.
4. Enter the FCM server key. Make sure that the key is the server key. The Android key, iOS

key, and browser key are rejected by FCM.
5. Click OK to save the configuration.

Configure the New FCM Push Channel

Important
The old FCM API will no longer be supported and retired starting June 20, 2024. To avoid
any disruption for MPS, please migrate to the new FCM API as soon as possible.

1. Upload the FCM authentication file through the console.

Firebase projects support Google service account, which you can use to call the Firebase
server API from your application server or a trusted environment. If you write code locally,
or deploy your app locally, you can authorize server requests through credentials obtained
by this service account.

Note
To authenticate the service account and grant it access to Firebase services, you must
generate a private key file in JSON format by following these steps:
i. In the Firebase console, choose Settings > Service Account.
ii. Click Generate New Private Key and confirm by clicking the Generate Key

button.
iii. Store the JSON file containing the key in a safe place.

2. Switch the push link mode.
The link switching method provided by the new version of FCM logic is to add an extended
parameter (extended_params) configuration and add a key-value pair useNewFcmApi=1 to
push messages through the new link.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 95

https://console.firebase.google.com/project/_/settings/serviceaccounts/adminsdk?authuser=0

When pushing messages, you need to add extended parameter:
Old version: useNewFcmApi , 0;
New version: useNewFcmApi , 1;

If no extended parameters are added, the old version is used by default.

To enhance interaction security between MPS and your business system, MPS will sign and
verify all data passed through APIs. In addition, MPS provides a key management page, on
which you can perform key configuration.

Configure push API
MPS provides RESTful APIs. To ensure data security, MPS will verify the caller's identity.
Therefore, before calling an API, you must use the RSA algorithm to sign the request and
configure a key for identity verification in the Push API configuration area on the Key
management page of the MPS console.
Configure callback API
To receive a receipt of the message sending result, configure the URL of the target RESTful
callback API in the Callback API configuration area on the Key management page of
the MPS console, and obtain the public key. This is because MPS will sign request
parameters when calling a callback API. You need to use the public key to verify the request
signature.

Configure push API
Prerequisites
Before configuring the push API, you have used the RSA algorithm to generate a 2048-bit
public key.

RSA public key generation method is as follows:
i. Download and install the OpenSSL tool (version 1.1.1 or above) from OpenSSL official

website.
ii. Open the OpenSSL tool and use the following command line to generate a 2048-bit RSA

private key.

6.8. Key management

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 96

https://www.openssl.org/source/

openssl genpkey -algorithm RSA -out private_key.pem -pkeyopt rsa_keygen_bits:2048

iii. Generate an RSA public key based on the RSA private key.

openssl rsa -pubout -in private_key.pem -out public_key.pem

The signing rules are as follows:
Use the SHA-256 signature algorithm.
Convert the signature to a base64 string.
Replace the plus sign (+) and forward slash (/) in the base64 string with a minus
sign (-) to get the final signature.

Procedure
Complete the following steps to configure the push API:

1. Log in to the mPaaS console, select the target app, and go to the Message Push Service
> Settings page.

2. On the right side of the page, click the Key management tab to enter the key
management page.

3. Click Configure in the upper right corner of the Push API configuration area.

Field Required Description

Status Yes
Specifies whether to enable the push API. When
it is on, the API provided by MPS can be called.
When it is off, the API cannot be called.

Encryption method No Only the RSA algorithm is available.

RSA public key No

Enter a 2048-bit public key.
After you use a private key to sign request
parameters, MPS will use the public key to
decrypt them to verify the caller's identity.

Important
Ensure that the public key is set correctly and does not contain spaces. Otherwise, the
API call will fail. For more information about API calls, see API reference.

4. Click OK to save the settings.

Configure callback API
Log in to the mPaaS console, select the target app, and perform the following steps to
configure the callback API:

1. On the Key management page, click Configure in the upper right corner of the Callback
API configuration area.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 97

Field Required Description

Status Yes
Specifies whether to enable the callback API.
MPS will send a receipt to your server according
to the configuration only after the API is
enabled.

Callback API URL Yes

Enter the URL of the callback API. The URL must
be an HTTP request URL that can be visited in
the public network. MPS uses the private key to
sign the POST request body and passes the
signed content as the sign parameter.

Encryption method No MPS uses the RSA algorithm to sign the POST
request body.

RSA public key No

The system automatically sets this parameter
and you cannot modify it. After obtaining the
POST request body and the sign parameter,
your server needs to use the public key to verify
that the request is sent by MPS and has not
been tampered with during data transmission.
For more information about signature
verification, see API reference > HTTP call.

2. Click OK to save the settings.
The time when MPS executes a callback varies with the push channel.

Note
Vendor channels (FCM/APNs/Xiaomi/Huawei/OPPO/vivo): A callback is executed
when the third-party service is called successfully.
MPS self-built channel: A callback is executed when a message is pushed
successfully.

Code sample

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 98

/**
 * Alipay.com Inc. Copyright (c) 2004-2020 All Rights Reserved.
 */
package com.callback.demo.callbackdemo;

import com.callback.demo.callbackdemo.util.SignUtil;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;

/**
 *
 * @author yqj
 * @version $Id: PushCallbackController.java, v 0.1 2020.03.22 11:20 AM yqj Exp $
 */
@Controller
public class PushCallbackController {

 /**
 * Copy the RSA public key configured for the callback API on the message push cons
ole.
 */
 private static final String pubKey = "";

 @RequestMapping(value = "/push/callback" ,method = RequestMethod.POST)
 public void callback(@RequestBody String callbackJson, @RequestParam String sign) {
 System.out.println(sign);
 // Signature verification
 sign = sign.replace('-','+');
 sign = sign.replace('_','/');
 if(!SignUtil.check(callbackJson,sign,pubKey,"UTF-8")){
 System.out.println("Signature verification failed");
 return;
 }
 System.out.println ("Signature verification succeeded");
 // JSON message body
 System.out.println(callbackJson);

 }

}

 callbackJson specifies the JSON request body. An example is as follows:

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 99

{
 "extInfo":{
 "adToken":"da64bc9d7d448684ebaeecfec473f612c57579008343a88d4dbdd145dad20e84",
 "osType":"ios"
 },
 "msgId":"console_1584853300103",
 "pushSuccess":true,
 "statusCode":"2",
 "statusDesc":"Acked",
 "targetId":"da64bc9d7d448684ebaeecfec473f612c57579008343a88d4dbdd145dad20e84"
}

The following table describes each field in callbackJson . You can click here to download
the callback code sample.

Field Description

msgId The ID of the service message to be pushed.

pushSuccess Indicates whether the message is pushed successfully.

statusCode The message status code.

statusDesc The description of the message status code.

targetId The target ID.

Message Push Service User Guide·Console operation
s

> Document Version: 20240808 100

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/134470/AntCloud_zh/1584948144890/callback-demo.zip

Message Push Service involves the following client APIs.

Call method API Description

RPC call

Bind Bind the user ID and device ID (Ad-
token).

Unbind Unbind the user ID and device ID (Ad-
token).

Report third-party channel devices Bind the third-party channel device ID
(Ad-token).

The MPPush class in the intermediate layer of mPaaS encapsulates all the APIs of MPS,
including the interfaces for binding users, unbinding users, and reporting three-party channel
device information. The API calls are implemented through the mobile gateway SDK.

Bind
Method definition
This method is used to bind user ID and device ID. After the binding is completed,
messages can be pushed in user dimension.

Note
The interface must be called in the child thread.

 public static ResultPbPB bind(Context ctx, String userId, String token)

This method is used to bind the user ID with device ID. Once the user IDs and device IDs
are bound, MPS push messages from user dimension.
Request parameters

Parameter Type Description

ctx Context It must be a non-empty Context.

userId String
The unique identifier of a user. The user ID is not
always the actual identifier in the business
system, but there must be one-to-one mapping
between the user ID and user.

7.API reference
7.1. Client APIs

Message Push Service User Guide·API reference

> Document Version: 20240808 101

token String The device token distributed by the push
gateway.

Parameter Type Description

Response parameters

Parameter Description

success
Whether the interface call is successful or not.

true: Successful
false: Failed

code Operation result code. For the common operation codes and the
corresponding description, see the following Result codes table.

name Name of the result code

message Description corresponding to the result code

Result codes

Code Name Message Description

3012 NEED_USERID need userid
The parameter
 userId is empty

when client calls the
interface.

3001 NEED_DELIVERYTOKE
N

need token
The parameter
 token is empty

when client calls the
interface.

Code sample

 private void doSimpleBind() {
 final ResultPbPB resultPbPB = MPPush.bind(getApplicationContext(), mUserId, Pus
hMsgService.mAdToken);
 handlePbPBResult("Bind users", resultPbPB);
 }

Unbind
Method definition
This method is used to unbind user ID and device ID.

Message Push Service User Guide·API reference

> Document Version: 20240808 102

Note
The interface must be called in the child thread.

 public static ResultPbPB unbind(Context ctx, String userId, String token)

Request parameters

Parameter Type Description

ctx Context It must be a non-empty Context.

userId String
The unique identifier of a user. The user ID is not
always the actual identifier in the business
system, but there must be one-to-one mapping
between the user ID and user.

token String The device token distributed by the push
gateway.

Response parameters
Refer to the response parameters of Bind API.
Code sample

 private void doSimpleUnBind() {
 final ResultPbPB resultPbPB = MPPush.unbind(getApplicationContext()
 , mUserId, PushMsgService.mAdToken);
 handlePbPBResult("Unbind users", resultPbPB);
 }

Report third-party channel devices
Method definition
This method is used to bind the third-party channel device ID and the Ad-token. That is, the
third-party channel device identifier and mPaaS device identifier (the Ad-token issued by
the MPS gateway) are reported to the mobile push core, and the mobile push core will bind
these two identifiers. After completing this process, you can use third-party channels to
push messages.

Note
This method will be called once by the framework. To avoid SDK call failure, it is
recommended that you call it again manually.

public static ResultPbPB report(Context context, String deliveryToken, int thirdChann
el, String thirdChannelDeviceToken)

Request parameters

Message Push Service User Guide·API reference

> Document Version: 20240808 103

Parameter Type Description

ctx Context It must be a non-empty Context.

deliveryToken String The device ID (Ad-token) issued by MPS
gateway.

thirdChannel int

The third-party channel. Valid values include:
2: Apple
4: Xiaomi
5: Huawei
6: FCM
7: OPPO
8: vivo

thirdChannelDeviceTo
ken String The ID of a device connected to a third-party

channel.

Response parameters
Refer to the response parameters of Bind API.
Code sample

 private void doSimpleUploadToken() {
 final ResultPbPB resultPbPB = MPPush.report(getApplicationContext(),
PushMsgService.mAdToken
 , PushOsType.HUAWEI.value(), PushMsgService.mThirdToken);
 handlePbPBResult("report 3rd-party device ID", resultPbPB);

Troubleshooting
If an exception occurs in the process of initiating RPC requests for resources, refer to Security
guard result codes.

Message Push Service (MPS) provides the following OpenAPIs for the server to implement the
functions of message push (simple push, template push, multiple push, and broadcast push),
message revocation, message statistics and analysis, and scheduled push. As for message
push, MPS supports immediate push, timed push, and scheduled push three push strategies
to meet the push requirements in different scenarios and reduce repetitive work.

API Description

Push message - simple push Pushes one message to one target ID.

7.2. Server APIs

Message Push Service User Guide·API reference

> Document Version: 20240808 104

Push message - template push Pushes one message to one target ID. The message is created
based on a template.

Push message - multiple push
Pushes different messages to multiple target IDs. Based on the
template, configure different template placeholders for the target
IDs to Implement personalized message push by use template
placeholders based on the template.

Push message - broadcast push Pushes the same message to all devices. The message is created
based on a template.

