
Practice of Fine-grained Cgroups 
Resources Scheduling in Kubernetes
Qingcan Wang (wangqingcan1990@gmail)
Junbao Kan (kjb0518@163.com)



Who are we?

Qingcan Wang
Senior engineer of 

Alibaba Cloud
Github: Denkensk

Junbao Kan
Senior engineer of 

Alibaba Cloud
Github: fredkan



• 1. Cgroup Resouce Management

• 2. Cpu Scheduling based on Scheduling Framework

• 3. Other Related Works

Agenda



Cgroup Resource Management

Cgroup is a mechanism to limit resource for process and is basic ability in 
Docker container.

Ø Limit the number of resources that process groups can use;
Ø Priority control of process group;
Ø Records the number of resources used by the process group;
Ø Process group control;

Cgroup Requirements In Our Environment:
Ø Resource Limit for CPU/Memory with pod starting;
Ø Update cgroup for container without payload restart;
Ø Smart configure cgroup limits for resource;



What is Cgroup Controller?

Cgroup Controller:
Ø Dynamic cgroup configuration;

Ø CRD Implement for Cgroups/CgroupPolicy;

Ø Increase resource utilization with optimization resource 

allocate;

Features:
Ø Support different payload: 

Deployment/StatefulSet/DaemonSet/Pods;

Ø Support different resources limit: cpu/memory/blkio;

Ø Support set cgroup limit both pod and container;

Ø Support configure blkio cgroup as rootfs/volumes/deviceID;

Deployment StatefulSet Pods

Cgroups (CRD)

Kubernetes

Job Job Job

Pod

Cgroup Hierarchically

Container
1

Container
2

Pod

Cgroup Hierarchically

Container
1

Container
2

CgroupPolicy(CRD)



Cgroup Controller Implementation

CRD(Cgroups):
Ø Define the resource limit detail;
Ø Define which payload to be limited;
Ø Record the resource limitation states;

Main Process: 
Ø Watch CR created and status;
Ø Analysis payload according to CR definition;
Ø Create Jobs which works on target node;

Job:
Ø Execute cgroups object setting logical on target nodes;
Ø Update job status to CR;

Cgroups
(CRD)

Cgroup
Controller

Job
(Executer)

Pod(Executer)

Pod
(container)

Cgroup

Payload
(pods)

2

1

3

4

4

5



Cgroup Controller In Practice

apiVersion: resources.alibabacloud.com/v1alpha1
kind: Cgroups
metadata:

name: cgroups-cpu
spec:

pod:
name: pod-cpu
namespace: demo
containers:
- name: cpu

cpu: 2000m
memory: 5000Mi

apiVersion: resources.alibabacloud.com/v1alpha1
kind: Cgroups
metadata:

name: cgroups-deploy
spec:

deployment:
name: deployment-cpuset
namespace: demo
containers:
- name: cpuset

cpuset-cpus: 2-3,5-6

apiVersion: resources.alibabacloud.com/v1alpha1
kind: Cgroups
metadata:

name: cgroups-cpuset
spec:

pod:
name: pod-cpuset
namespace: demo
containers:
- name: cpuset

cpuset-cpus: 2-3

apiVersion: resources.alibabacloud.com/v1alpha1
kind: Cgroups
metadata:

name: cgroups-blkio
spec:

pod:
name: pod-blkio
namespace: demo
containers:
- name: blkio

blkio:
device_write_bps: [{device: "rootfs", value: "102400"}]



Smart Cgroup Controller

CgroupPolicy:
Ø Define resource limit policy, make the limitation average between 

payloads;

Ø Define target resource: node, resource type, resourceID;

Ø Define the total resource limitation threshold;

Ø Record pod’s cgroup limitation on the target resource;

Main Process:
Ø Cgroup Controller implement CRD for CgroupPolicy, watch 

pods/nodes/CgroupPolicy objects;

Ø If pods(related to CgroupPolicy) changed, create cgroups(CR) to 

adjust resource limit for payloads;

Ø Update status and related pods list to CgroupPolicy CR;

Cgroup
Controller

Pod1

Cgroup

2

1

Pod2

Cgroup

Cgroups
(CRD)

Cgroups
(CRD)Pods CgroupPolicy

(CRD)

Resource

Executer Executer

1

2 2

3 3

Nodes 1

Node



CgroupPolicy In Practice

apiVersion: resources.alibabacloud.com/v1alpha1
kind: CgroupPolicy
metadata:
name: cgroups-policy

spec:
nodeSelector: 
kubernetes.io/hostname: cn-beijing.192.168.7.3

resourceType: blkio
resourceID: rootfs
resourceIOPSLimit: 40
policy: spread

status:
status: processing
payload:
- name: cgrouppolicy-pod-1
type: pod
namespace: default
containers:
- name: nginx
blkio:
device_read_bps: [{device: "rootfs", value: ”20"}]

- name: cgrouppolicy-pod-2
type: pod
namespace: default
containers:
- name: nginx
blkio:
device_read_bps: [{device: "rootfs", value: ”20"}]

apiVersion: v1
kind: Pod
metadata:
name: cgrouppolicy-pod-1
annotations:
policy.cgroup.alibabacloud.com: cgroups-policy

spec:
containers:
- name: nginx
image: nginx:1.7.9



• 1. Cgroup Resouce Management

• 2. Cpu Scheduling based on Scheduling Framework

• 3. Other Related Works

Agenda



Why CPU scheduling is needed ?