Revoke messages

Withdraws the pushed messages.
Messages pushed through simple push or template push can be
withdrawn through message ID; messages pushed through the
multiple push or broadcast push can be withdrawn through task ID.

Analyze message push

Queries message push statistical data, including pushed messages,
successfully pushed messages, message arrivals, opened
messages, and ignored messages, and query the
multiple/broadcast push tasks created on MPS console or triggered
by calling API as well as the task details.

Scheduled push task

Supports querying the scheduled push task list and canceling the
scheduled push task. Scheduled push fall into two types: timed
push and cyclic push:

Scheduled push: Pushes messages at a specified time. For
example, push messages at 8:00 AM on June 19.
Cyclic push: Pushes messages repeatedly within a specified time
period. For example, push messages at 8:00 AM every Friday
from June 1 to September 30. A cyclic push task may generate
one or more scheduled push tasks.

SDK preparations
MPS supports four programming languages: Java, Python, Node.js, and PHP. Before you call
the preceding APIs for message push, you should make different preparations for different
programming languages.
The following examples describe the preparations needed before implementing the SDK for
different programming languages.

Java
Before you call the preceding four APIs for message push, introduce the Maven configuration.
Import the following dependencies to the main pom file:

Message Push Service User Guide·API reference

> Document Version: 20240808 105

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-mpaas</artifactId>
 <version>3.0.10</version>
</dependency>

<dependency>
<groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-core</artifactId>
 <optional>true</optional>
 <version>[4.3.2,5.0.0)</version>
</dependency>

Python
Run the following commands to add relevant dependencies.

Aliyun SDK
pip install aliyun-python-sdk-core
mPaaSs SDK
pip install aliyun-python-sdk-mpaas

Node.js
Run the following commands to add relevant dependencies.

npm i @alicloud/mpaas20190821

PHP
Run the following commands to add relevant dependencies.

composer require alibabacloud/sdk

Push message - simple push
Push one message to one target ID. Before you call this API, you must introduce the required
dependencies. For more information, see SDK preparations.

Request parameters

Parame
ter

Data
type

Require
d Example Description

classific
ation String No 1

Indicates the type of the messages pushed
through vivo push channel:

0 - Operational message
1 - System message

If not filled, it defaults to 1.

Message Push Service User Guide·API reference

> Document Version: 20240808 106

taskNa
me String Yes simpleTest The name of push task

title String Yes Test Message title

content String Yes Test Message body

appId String Yes ONEX570DA892117
21 mPaaS app ID

worksp
aceId String Yes test mPaaS workspace

delivery
Type Long Yes 3

The type of target ID. Valid values:
1 - Android device
2 - iOS device
3 - User
5 - pushToken of live activity
6 - activityId of live activity

targetM
sgkey String Yes {“user1024”:”1578

807462788”}

Targets to which the message will be
pushed, in the map format:

key: The target, which depends on the
value of deliveryType .

If the value of deliveryType is 1,
the key is Android device ID.
If the value of deliveryType is 2,
the key is iOS device ID.
If the value of deliveryType is 3,
the key is user ID which is the value of
 userid passed in when you called

the binding API.

value: The business ID of the message,
which is user-defined and must be
unique.

Note that the number of the targets cannot
exceed 10.

expired
Second
s

Long Yes 300 The validity period of message, in seconds.

Message Push Service User Guide·API reference

> Document Version: 20240808 107

pushSty
le Integer Yes 0

Push style:
0 - Default
1 - Big text
2 - Image and text

extende
dParam
s

String No {“key1”:”value1”}
The extension parameters, in the map
format.

pushAct
ion Long No 0

The redirection method upon a tap on the
message. Valid values:

0: Web URL
1 - Intent Activity

The default redirection method is Web URL.

uri String No http://www The URL to be redirected to upon a tap on
the message.

silent Long No 1

Specify whether the message is silent. Valid
values:

1 - Silent
0 - Not silent

notifyTy
pe String No

Message push channel:
transparent - MPS self-built channel
notify - Default channel

imageU
rls String No

Large image link (JSON string), supported in
OPPO, HMS, MIUI, FCM and iOS push
channels. You can use defaultUrl as
the default value.

iconUrls String No
Icon link (JSON string), supported in OPPO,
HMS, MIUI, FCM and iOS push channels. You
can use defaultUrl as the default
value.

strateg
yType int No 1

Push strategy:
0 - Immediately
1 - Timed
2 - Cyclic

It is 0 by default.

Message Push Service User Guide·API reference

> Document Version: 20240808 108

Strateg
yConte
nt

String No

Push strategy details (JSON string). This
parameter is required when the value of
 strategyType is not 0. See the

following description of the StrategyContent
fields.

activity
Event String No

Real-time activity events, optional
update/end:

update - update event
end - end event

activity
Content
State

JSONOb
ject No

The content-state of real-time activity
messages, and it must be consistent with
the parameters defined by the client.

dismiss
alDate long No

The real-time activity message expiration
time (second-level timestamp), and it is an
optional field. If it is not transmitted, the
iOS system default expiration time of 12
hours will be used.

Note
About the smsStrategy parameter:

If the value of smsStrategy is not 0, smsSignName , smsTemplateCode , and
 smsTemplateParam are required.

About activityEvent parameters:
When activityEvent is an end event, the expiration time configured by
 dismissalDate will take effect.
When activityEvent is an update event, the expiration time configured by
 dismissalDate will not take effect.
If the end event is passed but dismissalDate is not passed, the iOS system will
end the real-time activity after 4 hours by default.

StrategyContent fields
JSON value is converted to String and passed in.

Parame
ter

Data
type

Require
d Example Description

fixedTi
me long No 1630303126000

Scheduled push timestamp (in ms, accurate
to second).
When the push strategy is Timed (the value
of strategyType is 1), fixedTime is
required.

Message Push Service User Guide·API reference

> Document Version: 20240808 109

startTi
me long No 1640966400000

Cycle period start timestamp (in ms,
accurate to day).
When the push strategy is Cyclic (the value
of strategyType is 2), startTime is
required.

endTim
e long No 1672416000000

Cycle period end timestamp (in ms,
accurate to day). The end time cannot
exceed 180 days after the current day.
When the push strategy is Cyclic (the value
of strategyType is 2), endTime is
required.

circleTy
pe int No 3

Loop type:
1 - Daily
2 - Weekly
3 - Monthly

When the push strategy is Cyclic (the value
of strategyType is 2), circleType
is required.

circleVa
lue int[] No [1,3]

Cycle value:
If the loop type is daily: Empty
If the loop type is weekly: Set the cyclic
push time every week. For example,
 [1,3] means pushing the message

every Monday and Wednesday.
If the loop type is monthly: Set the cyclic
push time every month. For example,
 [1,3] means pushing the message

on the 1st and 3rd day every month.
When the push strategy is Cyclic (the value
of strategyType is 2 and the value of
 circleType is not daily),
 circleValue is required.

time String No 09:45:11

Cyclic push time (time format: HH:mm:ss).
When the push strategy is Cyclic (the value
of strategyType is 2), time is
required.

Message Push Service User Guide·API reference

> Document Version: 20240808 110

Note
The upper limit of unexecuted timed or cyclic push tasks is 100 by default.
The cycle period is from 00:00 at the start date to 24:00 at the end date.
Neither the cycle start time nor the end time can be earlier than 00:00 of the day,
and the end time cannot be earlier than the start time.

Response parameters

Paramet
er

Data
type Example Description

RequestI
d String

B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

ResultCo
de String OK Request result code

ResultMe
ssage String param is invalid Error description

PushRes
ult JSON Request result

Success boolean true Request status. The value of Success is
contained in the PushRresult JSON string.

ResultMs
g String param is invalid Error content. The value of ResultMsg is

contained in the PushRresult JSON string.

Data String 903bf653c1b5442b9b
a07684767bf9c2

Scheduled push task ID. When strategyType
is not 0, this field is not empty.

Code example
Please make sure that your AccessKey has AliyunMPAASFullAccess permission. For details,
please refer to Application-level access control for RAM users.

Java sample code
Click here for information about how to obtain the AccessKey ID and AccessKey secret in the
following sample code.

 DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account

Message Push Service User Guide·API reference

> Document Version: 20240808 111

 "******", // The AccessKey ID of the RAM account
 "*****"); // The AccessKey secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);
 // Create an API request and set parameters
 PushSimpleRequest request = new PushSimpleRequest();
 request.setAppId("ONEX570DA89211721");
 request.setWorkspaceId("test");
 request.setTaskName("Test task");
 request.setTitle("Test");
 request.setContent("Test");
 request.setDeliveryType(3L);
 Map<String,String> extendedParam = new HashMap<String, String>();
 extendedParam.put("key1","value1");
 request.setExtendedParams(JSON.toJSONString(extendedParam));
 request.setExpiredSeconds(300L);

 request.setPushStyle(2);
 String imageUrls = "{\"defaultUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.al
iyuncs.com/tmp/test.png\",\"miuiUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"fcmUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"iosUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\"}";
 String iconUrls = "{\"defaultUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"hmsUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\",\"oppoUrl\":\"https://pre-mpaas.oss-cn-hangzhou.al
iyuncs.com/tmp/test.png\",\"miuiUrl\":\"https://pre-mpaas.oss-cn-
hangzhou.aliyuncs.com/tmp/test.png\"}";
 request.setImageUrls(imageUrls);
 request.setIconUrls(iconUrls);

 request.setStrategyType(2);
 request.setStrategyContent("
{\"fixedTime\":1630303126000,\"startTime\":1625673600000,\"endTime\":1630303126000,\"circle
Type\":1,\"circleValue\":[1, 7],\"time\":\"13:45:11\"}");

 Map<String,String> target = new HashMap<String, String>();
 String msgKey = String.valueOf(System.currentTimeMillis());
 target.put("user1024",msgKey);
 request.setTargetMsgkey(JSON.toJSONString(target));
 // Initiate the request and handle the response or exceptions
 PushSimpleResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Python sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 112

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushSimpleRequest
import json

Initialize AcsClient instance
client = AcsClient(
 "***",
 "***",
 "cn-hongkong"
);

Initialize a request and set parameters
request = PushSimpleRequest.PushSimpleRequest()
request.set_endpoint("mpaas.cn-hongkong.aliyuncs.com")
request.set_AppId("ONEX570DA89211721")
request.set_WorkspaceId("test")
request.set_Title("Python test")
request.set_Content("Test 2")
request.set_DeliveryType(3)
request.set_TaskName("The test task of Python template push")
request.set_ExpiredSeconds(600)
target = {"user1024":str(time.time())}
request.set_TargetMsgkey(json.dumps(target))

Print response
response = client.do_action_with_exception(request)
print response

Node.js sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 113

const sdk = require('@alicloud/mpaas20190821');

const { default: Client, PushSimpleRequest } = sdk;
// Create a client
const client = new Client({
 accessKeyId: '****',
 accessKeySecret: '*****',
 endpoint: 'mpaas.cn-hongkong.aliyuncs.com',
 apiVersion: '2019-08-21'
});
// Initialize the request.
 const request = new PushSimpleRequest();
 request.appId = "ONEX570DA89211721";
 request.workspaceId = "test";
 request.title = "Node test";
 request.content = "Test";
 request.deliveryType = 3;
 request.taskName = "Node test task";
 request.expiredSeconds=600;
 const extendedParam = {
 test: 'Custom extension parameter'
 };
 request.extendedParams = JSON.stringify(extendedParam);
// The value is the ID of the business message. Make sure that the ID is unique.
 const target = {
 "userid1024": String(new Date().valueOf())
 };
 request.targetMsgkey = JSON.stringify(target);

// Call the API operation.
try {
 client.pushSimple(request).then(res => {
 console.log('SUCCESS', res);
 }).catch(e => {
 console.log('FAIL', e);
 });
} catch(e) {
 console.log('ERROR', e);
}

PHP sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 114

<?php

use AlibabaCloud\Client\AlibabaCloud;
use AlibabaCloud\MPaaS\MPaaS;
AlibabaCloud::accessKeyClient('accessKeyId', 'accessKeySecret')
 ->regionId('cn-hongkong')
 ->asDefaultClient();

class Demo {
 public function run() {
 try {
 $this->simplePush();
 } catch (\Exception $e) {
 }
 }

 public function simplePush() {
 $request = MPaaS::v20190821()->pushSimple();
 $result = $request->withAppId("ONEX570DA89211721")
 ->withWorkspaceId("test")
 ->withTitle("PHP test")
 ->withContent("Test 3")
 ->withDeliveryType(3)
 ->withTaskName("PHP test task")
 ->withExpiredSeconds(600)
 ->withTargetMsgkey(
 json_encode(["userid1024" => "".time()]
))
 // endpoint
 ->host("mpaas.cn-hongkong.aliyuncs.com")
 // Specify whether to enable the debug mode
 ->debug(true)
 ->request();
 }
}

Push message - template push
Template push refers to pushing one message to a single target ID. The message is created
based on a template. Multiple IDs can share the same template.
Before you call the interface, ensure that you have completed the following operations:

You have created a template in the MPS console. For more information, see Create a
template.
You have introduced the required dependencies. For more information, see SDK
preparations.

Request parameters

Parame
ter

Data
type

Require
d Example Description

Message Push Service User Guide·API reference

> Document Version: 20240808 115

classific
ation String No 1

Indicates the type of the messages pushed
through vivo push channel:

0 - Operational message
1 - System message

If not filled, it defaults to 1.

taskNa
me String Yes templateTest The name of push task

appId String Yes ONEX570DA892117
21 mPaaS app ID

worksp
aceId String Yes test mPaaS workspace

delivery
Type Long Yes 3

The type of target ID. Valid values:
1 - Android device
2 - iOS device
3 - User
5 - pushToken of live activity
6 - activityId of live activity

targetM
sgkey String Yes {“user1024”:”1578

807462788”}

Targets to which the message will be
pushed, in the map format:

key: The target, which depends on the
value of deliveryType .

If the value of deliveryType is 1,
the key is Android device ID.
If the value of deliveryType is 2,
the key is iOS device ID.
If the value of deliveryType is 3,
the key is user ID which is the value of
 userid passed in when you called

the binding API.

value: The business ID of the message,
which is user-defined and must be
unique.

Note that the number of the targets cannot
exceed 10.

expired
Second
s

Long Yes 300 The validity period of message, in seconds.

Message Push Service User Guide·API reference

> Document Version: 20240808 116

templat
eName String Yes testTemplate

The name of template. Create a template in
the MPS console.

templat
eKeyVal
ue

String No {“money”:”200”,”n
ame”:”Bob”}

The parameters of template, in the map
format. The parameters depend on the
template specified by templateName .
Key refers to the placeholder while value
refers to the specific value that is used to
replace the placeholder. For example, the
content of a template can be
 Congratulations to #name# for
winning RMB #money# . The string
between two number signs “#” is the name
of the placeholder.

extende
dParam
s

String No {“key1”:”value1”} The extension parameters, in the map
format.

notifyTy
pe String No

Message push channel:
transparent - MPS self-built channel
notify - Default channel

strateg
yType int No 1

Push strategy:
0 - Immediately
1 - Timed
2 - Cyclic

It is 0 by default.

Strateg
yConte
nt

String No

Push strategy details (JSON string). This
parameter is required when the value of
 strategyType is not 0. See the

following description of the StrategyContent
fields.

activity
Event String No

Real-time activity events, optional
update/end:

update - update event
end - end event

activity
Content
State

JSONOb
ject No

The content-state of real-time activity
messages, and it must be consistent with
the parameters defined by the client.

Message Push Service User Guide·API reference

> Document Version: 20240808 117

dismiss
alDate long No

The real-time activity message expiration
time (second-level timestamp), and it is an
optional field. If it is not transmitted, the
iOS system default expiration time of 12
hours will be used.

Note
About the smsStrategy parameter:

If the value of smsStrategy is not 0, smsSignName , smsTemplateCode , and
 smsTemplateParam are required.

About activityEvent parameters:
When activityEvent is an end event, the expiration time configured by
 dismissalDate will take effect.
When activityEvent is an update event, the expiration time configured by
 dismissalDate will not take effect.
If the end event is passed but dismissalDate is not passed, the iOS system will
end the real-time activity after 4 hours by default.

StrategyContent fields
JSON value is converted to String and passed in.

Parame
ter type Require

d Example Description

fixedTi
me long No 1630303126000

Scheduled push timestamp (in ms, accurate
to second).
When the push strategy is Timed (the value
of strategyType is 1), fixedTime is
required.

startTi
me long No 1640966400000

Cycle period start timestamp (in ms,
accurate to day).
When the push strategy is Cyclic (the value
of strategyType is 2), startTime is
required.

endTim
e long No 1672416000000

Cycle period end timestamp (in ms,
accurate to day). The end time cannot
exceed 180 days after the current day.
When the push strategy is Cyclic (the value
of strategyType is 2), endTime is
required.

Message Push Service User Guide·API reference

> Document Version: 20240808 118

circleTy
pe int No 3

Loop type:
1 - Daily
2 - Weekly
3 - Monthly

When the push strategy is Cyclic (the value
of strategyType is 2), circleType
is required.

circleVa
lue int[] No [1,3]

Cycle value:
If the loop type is daily: Empty
If the loop type is weekly: Set the cyclic
push time every week. For example,
 [1,3] means pushing the message

every Monday and Wednesday.
If the loop type is monthly: Set the cyclic
push time every month. For example,
 [1,3] means pushing the message

on the 1st and 3rd day every month.
When the push strategy is Cyclic (the value
of strategyType is 2 and the value of
 circleType is not daily),
 circleValue is required.

time String No 09:45:11

Cyclic push time (time format: HH:mm:ss).
When the push strategy is Cyclic (the value
of strategyType is 2), time is
required.

Note
The upper limit of unexecuted timed or cyclic push tasks is 100 by default.
The cycle period is from 00:00 at the start date to 24:00 at the end date.
Neither the cycle start time nor the end time can be earlier than 00:00 of the day,
and the end time cannot be earlier than the start time.

Response parameters

Parameter Data type Example Description

RequestId String
B589F4F4-CD68-
3CE5-BDA0-
6597F33E239165
12

Request ID

ResultCode String OK Request result code

Message Push Service User Guide·API reference

> Document Version: 20240808 119

ResultMessage String param is invalid Error description

PushResult JSON Request result

Success boolean true
Request status. The value of
 Success is contained in the
 PushRresult JSON string.

ResultMsg String param is invalid
Error content. The value of
 ResultMsg is contained in the
 PushRresult JSON string.

Data String
903bf653c1b544
2b9ba07684767b
f9c2

Scheduled push task ID. When
 strategyType is not 0, this field is

not empty.

Code example
Please make sure that your AccessKey has AliyunMPAASFullAccess permission. For details,
please refer to Application-level access control for RAM users.

Java sample code
Click here for information about how to obtain the AccessKey ID and AccessKey secret in the
following sample code.

Message Push Service User Guide·API reference

> Document Version: 20240808 120

 DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it.
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);
 // Create an API request and set parameters
 PushTemplateRequest request = new PushTemplateRequest();
 request.setAppId("ONEX570DA89211721");
 request.setWorkspaceId("test");
 request.setTemplateName("testTemplate");
 // Hello #name#. Congratulations to you for winning RMB #money#.
 Map<String,String> templatekv = new HashMap<String, String>();
 templatekv.put("name"," Bob");
 templatekv.put("money","200");
 request.setTemplateKeyValue(JSON.toJSONString(templatekv));
 request.setExpiredSeconds(600L);
 request.setTaskName("templateTest");
 request.setDeliveryType(3L);
 Map<String,String> target = new HashMap<String, String>();
 String msgKey = String.valueOf(System.currentTimeMillis());
 target.put("userid1024",msgKey);
 request.setTargetMsgkey(JSON.toJSONString(target));

 request.setStrategyType(2);
 request.setStrategyContent("
{\"fixedTime\":1630303126000,\"startTime\":1625673600000,\"endTime\":1630303126000,\"circle
Type\":1,\"circleValue\":[1, 7],\"time\":\"13:45:11\"}");

 PushTemplateResponse response;
 try {
 response = client.getAcsResponse(request);

 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Python sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 121

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushTemplateRequest
import json
import time

Initialize AcsClient instance
client = AcsClient(
 "AccessKey ID",
 "AccessKey Secret",
 "cn-hongkong"
);

Initialize a request and set parameters
request = PushTemplateRequest.PushTemplateRequest()
request.set_endpoint("mpaas.cn-hongkong.aliyuncs.com")
request.set_AppId("ONEX570DA89211721")
request.set_WorkspaceId("test")
request.set_TemplateName("template1024")
templatekv = {"name":"Bob","money":"200"}
request.set_TemplateKeyValue(json.dumps(templatekv))
request.set_DeliveryType(3)
request.set_TaskName("The test task of Python template push")
request.set_ExpiredSeconds(600)
target = {"userid1024":str(time.time())}
request.set_TargetMsgkey(json.dumps(target))

Print response
response = client.do_action_with_exception(request)
print response

Node.js sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 122

const sdk = require('@alicloud/mpaas20190821');

const { default: Client, PushTemplateRequest } = sdk;
// Create a client.
const client = new Client({
 accessKeyId: 'accessKeyId',
 accessKeySecret: 'accessKeySecret',
 endpoint: 'mpaas.cn-hongkong.aliyuncs.com',
 apiVersion: '2019-08-21'
});
// Initialize the request.
 const request = new PushTemplateRequest();
 request.appId = "ONEX570DA89211721";
 request.workspaceId = "test";
 request.templateName= "template1024";
 const templatekv = {
 name: 'Bob',
 money:'300'
 };
 request.templateKeyValue = JSON.stringify(templatekv);
 request.deliveryType = 3;
 request.taskName = "Node test task";
 request.expiredSeconds=600;
 const extendedParam = {
 test: 'Custom extension parameter'
 };
 request.extendedParams = JSON.stringify(extendedParam);
 const target = {
 "userid1024": String(new Date().valueOf())
 };
 request.targetMsgkey = JSON.stringify(target);

// Call the API operation.
try {
 client.pushTemplate(request).then(res => {
 console.log('SUCCESS', res);
 }).catch(e => {
 console.log('FAIL', e);
 });
} catch(e) {
 console.log('ERROR', e);
}

PHP sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 123

<?php

use AlibabaCloud\Client\AlibabaCloud;
use AlibabaCloud\MPaaS\MPaaS;
AlibabaCloud::accessKeyClient('accessKeyId', 'accessKeySecret')
 ->regionId('cn-hongkong')
 ->asDefaultClient();

class Demo {
 public function run() {
 try {
 $this->templatePush();
 } catch (\Exception $e) {
 }
 }

 public function templatePush() {
 $request = MPaaS::v20190821()->pushTemplate();
 $result = $request->host("mpaas.cn-hongkong.aliyuncs.com")
 // Specify whether to enable the debug mode.
 ->debug(true)
 ->withAppId("ONEX570DA89211721")
 ->withWorkspaceId("test")
 ->withTemplateName("template1024")
 ->withTemplateKeyValue(json_encode(["name" => "Bob", "money" => "200"]))
 ->withDeliveryType(3)
 ->withTaskName("PHP test task")
 ->withExpiredSeconds(600)
 ->withTargetMsgkey(
 json_encode(["userid1024" => "".time()])
)
 ->request();
 }
}

Push message - multiple push
You can call this API to push different messages to different target IDs. This API allows you to
create a personalized message for a target ID by replacing the template placeholders.
Different from template push, multiple push allows you to send messages of different content
to different target IDs.
Before you call the interface, ensure that you have completed the following operations:

You have created a template in the MPS console, and the template contains placeholders.
Otherwise, you can’t implement personalized message push, that is, push different
messages to different target IDs. For more information, see Create a template.
You have introduced the required dependencies. For more information, see SDK
preparations.