CPU architecture
• The two processors belong to the same core 

have a dedicated L1 and L2 cache
• The L3 cache is shared between cores belong to

the same node
• CPUs belong to differnet Numa node to access 

different parts of memory at different speeds

0 2 31

16 18 1917
L1
L2

L1
L2

L1
L2

L1
L2

L3

8 10 119

24 26 2725
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node3Numa Node1

4 6 75

20 22 2321
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node2

12 14 1513

28 30 3129
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node4

Socket1 Socket2
Machine

Goal
• Reduce the program loss caused by frequent switching between multiple cores
• Reduce the loss caused by frequent switching between different NUMA nodes
• Select the best CPU scheduling result in cluster dimension



Architecture

Kube-apiserver

Cgroups-Controller
(Run as Deployment�

Container

3. Framework Plugin for CPU 
Scheduling

2. Watch Pod/Node/Cgroup 

4. Create Cgroup for 
CPUSet

7. Cgroups-Job�CPUSet

Container/sys/fs/cgroup/cpuset/kubepods.slice

8. CPUSet
Container

6. Create Job for Cgroup CPUSet operation

Cgroup 
Agent

Node 1

Cgroup Agent

Node 2

Kube-scheduler

5. Watch Cgroup CRD
1. Report the CPU 

topology and the real load 
of CPU

Extension components

Kubernetes components



Scheduling Framework Plugins For CPU Scheduling

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework

PostBind: Create Pod’s Cgroup request to
store the CPU scheduling results

Score: Select the optimal CPU 
scheduling result by algorithm

Reserve:
• Reserve the optimal CPU scheduling result

to prevent reallocation to other pods
• Clean the CPU scheduling result if failure 

occurs in the binding cycle

Filter: Filter out the nodes that 
can‘t meet the requirement of
the pod for CPU



Scheduling algorithm

NUMA node selection policy

• The top priority is that the CPU core can be 
assigned to a single NUMA node.

• If multiple NUMA nodes meet condition 1, they 
will be selected according to the real CPU load

• If a single NUMA node can’t be met, it needs to 
be in a single socket

Node1

Socket1 Socket2

Numa Node1 A/C = 16/24

Numa Node2 A/C = 22/24

Numa Node3 A/C = 22/24

Numa Node4 A/C = 20/24

A/C = CpuSet Allocated/CpuSet Capacity 

Node2

Socket1 Socket2

Numa Node1 A/C = 21/24

Numa Node2 A/C = 18/24

Numa Node3 A/C = 20/24

Numa Node4 A/C = 10/24

CPUSet 
Request 8c



Scheduling algorithm

CPU core selection policy

• Make the assigned processors belong to the 
same core. Then L1/L2 cache can be shared 
between processors.

• Choose a relatively idle NUMA node

• When the first condition can’t be met, the 
physical core is preferred.

0 2 31

16 18 1917
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node1

4 6 75

20 22 2321
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node2

12 14 1513

28 30 3129
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node 3

18

Idle
Allocated

CPUSet 
Request 4c

12 14 1513

28 30 3129
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node 3



Statistical results 

Mysql Workload
• Insert TPS Increased by 30%
• Select TPS Increased by 10%

Web Application CPU-intensive

Java Compute CPU-intensive

Java/Go web application QPS increases by 20%-
30% on average

Time consumption reduced by 20%

• Size(1GB) Concurrency(16): Time consumption 
reduced from 531s to 471s

• Size(2.9GB) Concurrency(4): Time consumption 
reduced from 187s to 167s

10% efficiency improvement

Video transcoding MPG4 to H264

0

100

200

300

400

500

600

default cpusets

16jobs (s)

4jobs (s)



Descheduler

0 2 31

16 18 1917
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node1

4 6 75

20 22 2321
L1
L2

L1
L2

L1
L2

L3

Numa Node2

L1
L2

0 2 31

16 18 1917
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node1

4 6 75

20 22 2321
L1
L2

L1
L2

L1
L2

L3

Numa Node2

L1
L2

0 2 31

16 18 1917
L1
L2

L1
L2

L1
L2

L1
L2

L3

Numa Node1

4 6 75

20 22 2321
L1
L2

L1
L2

L1
L2

L3

Numa Node2

L1
L2

C

A
B

1. Due to limited resources, 
some pods are allocated 
CPUs across NUMA nodes.

2. After a period of time, 
the CPUs allocated by Pod
A are released. Pod B can 
be allocate CPUs from 
single NUMA node.

3. Descheduler will create a new
Cgroup CRD (Note that it‘s not 
about modifying the original).
Scheduling framework will watch
this event to update the Scheduling
Cache. In case of data inconsistency, 
the scheduler shall prevail. Finally, 
Cgroup controller adjusts pod B to 
the single NUMA node.



• 1. Cgroup Resouce Management

• 2. Cpu Core Scheduling based on Scheduling Framework

• 3. Other Related Works

Agenda



scheduler-plugins

In order to better manage scheduling related plugins, a new project scheduler-plugins is created to facilitate users to 
manage different plugins. Users can define their own plugins directly based on this project.
https://github.com/kubernetes-sigs/scheduler-plugins

• Coscheduling

• Capacity Scheduling

• NodeResourcesAllocatable

• Real Load Aware Scheduling

https://github.com/kubernetes-sigs/scheduler-plugins
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/pkg/coscheduling
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/9-capacity-scheduling
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/pkg/noderesources
https://github.com/kubernetes-sigs/scheduler-plugins/pull/61


Future works

• Spark on Kubernetes
- Scheduling base on Scheduling framework
- Access data acceleration

• Heterogeneous resource scheduling
- GPU
- RDMA
- Topology Scheduling