Request parameters

Parame
ter

Data
type

Require
d Example Description

Message Push Service User Guide·API reference

> Document Version: 20240808 124

classific
ation String No 1

Indicates the type of the messages pushed
through vivo push channel:

0 - Operational message
1 - System message

If not filled, it defaults to 1.

taskNa
me String Yes multipleTest The name of push task

appId String Yes ONEX570DA892117
21 mPaaS app ID

worksp
aceId String Yes test mPaaS workspace

delivery
Type Long Yes 3

The type of target ID. Valid values:
1 - Android device
2 - iOS device
3 - User
5 - pushToken of live activity
6 - activityId of live activity

templat
eName String Yes testTemplate Template name. The template can be

created in the MPS console.

targetM
sgs List Yes targetMsgs object

list

The list of TargetMsg objects. | The list of
push targets. For information about the
parameters of each object, see targetMsgs
objects.

expired
Second
s

Long Yes 300 The validity period of message, in seconds.

extende
dParam
s

String No {“key1”:”value1”} The extension parameters, in the map
format.

notifyTy
pe String No

Message push channel:
transparent - MPS self-built channel
notify - Default channel

Message Push Service User Guide·API reference

> Document Version: 20240808 125

strateg
yType int tra No 1

Push strategy:
0 – Immediately
1 - Scheduled
2 - Cyclic

It is 0 by default.

Strateg
yConte
nt

String No

Push strategy details (JSON string). This
parameter is required when the value of
 strategyType is not 0. See the

following description of the StrategyContent
fields.

activity
Event String No

Real-time activity events, optional
update/end:

update - update event
end - end event

activity
Content
State

JSONOb
ject No

The content-state of real-time activity
messages, and it must be consistent with
the parameters defined by the client.

dismiss
alDate long No

The real-time activity message expiration
time (second-level timestamp), and it is an
optional field. If it is not transmitted, the
iOS system default expiration time of 12
hours will be used.

Note
About activityEvent parameters:

When activityEvent is an end event, the expiration time configured by
 dismissalDate will take effect.
When activityEvent is an update event, the expiration time configured by
 dismissalDate will not take effect.
If the end event is passed but dismissalDate is not passed, the iOS system will
end the real-time activity after 4 hours by default.

targetMsgs objects

Parame
ter

Data
type

Require
d Example Description

target String Yes userid1024 The target ID, which depends on the value
of the deliveryType parameter.

Message Push Service User Guide·API reference

> Document Version: 20240808 126

msgKey String Yes 1578807462788
The ID of business message. The ID is used
for message troubleshooting. The ID is user
defined and must be unique.

templat
eKeyVal
ue

String No {“money”:”200”,”n
ame”:”Bob”}

The parameters of template, in the map
format. The parameters depend on the
template specified by templateName .
Key refers to the placeholder while value
refers to the specific value that is used to
replace the placeholder. For example, the
content of a template can be
 Congratulations to #name# for
winning RMB #money# . The string
between two number signs “#” is the name
of the placeholder.

extende
dParam
s

String No {“key1”:”value1”}
The extension parameters, in the map
format. Different messages have different
extension parameters.

StrategyContent fields
JSON value is converted to String and passed in.

Parame
ter

Data
type

Require
d Example Description

fixedTi
me long No 1630303126000

Scheduled push timestamp (in ms, accurate
to second).
When the push strategy is Timed (the value
of strategyType is 1), fixedTime is
required.

startTi
me long No 1640966400000

Cycle period start timestamp (in ms,
accurate to day).
When the push strategy is Cyclic (the value
of strategyType is 2), startTime is
required.

endTim
e long No 1672416000000

Cycle period end timestamp (in ms,
accurate to day). The end time cannot
exceed 180 days after the current day.
When the push strategy is Cyclic (the value
of strategyType is 2), endTime is
required.

Message Push Service User Guide·API reference

> Document Version: 20240808 127

circleTy
pe int No 3

Loop type:
1 - Daily
2 - Weekly
3 - Monthly

When the push strategy is Cyclic (the value
of strategyType is 2), circleType
is required.

circleVa
lue int[] No [1,3]

Cycle value:
If the loop type is daily: Empty
If the loop type is weekly: Set the cyclic
push time every week. For example,
 [1,3] means pushing the message

every Monday and Wednesday.
If the loop type is monthly: Set the cyclic
push time every month. For example,
 [1,3] means pushing the message

on the 1st and 3rd day every month.
When the push strategy is Cyclic (the value
of strategyType is 2 and the value of
 circleType is not daily),
 circleValue is required.

time String No 09:45:11

Cyclic push time (time format: HH:mm:ss).
When the push strategy is Cyclic (the value
of strategyType is 2), time is
required.

Note
The upper limit of unexecuted timed or cyclic push tasks is 100 by default.
The cycle period is from 00:00 at the start date to 24:00 at the end date.
Neither the cycle start time nor the end time can be earlier than 00:00 of the day,
and the end time cannot be earlier than the start time.

Response parameters

Parameter Data type Example Description

RequestId String
B589F4F4-CD68-
3CE5-BDA0-
6597F33E239165
12

Request ID

ResultCode String OK Request result code

Message Push Service User Guide·API reference

> Document Version: 20240808 128

ResultMessage String param is invalid Error description

PushResult JSON Request result

Success boolean true
Request status. The value of
 Success is contained in the
 PushRresult JSON string.

ResultMsg String param is invalid
Error content. The value of
 ResultMsg is contained in the
 PushRresult JSON string.

Data String
903bf653c1b544
2b9ba07684767b
f9c2

Scheduled push task ID. When
 strategyType is not 0, this field is

not empty.

Code example
Please make sure that your AccessKey has AliyunMPAASFullAccess permission. For details,
please refer to Application-level access control for RAM users.

Java sample code
Click here for information about how to obtain the AccessKey ID and AccessKey secret in the
following sample code.

Message Push Service User Guide·API reference

> Document Version: 20240808 129

 DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // he AccessKey secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);
 // Create an API request and set parameters
 PushMultipleRequest request = new PushMultipleRequest();
 request.setAppId("ONEX570DA89211721");
 request.setWorkspaceId("test");
 request.setDeliveryType(3L);
 request.setTaskName("multipleTest");
 request.setTemplateName("testTemplate");
 // Hello #name#. Congratulations to you for winning RMB #money#.
 List<PushMultipleRequest.TargetMsg> targetMsgs = new
ArrayList<PushMultipleRequest.TargetMsg>();
 PushMultipleRequest.TargetMsg targetMsg = new PushMultipleRequest.TargetMsg();
 targetMsg.setTarget("userid1024");
 targetMsg.setMsgKey(String.valueOf(System.currentTimeMillis()));
 Map<String, String> templatekv = new HashMap<String, String>();
 templatekv.put("name", "Bob");
 templatekv.put("money", "200");
 targetMsg.setTemplateKeyValue(JSON.toJSONString(templatekv));
 // The number of TargetMsg objects can be up to 400
 targetMsgs.add(targetMsg);
 request.setTargetMsgs(targetMsgs);
 request.setExpiredSeconds(600L);

 request.setStrategyType(2);
 request.setStrategyContent("
{\"fixedTime\":1630303126000,\"startTime\":1625673600000,\"endTime\":1630303126000,\"circle
Type\":1,\"circleValue\":[1, 7],\"time\":\"13:45:11\"}");

 PushMultipleResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 System.out.println(response.getPushResult().getData()); // Push task ID or
scheduled push task ID
 } catch (ClientException e) {
 e.printStackTrace();
 }

Python sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 130

-*- coding: utf8 -*-
from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushMultipleRequest
import json
import time

Initialize AcsClient instance
client = AcsClient(
 "AccessKey ID",
 "AccessKey Secret",
 "cn-hongkong"
);

Initialize a request and set parameters
request = PushMultipleRequest.PushMultipleRequest()
request.set_endpoint("mpaas.cn-hongkong.aliyuncs.com")
request.set_AppId("ONEX570DA89211721")
request.set_WorkspaceId("test")
request.set_TemplateName("template1024")
request.set_DeliveryType(3)
request.set_TaskName("The test task of Python template push")
request.set_ExpiredSeconds(600)
msgkey = str(time.time())
targets = [
 {
 "Target": "user1024",
 "MsgKey": msgkey,
 "TemplateKeyValue": {
 "name": "Bob",
 "money": "200"
 }
 }
]
request.set_TargetMsgs(targets)
Print response
response = client.do_action_with_exception(request)
print response

Node.js sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 131

const sdk = require('@alicloud/mpaas20190821');

const { default: Client, PushMultipleRequest,PushMultipleRequestTargetMsg } = sdk;
// Create a client
const client = new Client({
 accessKeyId: 'accessKeyId',
 accessKeySecret: 'AccessKey Secret',
 endpoint: 'mpaas.cn-hongkong.aliyuncs.com',
 apiVersion: '2019-08-21'
});
// Initialize request
 const request = new PushMultipleRequest();
 request.appId = "ONEX570DA89211721";
 request.workspaceId = "test";
 request.templateName= "template1024";
 const templatekv = {
 name: 'Bob',
 money:'300'
 };
 //request.templateKeyValue = JSON.stringify(templatekv);

 request.deliveryType = 3;
 request.taskName = "Node test task";
 request.expiredSeconds=600;
 const extendedParam = {
 test: 'Custom extension parameter'
 };
 request.extendedParams = JSON.stringify(extendedParam);

 const targetMsgkey = new PushMultipleRequestTargetMsg();
 targetMsgkey.target = "userid1024";
 targetMsgkey.msgKey = String(new Date().valueOf());
 targetMsgkey.templateKeyValue = JSON.stringify(templatekv);;
 request.targetMsg = [targetMsgkey];

// Call the API operation.
try {
 client.pushMultiple(request).then(res => {
 console.log('SUCCESS', res);
 }).catch(e => {
 console.log('FAIL', e);
 });
} catch(e) {
 console.log('ERROR', e);
}

PHP sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 132

<?php

use AlibabaCloud\Client\AlibabaCloud;
use AlibabaCloud\MPaaS\MPaaS;
AlibabaCloud::accessKeyClient('accessKeyId', 'accessKeySecret')
 ->regionId('cn-hongkong')
 ->asDefaultClient();

class Demo {
 public function run() {
 try {
 $this->multiPush();
 } catch (\Exception $e) {
 }
 }

 public function multiPush() {
 $request = MPaaS::v20190821()->pushMultiple();
 $result = $request->host("mpaas.cn-hongkong.aliyuncs.com")
 // Specify whether to enable the debug mode
 ->debug(true)
 ->withAppId("ONEX570DA89211721")
 ->withWorkspaceId("test")
 ->withTemplateName("template1024")
 ->withDeliveryType(3)
 ->withTaskName("The test task of PHP multiple push")
 ->withExpiredSeconds(600)
 ->withTargetMsg(
 [
 [
 "Target" => "userid1024",
 "MsgKey" => "" . time(),
 "TemplateKeyValue" => json_encode([
 "name" => "Bob",
 "money" => "200",
])
]
]
)
 ->request();
 }
}

Push message - broadcast push
You can call this interface to push the same message to all devices. The message is created
based on a template.
Before you call the interface, ensure that you have completed the following operations:

You have created a template in the MPS console, and the template contains placeholders.
Otherwise, you cann’t implement personalized message push, that is, push different
messages to different target IDs. For more information, see Create a template.

Message Push Service User Guide·API reference

> Document Version: 20240808 133

You have introduced the required dependencies. For more information, see SDK
preparations.

Request parameters

Parame
ter

Data
type

Require
d Example Description

classific
ation String No 1

Indicates the type of the messages pushed
through vivo push channel:

0 - Operational message
1 - System message

If not filled, it defaults to 1.

taskNa
me String Yes broadcastTest The name of push task

appId String Yes ONEX570DA892117
21 mPaaS app ID

worksp
aceId String Yes test mPaaS workspace

delivery
Type Long Yes 1

The type of target ID. Valid values:
1 - Android broadcast
2 - iOS broadcast

msgkey String Yes 1578807462788
The ID of business message. The ID is used
for message troubleshooting. The ID is user
defined and must be unique.

expired
Second
s

Long Yes 300 The validity period of message, in seconds.

templat
eName String Yes broadcastTemplate Template name. The template can be

created in the MPS console.

templat
eKeyVal
ue

String No {“content”:”Annou
ncement”}

The parameters of template, in the map
format. The parameters depend on the
template specified by templateName .
Key refers to the placeholder while value
refers to the specific value that is used to
replace the placeholder.

Message Push Service User Guide·API reference

> Document Version: 20240808 134

pushSta
tus Long No 0

Login status:
0 - Login users (default)
1 - All users (including login and logout
users)
2 - Logout users

bindPeri
od int No

Login period, required when the value of
 pushStatus is 0:

1 - Login users in recent 7 days
2 - Login users in recent 15 days
3 - Login users in recent 60 days
4 - Permanent

Note

The bindPeriod parameter is only
configurable in non-financial
environment.

unBindP
eriod Long No

Logout period, required when the value of
 pushStatus is 1 or 2:

1 - Logout users in recent 7 days
2 - Logout users in recent 15 days
3 - Logout users in recent 60 days
4 - Permanent

android
Channel Integer No

Android message channel:
transparent - MPS self-built channel
notify - Default channel

strateg
yType int No 1

Push strategy:
0 - Immediately
1 - Scheduled
2 - Cyclic

It is 0 by default.

Strateg
yConte
nt

String No

Push strategy details (JSON string). This
parameter is required when the value of
 strategyType is not 0. See the

following description of the StrategyContent
fields.

StrategyContent fields
JSON value is converted to String and passed in.

Message Push Service User Guide·API reference

> Document Version: 20240808 135

Parame
ter

Data
type

Require
d Example Description

fixedTi
me long No 1630303126000

Scheduled push timestamp (in ms, accurate
to second).
When the push strategy is Timed (the value
of strategyType is 1), fixedTime is
required.

startTi
me long No 1640966400000

Cycle period start timestamp (in ms,
accurate to day).
When the push strategy is Cyclic (the value
of strategyType is 2), startTime is
required.

endTim
e long No 1672416000000

Cycle period end timestamp (in ms,
accurate to day). The end time cannot
exceed 180 days after the current day.
When the push strategy is Cyclic (the value
of strategyType is 2), endTime is
required.

circleTy
pe int No 3

Loop type:
1 - Daily
2 - Weekly
3 - Monthly

When the push strategy is Cyclic (the value
of strategyType is 2), circleType
is required.

circleVa
lue int[] No [1,3]

Cycle value:
If the loop type is daily: Empty
If the loop type is weekly: Set the cyclic
push time every week. For example,
 [1,3] means pushing the message

every Monday and Wednesday.
If the loop type is monthly: Set the cyclic
push time every month. For example,
 [1,3] means pushing the message

on the 1st and 3rd day every month.
When the push strategy is Cyclic (the value
of strategyType is 2 and the value of
 circleType is not daily),
 circleValue is required.

Message Push Service User Guide·API reference

> Document Version: 20240808 136

time String No 09:45:11

Cyclic push time (time format: HH:mm:ss).
When the push strategy is Cyclic (the value
of strategyType is 2), time is
required.

Note
The upper limit of unexecuted timed or cyclic push tasks is 100 by default.
The cycle period is from 00:00 at the start date to 24:00 at the end date.
Neither the cycle start time nor the end time can be earlier than 00:00 of the day,
and the end time cannot be earlier than the start time.

Response parameters

Paramet
er

Data
type Example Description

RequestI
d String

B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

ResultCo
de String OK Request result code

ResultMe
ssage String param is invalid Error description

PushRes
ult JSON Request result

Success boolean true Request status. The value of Success is
contained in the PushRresult JSON string.

ResultMs
g String param is invalid Error content. The value of ResultMsg is

contained in the PushRresult JSON string.

Data String 903bf653c1b5442b9b
a07684767bf9c2

Scheduled push task ID. When strategyType
is not 0, this field is not empty.

Code example
Please make sure that your AccessKey has AliyunMPAASFullAccess permission. For details,
please refer to Application-level access control for RAM users.

Java sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 137

Click here for information about how to obtain the AccessKey ID and AccessKey secret in the
following sample code.

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);

 PushBroadcastRequest request = new PushBroadcastRequest();
 request.setAppId("ONEX570DA89211720");
 request.setWorkspaceId("test");
 request.setDeliveryType(2L);
 request.setMsgkey(String.valueOf(System.currentTimeMillis()));
 request.setExpiredSeconds(600L);
 request.setTaskName("broadcastTest ");
 request.setTemplateName("broadcastTemplate ");
 // This is an announcement: #content#.
 Map<String, String> templatekv = new HashMap<String, String>();
 templatekv.put("content", " The content of the announcement ");
 request.setTemplateKeyValue(JSON.toJSONString(templatekv));

 request.setStrategyType(2);
 request.setStrategyContent("
{\"fixedTime\":1630303126000,\"startTime\":1625673600000,\"endTime\":1630303126000,\"circle
Type\":1,\"circleValue\":[1, 7],\"time\":\"13:45:11\"}");

 PushBroadcastResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 System.out.println(response.getPushResult().getData()); // push task ID or
scheduled task ID
 } catch (ClientException e) {
 e.printStackTrace();
 }

Python sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 138

-*- coding: utf8 -*-

from aliyunsdkcore.client import AcsClient
from aliyunsdkmpaas.request.v20190821 import PushBroadcastRequest
import json
import time

Initialize AcsClient instance
client = AcsClient(
 "AccessKey ID",
 "AccessKey Secret",
 "cn-hongkong"
);

Initialize a request and set parameters
request = PushBroadcastRequest.PushBroadcastRequest()
request.set_endpoint("mpaas.cn-hongkong.aliyuncs.com")
request.set_AppId("ONEX570DA89211720")
request.set_WorkspaceId("test")
request.set_TemplateName("broadcastTemplate")
templatekv = {"content":"This is an announcement"}
request.set_TemplateKeyValue(json.dumps(templatekv))
request.set_DeliveryType(1)
request.set_TaskName("The test task of Python broadcast push")
request.set_ExpiredSeconds(600)
request.set_Msgkey(str(time.time()))

Print response
response = client.do_action_with_exception(request)
print response

Node.js sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 139

const sdk = require('@alicloud/mpaas20190821');

const { default: Client, PushBroadcastRequest } = sdk;
// Create a client.
const client = new Client({
 accessKeyId: 'accessKeyId',
 accessKeySecret: 'AccessKey Secret',
 endpoint: 'mpaas.cn-hongkong.aliyuncs.com',
 apiVersion: '2019-08-21'
});
// Initialize the request.

 const request = new PushBroadcastRequest();
 request.appId = "ONEX570DA89211720";
 request.workspaceId = "test";
 request.templateName= "broadcastTemplate";
 const templatekv = {
 content: 'This is an announcement',
 };
 request.templateKeyValue = JSON.stringify(templatekv);
 request.deliveryType = 1;
 request.taskName = "Node test task";
 request.expiredSeconds=600;
 const extendedParam = {
 test: 'Custom extension parameter'
 };
 request.extendedParams = JSON.stringify(extendedParam);

 request.msgkey = String(new Date().valueOf())

// Call the API operation.
try {
 client.pushBroadcast(request).then(res => {
 console.log('SUCCESS', res);
 }).catch(e => {
 console.log('FAIL', e);
 });
} catch(e) {
 console.log('ERROR', e);
}

PHP sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 140

<?php

use AlibabaCloud\Client\AlibabaCloud;
use AlibabaCloud\MPaaS\MPaaS;
AlibabaCloud::accessKeyClient('accessKeyId', 'accessKeySecret')
 ->regionId('cn-hongkong')
 ->asDefaultClient();

class Demo {
 public function run() {
 try {
 $this->broadcastPush();
 } catch (\Exception $e) {
 }
 }

 public function broadcastPush(){
 $request = MPaaS::v20190821()->pushBroadcast();
 $result = $request->host("mpaas.cn-hongkong.aliyuncs.com")
 // Specify whether to enable the debug mode.
 ->debug(true)
 ->withAppId("ONEX570DA89211720")
 ->withWorkspaceId("test")
 ->withTemplateName("broadcastTemplate")
 ->withTemplateKeyValue(
 json_encode(["content" => "This is an announcement"])
)
 ->withDeliveryType(1)
 ->withTaskName("The test task of PHP broadcast push")
 ->withExpiredSeconds(600)
 ->withMsgkey("". time())
 ->request();
 }
}

Revoke messages
Messages pushed through simple push or template push can be withdrawn through message
ID; messages pushed through the multiple push or broadcast push can be withdrawn through
task ID. Only the messages pushed in recent 7 days can be revoked.

Revoke by message ID
Revoke the messages pushed through simple push mode or template push mode.

Request parameters

Parame
ter

Data
type

Require
d Example Description

Message Push Service User Guide·API reference

> Document Version: 20240808 141

messag
eId String Yes 1578807462788

Message ID in business system, which can
be customized by users and is used to
uniquely identify the message in the
business system.

targetId String Yes user1024
Target ID. If the message was pushed by
device, then the target ID refers to device
ID; if the message was pushed by user,
then the target ID refers to user ID.

Response parameters

Paramet
er

Data
type Example Description

RequestI
d String

B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

ResultCo
de String OK Request result code

ResultMe
ssage String param is invalid Error description

PushRes
ult JSON Request result

Success boolean true Request status. The value of Success is
contained in the PushRresult JSON string.

ResultMs
g String param is invalid Error content. The value of ResultMsg is

contained in the PushRresult JSON string.

Sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 142

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);

 RevokePushMessageRequest request = new RevokePushMessageRequest();
 request.setAppId("ONEX570DA89211720");
 request.setWorkspaceId("test");
 request.setMessageId("console_1624516744112"); // Message ID in business
system
 request.setTargetId("mpaas_push_demo"); // Target ID

 RevokePushMessageResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Revoke by task ID
Revoke the messages pushed through multiple push mode or broadcast push mode.

Request parameters

Parame
ter

Data
type

Require
d Example Example

taskId String Yes 20842863 Push task ID, which can be used to query
push tasks in the MPS console.

Response parameters

Parameter Data type Example Description

RequestId String

B589F4F4-CD68-
3CE5-BDA0-
6597F33E239165
12 Request ID

ResultCode String OK Request result code

Message Push Service User Guide·API reference

> Document Version: 20240808 143

ResultMessage String param is invalid Error description

PushResult JSON Request result

Success boolean true
Request status. The value of
 Success is contained in the
 PushRresult JSON string.

ResultMsg String param is invalid
Error content. The value of
 ResultMsg is contained in the
 PushRresult JSON string.

Sample code
DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account

 IAcsClient client = new DefaultAcsClient(profile);

 RevokePushTaskRequest request = new RevokePushTaskRequest();
 request.setAppId("ONEX570DA89211720");
 request.setWorkspaceId("test");
 request.setTaskId("20842863"); // Push task ID

 RevokePushTaskResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Analyze message push
Query statistical data
Query message push statistical data, including pushed messages, successfully pushed
messages, message arrivals, opened messages, and ignored messages.

Request parameters

Parame
ter

Data
type

Require
d Example Description

Message Push Service User Guide·API reference

> Document Version: 20240808 144

appId String Yes ONEX570DA892117
21 mPaaS app ID

worksp
aceId String Yes test mPaaS workspace

startTi
me long Yes 1619798400000

The start timestamp of the time period to
be queried, in milliseconds and accurate to
day.

endTim
e long Yes 1624358433000

The end timestamp of the time period to be
queried, in milliseconds and accurate to
day. The interval between the start time
and end time cannot exceed 90 days.

platfor
m String No ANDROID

Push platform. It defaults to query all
platforms if no value is passed in.
Valid values: IOS, ANDROID

channel String No ANDROID

Push channel. It defaults to query all
channels if no value is passed in.
Valid values: IOS, FCM, HMS, MIUI, OPPO,
VIVO, ANDROID (self-built channel)

type String No SIMPLE

Push mode. It defaults to query all types if
no value is passed in.
Valid values: SIMPLE, TEMPLATE, MULTIPLE,
BROADCAST

taskId String No 20842863 Push task ID

Response parameters

Paramet
er

Data
type Example Description

RequestI
d String

B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

ResultCo
de String OK Request result code

ResultMe
ssage String param is invalid Error description

Message Push Service User Guide·API reference

> Document Version: 20240808 145

ResultCo
ntent JSON Response content

data JSON Response content. The value of data is
contained in the ResultContent JSON string.

pushTota
lNum float 100 The number of pushed messages

pushNum float 100 The number of successfully pushed messages

arrivalNu
m float 100 The number of messages that arrive client

openNu
m float 100 The number of opened messages

openRate float 100 Message open rate

ignoreNu
m float 100 The number of ignored messages

ignoreRa
te float 100 Message ignorance rate

Sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 146

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);
 QueryPushAnalysisCoreIndexRequest request = new
QueryPushAnalysisCoreIndexRequest();
 request.setAppId("ONEX570DA89211720");
 request.setWorkspaceId("test");
 request.setStartTime(Long.valueOf("1617206400000"));
 request.setEndTime(Long.valueOf("1624982400000"));
 request.setPlatform("ANDROID");
 request.setChannel("ANDROID");
 request.setType("SIMPLE");
 request.setTaskId("20842863");

 QueryPushAnalysisCoreIndexResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Query push tasks
Query the multiple/broadcast push tasks created on MPS console or triggered by calling API.

Request parameters

Parameter Data type Required Example Description

appId String Yes ONEX570DA8
9211721 mPaaS app ID

workspaceId String Yes test mPaaS workspace

startTime long Yes 16197984000
00

The start timestamp of the time
period to be queried, in
milliseconds and accurate to
day.

taskId String No 20842863 Push task ID

taskName String No Test task Task name

Message Push Service User Guide·API reference

> Document Version: 20240808 147

pageNumber int No 1 Page number, 1 by default.

pageSize int No 10 The total number of pages, 500
by default.

Response parameters

Parameter Data type Example Description

RequestId String
B589F4F4-CD68-
3CE5-BDA0-
6597F33E239165
12

Request ID

ResultCode String OK Request result code

ResultMessage String param is invalid Error description

ResultContent JSON Response content

data JSON
Response content. The value of
 data is contained in the
 ResultContent JSON string.

taskId String 20927873 Task ID

taskName String Test task Task name

templateId String 9108 Template ID

templateName String Test template Template name

type long 3
Push mode:

2 – Multiple push
3 – Broadcast push

gmtCreate long 1630052750000 Creation time

Sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 148

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);

 QueryPushAnalysisTaskListRequest request = new
QueryPushAnalysisTaskListRequest();
 request.setAppId("ONEX570DA89211721");
 request.setWorkspaceId("default");
 request.setStartTime(Long.valueOf("1617206400000"));
 request.setTaskId("20845212");
 request.setTaskName("Tesk task");
 request.setPageNumber(1);
 request.setPageSize(10);

 QueryPushAnalysisTaskListResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Query push task details
Query the details of multiple/broadcast push tasks created on MPS console or triggered by
calling API.

Request parameters

Parameter Data type Required Example Description

appId String Yes ONEX570DA8
9211721 mPaaS app ID

workspaceId String Yes test mPaaS workspace

taskId String Yes 20842863 Push task ID

Response parameters

Parameter Data type Example Description

Message Push Service User Guide·API reference

> Document Version: 20240808 149

RequestId String
B589F4F4-CD68-
3CE5-BDA0-
6597F33E239165
12

Request ID

ResultCode String OK Request result code

ResultMessage String param is invalid Error description

ResultContent JSON Response content

data JSON
Response content. The value of
 data is contained in the
 ResultContent JSON string.

taskId long 20927872 Task ID

pushNum float 10 The number of pushed messages

pushSuccessNum float 10 The number of successfully pushed
messages

pushArrivalNum float 10 The number of messages that arrive
client

startTime long 1630052735000 Start time (ms)

endTime long 1630052831000 End time (ms)

duration string
00 hour 01
minute 36
seconds

Push duration

Sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 150

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);

 QueryPushAnalysisTaskDetailRequest request = new
QueryPushAnalysisTaskDetailRequest();
 request.setAppId("ONEXPREF4F5C52081557");
 request.setWorkspaceId("default");
 request.setTaskId("20845212");

 QueryPushAnalysisTaskDetailResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Manage scheduled push tasks
Query scheduled push tasks
Query the created scheduled push tasks, including timed and cyclic push tasks.

Request parameters

Parameter Data type Required Example Description

appId String Yes ONEX570DA8
9211721 mPaaS app ID

workspaceId String Yes test mPaaS workspace

startTime long Yes 16197984000
00

The start timestamp when the
scheduled push is triggered,
not the task creation time.

endtTime long Yes 16304256000
00

The end timestamp when the
scheduled push is triggered.

Message Push Service User Guide·API reference

> Document Version: 20240808 151

type int No 0

Push mode:
0 - Simple push
1 – Template push
2 – Multiple push
3 – Broadcast push

uniqueId String No
49ec0ed5a2a
642bcbe139a
2d7a419d6d

The unique ID of the scheduled
push task.
If you pass the master task ID,
then the information of all sub
tasks will be returned. If you
pass the sub task ID, then the
corresponding sub task
information will be returned.

pageNumber int No 1 Page number, 1 by default.

pageSize int No 10 The total number of pages, 500
by default.

Response parameters

Parameter Data type Example Description

RequestId String
B589F4F4-CD68-
3CE5-BDA0-
6597F33E239165
12

Request ID

ResultCode String OK Request result code

ResultMessage String param is invalid Error description

ResultContent JSON Response content

data JSON
Response content. The value of
 data is contained in the
 ResultContent JSON string.

totalCount int 10 Total amount

list JSONArray Task array

Message Push Service User Guide·API reference

> Document Version: 20240808 152

uniqueId String 56918166720e46
e1bcc40195c9ca
71db

Unique ID of the scheduled push task.
If the value of strategyType is
1, it refers to the master task ID of
timed task.
If the value of strategyType is
2, it refers to the child task ID of
cyclic task.

parentId String
56918166720e46
e1bcc40195c9ca
71db

Master ID of the scheduled push task.
If the value of strategyType is
1, it refers to the master task ID of
timed task.
If the value of strategyType is
2, it refers to the master task ID of
cyclic task.

pushTime Date 1630486972000 Scheduled push time

pushTitle String Test Title of message

pushContent String Test text Body content of message

type int 0

Push mode:
0 - Simple push
1 – Template push
2 – Multiple push
3 – Broadcast push

deliveryType int 1

Push type:
1 - Android
2 - iOS
3 - UserId

strategyType int 1
Push strategy:

1 - Scheduled
2 - Cyclic

executedStatus int 0
Whether the task has been executed:

0 - No executed
1 - Executed

Message Push Service User Guide·API reference

> Document Version: 20240808 153

createType int 0

Task creation method:
0 - API
1 - Console

gmtCreate Date 1629971346000 Creation time

Sample code
DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);

 QueryPushSchedulerListRequest request = new QueryPushSchedulerListRequest();
 request.setAppId("ONEXPREF4F5C52081557");
 request.setWorkspaceId("default");
 request.setStartTime(Long.valueOf("1625068800000"));
 request.setEndTime(Long.valueOf("1630425600000"));
 request.setType(0);
 request.setUniqueId("49ec0ed5a2a642bcbe139a2d7a419d6d");
 request.setPageNumber(1);
 request.setPageSize(10);

 QueryPushSchedulerListResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Cancel scheduled push tasks
Cancel the scheduled push tasks (including cyclic push tasks) that haven’t been pushed. You
can cancel the tasks in batch.

Request parameters

Param
eter

Data
type

Requir
ed Example Description

appId String Yes ONEX570DA892117
21 mPaaS app ID

Message Push Service User Guide·API reference

> Document Version: 20240808 154

worksp
aceId String Yes test mPaaS workspace

type int No 0

Scheduled push task ID type. It is 0 by
default.

0 - Master task ID, corresponding to
 parentId

1 - Sub task ID, corresponding to
 uniqueId

uniqueI
ds String Yes 714613eb,714613e

c,714613ed
The unique ID of the scheduled push task.
Multiple task IDs are separated with
commas (,). You can input 30 IDs at most.

Response parameters

Paramet
er

Data
type Example Description

RequestI
d String

B589F4F4-CD68-3CE5-
BDA0-
6597F33E23916512

Request ID

ResultCo
de String OK Request result code

ResultMe
ssage String param is invalid Error description

ResultCo
ntent String {714613eb=1,714613

ed=0}

Cancellation result:
1 - Successful
0 - Failed

Sample code

Message Push Service User Guide·API reference

> Document Version: 20240808 155

DefaultProfile.addEndpoint("cn-hongkong", "mpaas", "mpaas.cn-hongkong.aliyuncs.com");
 // Create a DefaultAcsClient instance and initialize it
 DefaultProfile profile = DefaultProfile.getProfile(
 "cn-hangzhou", // Region ID
 "******", // The AccessKey ID of the RAM account
 "******"); // The AccessKey Secret of the RAM account
 IAcsClient client = new DefaultAcsClient(profile);

CancelPushSchedulerRequest request = new CancelPushSchedulerRequest();
 request.setAppId("ONEXPREF4F5C52081557");
 request.setWorkspaceId("default");
 request.setUniqueIds("49ec0ed5a2a642bcbe139a2d7a419d6d,
49ec0ed5a2a642bcbe139a2d7a419d6c");

 CancelPushSchedulerResponse response;
 try {
 response = client.getAcsResponse(request);
 System.out.println(response.getResultCode());
 System.out.println(response.getResultMessage());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Extension parameters
Extension parameters are passed to the client with message body. You can define or process
these parameters.
Extension parameters include the following three types:

System extension parameters
These extension parameters are occupied by the system. Do not modify the values of these
parameters. System extension parameters include notifyType , action , silent ,
 pushType , templateCode , channel , and taskId .
System extension parameters with some significance
Extension parameters of this type are occupied by the system. Each parameter has a
specific meaning. You can set the values of these extension parameters. The following
table describes the extension parameters with specific meanings:

Key Description

sound
The custom ringtone of the message. The value of this parameter
is the path of the ringtone. This parameter only applies to Xiaomi
phones and iPhones.

Message Push Service User Guide·API reference

> Document Version: 20240808 156

badge

The badge of the app icon. Its value is a specific number. This
extension parameter will be passed to the client together with the
message body.

For Android devices, you need to implement the badge logic by
yourself.
For iOS devices, the system automatically implements the
badge logic. When a message is pushed to the target mobile
phone, the number that you specified in value appears in the
badge of the app icon.

mutable-content

Custom push ID of Apple Push Notification service (APNs). A push
notification carrying this parameter indicates the support of iOS
10 UNNotificationServiceExtension . If the push notification
not carrying this parameter indicates a common push. Set the
value to 1.

badge_add_num Number of added push badges for Huawei push channel.

badge_class Activity class corresponding to the desktop icon for Huawei push
channel

big_text
Big text style. This parameter has a fixed value "1". Any other
value is invalid. This parameter is only valid for Xiaomi and
Huawei devices.

User-defined extension parameters
All the parameters other than the preceding system extension parameters are user-defined
extension parameters. User-defined extension parameters are passed to the client together
with a message body. You can define and process these parameters.

Result codes

Result code Message Description

100 SUCCESS Succeeded

-1 SIGNATURE_MISMATCH Signature mismatched.

3001 NEED_DELIVERYTOKEN deliveryToken is empty.

3002 NEED_FILE The file is empty.

3003 NEED_APPID_WORKSPACEID The app ID or workspace is empty.

3007 APPID_WRONG Invalid app ID or workspace.

Message Push Service User Guide·API reference

> Document Version: 20240808 157

3008 OS_TYPE_NOT_SUPPORTED Push platform not supported.

3009 DELIVERY_TYPE_NOT_SUPPORTED deliveryType not supported.

3012 NEED_USERID UserId is empty.

3019 TASKNAME_NULL Task name is empty.

3020 EXPIREDSECONDS_WRONG Illegal message timeout length.

3021 TOKEN_OR_USERID_NULL Target is empty.

3022 TEMPLATE_NOT_EXIST Template doesn't exist.

3023 TEMPLATEKV_NOT_ENOUGH Template parameter mismatched.

3024 PAYLOAD_NOT_ENOUGH Title or content is empty.

3025 NEED_TEMPLATE Template is empty.

3026 EXPIREDTIME_TOO_LONG The validity period of message is too
long.

3028 INVALID_PARAM Illegal parameter.

3029 SINGLE_PUSH_TARGET_TOO_MUCH Too many targets.

3030 BROADCAST_ONLY_SUPPORT_BY_DEVI
CE

Only broadcast push by device is
supported.

3031 REQUEST_SHOULD_BE_UTF8 The request body must be UTF-8
encoded.

3032 REST_API_SWITCH_NOT_OPEN The push API has been closed.

3033 UNKNOWN_REST_SIGN_TYPE Signature type not supported.

3035 EXTEND_PARAM_TO_MUCH
Too many extension parameters. A
maximum of 20 extension parameters
are allowed.

Message Push Service User Guide·API reference

> Document Version: 20240808 158

3036 TEMPLATE_ALREADY_EXIST The template already exists.

3037 TEMPLATE_NAME_NULL Template name is empty.

3038 TEMPLATE_NAME_INVALID Illegal template name.

3039 TEMPLATE_CONTENT_INVALID Illegal template content.

3040 TEMPLATE_TITLE_INVALID Illegal template title.

3041 TEMPLATE_DESC_INFO_INVALID Illegal template description.

3042 TEMPLATE_URI_INVALID Illegal template URI.

3043 SINGLE_PUSH_CONTENT_TOO_LONG Message body is too long.

3044 INVALID_EXTEND_PARAM Illegal extension parameter.

3049 MULTIPLE_INNER_EXTEND_PARAM_TO_
MUCH

The number of internal extension
parameters for multiple push cannot
exceed 10.

3050 MSG_PAYLOAD_TOO_LONG Message body is too long.

3051 BROADCAST_ALL_USER_NEED_UNBIND
_PERIOD

Unbinding parameters are required for
the broadcast push targeting at all
users (including both login and logout
users).

3052 BROADCAST_ALL_USER_UNBIND_PERI
OD_INVALID

Illegal unbinding parameters for
broadcast push.

3053 BROADCAST_ALL_USER_NOT_SUPPORT
_SELFCHANNEL_ANDROID

MPS self-built push channel doesn't
supports the broadcast push targeting
at all users (including both login and
logout users).

3054 DELIVERYTOKEN_INVALID Illegal MPS self-built channel token.

3055 MULTIPLE_TARGET_NUMBER_TOO_MU
CH

The number of push targets exceeds
the threshold.

Message Push Service User Guide·API reference

> Document Version: 20240808 159

3056 TEMPLATE_NUM_TOO_MUCH The number of message templates
exceeds the threshold.

3057 ANDROID_CHANNEL_PARAM_INVALID Invalid androidChannel .

3058 BADGE_ADD_NUM_INVALID Invalid badge_add_num .

3059 BADGE_ADD_NUM_NEED_BADGE_CLAS
S

The parameter badge_class is
required for badge_add_num .

9000 SYSTEM_ERROR System error.

Message Push Service User Guide·API reference

> Document Version: 20240808 160

To ensure effective message delivery, you should create message push tasks with reference
to the message content limits for different push channels in the process of pushing
messages.
To ensure effective message delivery, you should create message push tasks with reference
to the message content limits for different push channels in the process of pushing
messages.

Android push channel

Push channel Message title length limit Message body length limit

MPS self-built channel No limit No limit

Mi 50 characters 128 characters

Huawei 40 characters 1024 characters

OPPO 32 characters 200 characters

vivo 40 characters 100 characters

Note
Pushes through vendor channels will fail if corresponding length limits are
exceeded.
Pushes through vendor channels will fail if the message title or content is empty.
For the pushes through Android push channel (no matter vendor channels or MPS
self-built channel), the size of the pushed message cannot exceed 2 KB.

iOS push channel

Push channel Message title length limit Message body length limit

8.Message content
restrictions

Message Push Service User Guide·Message content r
estrictions

> Document Version: 20240808 161

APNs 40 characters, excess parts will
be displayed as an ellipsis.

Up to 110 characters will be
displayed in the Notification
Center, and excess parts will
be displayed as an ellipsis.
Up to 110 characters will be
displayed when the phone
screen is locked, and excess
parts will be displayed as an
ellipsis.
Up to 62 characters will be
displayed in the top pop-up
window, and excess parts will
be displayed as an ellipsis.

Note
For the pushes through iOS push channel, the size of the pushed message cannot exceed
2 KB.

Message Push Service User Guide·Message content r
estrictions

> Document Version: 20240808 162

This topic summarizes the common problems that may appear in the process of integrating
and using Message Push Service, and provides the corresponding solutions to solve those
problems.

General questions
Description on permissions
For Android 6.0 and later versions, users need to manually grant permissions to the phone,
such as reading/writing SD cards. To send messages more precisely, we recommend that
developers provide a guide to users on how to grant the required permissions for the
notifications.

Logs cannot be printed
For Meizu phones, if log.d and log.i cannot be printed, you can choose Settings >
Accessibility Options > Developer Options and turn on Advanced Log Output.
In case of development issues, you can set tag=mpush to filter logs.

Android related questions
Port resolution problems in baseline versions 10.1.60.5 ~
10.1.60.7
In private cloud environments, for the message push using ports other than 443, the
resolution of server configurations will fail, and cause connection errors.
Solution:

If you use the config file for packaging, modify the config file as follows:

 //Ignore the rest of the config file and add \\{white space} before the custom port
number.
 {
 "pushPort":"\\ 8000",
 }

If you do not use the config file for packaging, change the value of rome.push.port in
 AndroidManifest.xml as follows:

 //Add \{white space} before the port number.
 <meta-data
 android:name="rome.push.port"
 android:value="\ 8000" />

Failed to push messages after accessing Huawei, Xiaomi and
other third-party channels
You need to turn on the settings for the corresponding channels in the mPaaS Message Push
Service console. Refer to Code sample for sample code, usage and notes.

Notes on the generation of push ad-token (deviceId)
The server generates deviceId with dependency on IMSI and IMEI. So, you are suggested
guide the users to grant the “READ_PHONE_STATE” permission.

9.FAQ
Message Push Service User Guide·FAQ

> Document Version: 20240808 163

https://github.com/mpaas-demo/android-push

Does message push on the notification bar have version
restrictions for EMUI and Huawei mobile services?
There are version restrictions for Emotion UI and Huawei mobile services. Emotion UI, EMUI
for short, is an emotional operating system based on Android and is developed by Huawei.
For detailed version requirements, see Conditions for devices to receive Huawei notifications.

Cannot print logs for Huawei phones
In the dialing UI of the phone, enter *#*#2846579#*#* to enter Project menu >
Background settings > LOG settings and select AP Logs. After the phone restarts, Logcat
will start to take effect.

What should I do when my Huawei phone receives a push error
code?
For more information about error codes, see Client error code description and Server error
code description on Huawei official website.

Models and system versions supported by OPPO Push
Currently, OPPO phone models running ColorOS 3.1 and newer systems, OnePlus 5/5T and
newer phone models, and all realme phone models are supported.
ColorOS is a highly-customized, efficient, intelligent, and richly-designed Android-based
mobile OS by OPPO.

What should I do when my OPPO phone receives a push error
code?
When OPPO push does not work, you can search for “OPPO onRegister error =” in client logs
to obtain the error code. Then find the corresponding causes by referring to OPPO error
codes.

Models and system versions supported by vivo Push
The models and oldest system versions supported by vivo Push are listed in the following
table. For other questions on vivo push, see vivo Push FAQs.

Message Push Service User Guide·FAQ

> Document Version: 20240808 164

https://developer.huawei.com/consumer/cn/doc/development/HMS-Guides/push-faq-v4
https://developer.huawei.com/consumer/en/doc/development/HMSCore-References-V5/error-code-0000001050255690-V5
https://developer.huawei.com/consumer/en/doc/development/HMSCore-References-V5/https-send-api-0000001050986197-V5#EN-US_TOPIC_0000001134031085__section13968115715131
https://open.oppomobile.com/wiki/doc#id=10196
https://dev.vivo.com.cn/documentCenter/doc/156#w1-08608733

What should I do when my vivo phone receives a push error
code?
When vivo Push does not work, you can search for "fail to turn on vivo Push state =" in client
logs to obtain the status code and find the specific causes by referring to Public status codes.

Troubleshooting procedure for common Android problems
1. Check whether the Manifest file is configured correctly.
2. Check whether the appId (Huawei, Xiaomi, or vivo), appSecret (Xiaomi or OPPO), appKey

(OPPO or vivo), and ALIPUSH_APPID (mPaaS) are consistent with the app registration
information on the corresponding development platform.

3. Check the Logcat logs tagged as mpush.

iOS related questions
Whether there will be a banner or sound alert for messages
when the app runs in the foreground

Message Push Service User Guide·FAQ

> Document Version: 20240808 165

https://dev.vivo.com.cn/documentCenter/doc/232

The default mechanism for Apple is that when an app is in foreground, the messages can
arrive but will be not shown. In order to show messages in foreground, you need to
implement it manually.

Message status is NoBindInfo
NoBindInfo means the user pushes messages by UserId, but no corresponding information is
found based on the UserId. Please check if the client has called the binding API, and if the
corresponding appId and workspaceId are consistent.

Message status is BadDeviceToken
This status will only appear for iOS pushes, indicating that the actually pushed token is
invalid. First, check if the environment of the certificate is correct.

If the app is packaged with a development certificate, the push console configuration
requires a development environment certificate, while Xcode requires a developer
certificate for debugging in real devices.
If the app is packaged with a production certificate, the push console configuration requires
a production environment certificate.

Message status is DeviceTokenNotForTopic
This status will only appear for iOS pushes, indicating that the token is inconsistent with the
BundleId of the certificate used in the push. Please check if the certificate is correct and if the
BundleId of the certificate is consistent with the BundleId used in client packaging.

The iOS phone cannot receive messages, but the message
status is ACKED
For iOS pushes, if the message status is ACKED, it means that the message has been
successfully pushed to Apple Push Notification service. Please check if the push permission is
enabled and whether you have switched the app to the background.
The default mechanism for Apple is that when an app is in foreground, the messages can
arrive but will be not shown. In order to show messages in foreground, you need to
implement it mannually.

RPC call exceptions
If an exception occurs when you call a resource through a remote procedure call (RPC)
request, troubleshoot the problem with reference to Security Guard error codes or Gateway
result codes.

Message Push Service User Guide·FAQ

> Document Version: 20240808 166

To send messages to an iOS device, you need to configure the iOS push certificate in the
Message Push Service (MPS) console. iOS push certificate is used for message push. This
topic describes types of certificates supported by the Message Push Service and the method
of preparing a certificate.

Certificate types
Message Push Service only supports the Apple Push Service certificate. To learn more about
Apple certificate types and related description, see Certificate type.
It is easy to confuse the Apple Push Service certificate with iOS Development certificate.
Using iOS Development certificate may cause message push failure. The following sections
describe how to distinguish between the two certificates through Key Store MAC and Message
Push Service console.

Certificate type Purpose

Apple Push Service
It is the Apple push certificate for production environment. It is
used to establish connectivity between your notification service
and APNs to deliver remote notifications to your app.

iOS Development It is the Apple push certificate for development environment. It is
used during development and testing.

MAC Key Store
Double-click the existing .p12 certificate and import the certificate into the MAC Keychain.
The certificate information such as the name is displayed.
Among the certificates:

iPhone Developer: Apple development certificate that is not supported by Message Push
Service.
Apple Push Services: Apple push certificate for the production environment that is
supported by Message Push Service.
Apple Development IOS Push Services : Apple push certificate for the development
environment that is supported by Message Push Service.

MPS console
After the certificate is imported into the Message Push Service console, the following
certificate information is displayed.

10.Appendix
10.1. Create an iOS push
certificate

Message Push Service User Guide·Appendix

> Document Version: 20240808 167

https://help.apple.com/xcode/mac/current/#/dev80c6204ec

Check the subjectDN attribute.
Apple Development IOS Push Services : Apple push certificate for the development
environment that is supported by Message Push Service.
Apple Push Service: Apple push certificate for the production environment that is
supported by Message Push Service.

In the preceding figure, the subjectDN attribute is iPhone Developer, indicating that it is
an Apple development certificate, which is not supported by Message Push Service.

Prepare a certificate
Create an iOS app ID

1. On Apple Developer, click App IDs in the left navigation pane, and click + in the upper
right corner.

2. Enter the basic information.
App ID Description > Name
App ID Suffix > Bundle ID (The Bundle ID must be unique.)

3. Check Push Notifications.
4. Click Continue, and click Register. An iOS app ID is created.

Prepare a .certSigningRequest file
1. Access the MAC Keychain.
2. Request a certificate, choose Keychain Access > Certificate Assistant > Request a

Certificate From a Certificate Authority….
3. In the Certificate Information window, enter relevant information, such as the email

address and name, based on actual situations.
4. A .certSigningRequest file is successfully generated.

Create a certificate
1. On the iOS App IDs page, select your iOS app ID and click Edit.

Message Push Service User Guide·Appendix

> Document Version: 20240808 168

2. Click Create Certificate under Development SSL Certificate or Production SSL
Certificate to create a certificate for the development or production environment.

3. Upload the . certSigningRequest file that you have prepared.

Message Push Service User Guide·Appendix

> Document Version: 20240808 169

4. After a certificate is created successfully, the following page is displayed. Click Download
to download the .cer file.

5. Convert the .cer file into a .p12 file.
i. Double-click the .cer file to import it into the MAC Key Store.

ii. Right-click the file that you have imported, and export it. The file is exported as a .
p12 file.

6. After obtaining the .p12 iOS push certificate, go to the mPaaS console, select the target
App > Message Push Service > Push configuration to configure it.

The following tables list the common status codes and the possible status codes for various
push channels.

Common status codes
Apple Push
Huawei Push

10.2. Message push status codes

Message Push Service User Guide·Appendix

> Document Version: 20240808 170

MiPush
OPPO Push
vivo Push
FCM

Common status codes

Status
code Message Description

-1 WaitingForVerify Waiting for verification.

0 DeviceNotOnlineOrNoResp
onse

Waiting for the device to go online (the persistent
connection between the target device and the message
push gateway is closed) or waiting for delivery
confirmation.

1 NoBindInfo
There is no binding relationship. When you push a
message based on the user ID, make sure that the target
user ID has been bound with a device ID.

2 Acked

When you use an MPS self-built channel to push a
message, this status indicates that the message has
been successfully pushed to the client.
When you use a vendor push channel to push a message,
this status indicates that the vendor’s push gateway has
been successfully called.

99999999 NONE Unknown status.

Apple Push

Status
code Message Description

2001 PayloadEmpty The message payload is empty.

2002 PayloadTooLarge The message payload is too large.

2003 BadTopic Incorrect bundleid in the certificate.

2004 TopicDisallowed Illegal bundleid in the certificate.

2005 BadMessageId Incorrect messageId.

Message Push Service User Guide·Appendix

> Document Version: 20240808 171

2006 BadExpirationDate Invalid expiration date.

2007 BadPriority Invalid priority.

2008 MissingDeviceToken Device token missed.

2009 BadDeviceToken

The device token is invalid or in incorrect format, or it
does not exist. When you push a message based on the
user dimension and receive this status code, you need to
check whether the token used for binding is correct or
not. We recommend that you create a simple push
message in the MPS console as a test after completing
the binding.
In the development environment (the console is
configured with a development environment certificate),
you need to use your personal development certificate to
package the app for testing. Otherwise, BadDeviceToken
will appear.

2010 DeviceTokenNotForTopic The device token doesn't match the specified topic.

2011 Unregistered Invalid token.

2013 BadCertificateEnvironment The client certificate is for the wrong environment.

2014 BadCertificate The certificate is invalid.

2023 MissingTopic No topic is specified.

2024 ConnClosed

APNS disconnected. This status may caused by the
following reasons:

The iOS push environment configured in the console
and the pushed device token do not match.
The certificate packaged in the app's installation
package and the certificate configured in the console
do not match.
The BundleId in the project is different from the
BundleId configured in the console.

For more information about how to configure the iOS
push certificate, environment and BundleId in the
console, see Channel configuration.

2025 ConnUnavailable APNS connection is unavailable.

For more message push statuses of Apple Push, see Handling Notification Responses from
APNs.

Message Push Service User Guide·Appendix

> Document Version: 20240808 172

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/handling_notification_responses_from_apns?spm=a2c4g.11186623.2.21.1dcb3ca8SiPhwL

Huawei Push

Status code Description

100 Invalid unknown parameter.

101 Invaid API_KEY.

102 Invaid SESSION_KEY.

106 The app or session has no permission to call the current service.

107 Obtain the client and secret again (e.g., in case of an updated
algorithm).

109 Excessive nsp_ts difference

110 Interface internal exception.

111 Server is busy.

80000003 Terminal is not online.

80000004 The app has been uninstalled.

80000005 Response timed out.

80000006 No routing. No connection has been established between the
terminal and Push.

80000007 The terminal is in other region, and doesn't use Push in Chinese
mainland.

80000008 Incorrect routing. It may because that the terminal has switched
the Push server.

80100000 Some parameters are incorrect.

80100002 Ilegal token list.

Message Push Service User Guide·Appendix

> Document Version: 20240808 173

80100003 Ilegal payload.

80100004 Invalid timeout period.

80300002 No permission to send messages to the tokens listed in the
parameter.

80300007 All tokens in the request are illegal tokens.

81000001 Internal error.

80300008 Authentication error (the request message body is too large).

MiPush

Status code Description

1001 System error.

10002 Service suspended.

10003 Error in remote service.

10004 Cannot request this resource due to IP restriction.

10005 This resource requires authorized appkey.

10008 Incorrect parameters.

10009 The system is busy.

10012 Ilegal request.

10013 Ilegal user.

10014 Access to the app interface is restricted.

10017 Ilegal parameter value.

Message Push Service User Guide·Appendix

> Document Version: 20240808 174

10018 The request exceeds the length limit.

10022 Requests to the IP exceed the frequency limit.

10023 User's requests exceed the frequency limit.

10024 User's requests for special interface exceed the frequency limit.

10026 The app is in the blacklist, and cannot call any APIs.

10027 The app API is called too frequently.

10029 Illegal device.

21301 Authentication failed.

22000 Illegal app.

22001 The app doesn't exist.

22002 The app has been revocated.

22003 Failed to update the app.

22004 App information missed.

22005 Invalid app name.

22006 Invalid app ID.

22007 Invalid app Key.

22008 Invalid app Secret .

22020 Illegal app description.

22021 The app hasn't been authorized by users.

Message Push Service User Guide·Appendix

> Document Version: 20240808 175

22022 Invalid app package name.

22100 Incorrect data format for the app notification.

22101 Too many app notifications.

22102 Failed to send the app notification.

22103 Invalid app notification ID.

20301 Invalid target.

OPPO Push

Status
code Message Description

-1 Service Currently
Unavailable The service is unavailable, please try again later.

-2 Service in Flow Control The service is under traffic control.

11 Invalid Auth Token Invalid AuthToken.

13 App Call Limited App calling counts exceed limit, including the calling
frequency limit.

14 Invalid App Key Invalid AppKey.

15 Missing App Key AppKey missed.

16 Invalid Signature Invalid signature. Failed to pass signature verification.

17 Missing Signature17 Signature missed. Failed to pass signature verification.

28 App Disabled The app is unavailable.

29 Missing Auth Token AuthToken missed.

Message Push Service User Guide·Appendix

> Document Version: 20240808 176

30 Api Permission Denied The app has no permission to perform API push.

10000 Invalid RegistrationId registration_id is in incorrect format.

vivo Push

Status code Description

10000 Permission authentication failed.

10040 The resource has reached the upper limit, please try again later.

10050 Both alias and regId cannot be empty.

10055 The title cannot be empty.

10056 The title cannot exceed 40 characters in length.

10058 The content cannot exceed 100 characters in length.

10066 The number of custom key/value pairs cannot exceed 10.

10067 Invalid custom key/value pair.

10070 The total number of messages sent exceeds the limit.

10071 The sending time is out of the allowable time range.

10072 Message push is too fast, please try again later.

10101 The message content is unapproved.

10102 Unknown exception occured in vivo server.

10103 Pushed content contains sensitive information.

10110 Please set the frequency of sending commercial messages.

Message Push Service User Guide·Appendix

> Document Version: 20240808 177

10302 Invalid regId.

10303 requestId already exists.

10104
Please send a formal message. Please check the content, and do
not send test text. The content in a formal message should not be
numbers only, letters only, symbols plus numbers, and cannot
contain "test", braces, and square brackets.

FCM

Status
code Message Description

90000002 InvalidRegistration Invalid target.

90000003 NotRegistered The target is unregistered.

90000004 InvalidPackageName Invalid package name.

90000007 MessageTooBig Message body is too large.

90000009 InvalidTtl Invalid offline time-to-live.

90000011 InternalServerError FCM service exception

90000401 Authentication Failed to pass permission verification.

Message Push Service User Guide·Appendix

> Document Version: 20240808 178

	1.About Message Push Service
	2.Terminology
	3.Message push process
	4.Client-side development
	4.1. Android
	4.1.1. Quick start
	4.1.2. Process notification clicks
	4.1.3. Integrate third-party push channels
	4.1.3.1. Integrate HUAWEI Push
	4.1.3.2. OPPO Push
	4.1.3.3. Integrate vivo Push
	4.1.3.4. Integrate MiPush
	4.1.3.5. Integrate FCM push channel

	4.1.4. Manufacturer Message Classification
	4.1.5. Advanced features

	4.2. iOS

	5.Server-side configuration
	6.Console operations
	6.1. Data overview
	6.2. Message management
	6.2.1. Create a message - Simple push
	6.2.2. Create a message – Multiple push
	6.2.3. Manage simple push messages
	6.2.4. Manage multiple push messages
	6.2.5. Manage scheduled push task

	6.3. Message templates
	6.3.1. Create a message template
	6.3.2. Manage message templates

	6.4. Message revocation
	6.5. User tag management
	6.6. Device status query
	6.7. Channel configuration
	6.8. Key management

	7.API reference
	7.1. Client APIs
	7.2. Server APIs

	8.Message content restrictions
	9.FAQ
	10.Appendix
	10.1. Create an iOS push certificate
	10.2. Message push status codes

